Breast tumor characterization using [¹⁸F]FDG-PET/CT imaging combined with data preprocessing and radiomics

Denis Krajnc¹, Laszlo Papp¹, Thomas S. Nakuz², Heinrich F. Magometschnigg³, Marko Grahovac^{2,4}, Clemens P. Spielvogel^{2,4}, Boglarka Ecsedi¹, Zsuzsanna Bago-Horvath⁵, Alexander Haug^{2,4}, Georgios Karanikas², Thomas Beyer¹, Marcus Hacker², Thomas H Helbich³, Katja Pinker^{3,6}

¹QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
²Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Vienna, Austria
³Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna, Austria
⁴Medical University of Vienna, Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
⁵ Department of Pathology, Medical University of Vienna, Vienna, Austria;
⁶Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Correspondence:

Thomas Beyer, PhD, MBA QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria Medical University Vienna Währinger Gürtel 18-20 1090 Vienna, Austria thomas.beyer@meduniwien.ac.at

SUPPLEMENTAL MATERIALS

Supplemental Table S1: Imaging Biomarker Standardization Initiative (IBSI) reporting structure of the study. The information presented herein is based on the IBSI guidelines [1]

Patient							
Volume of Interest	PET/CT positive lesions in breast						
Patient Proparation	Patients were required to fast for at least 5 h before injection of (200–350) MBq ¹⁸ F-						
	FDG based on body weight with blood glucose level <150 mg/dL (8.3 mmol/L).						
Radiotracer	[¹⁸ F]FDG ¹⁸ F-Fluorodeoxyglucose						
Acquisition and Recon	struction						
Protocol	A dedicated breast PET/CT scan was performed over one PET bed position with						
	the patient in the prone position.						
Scanner type	Siemens Biograph 64 TruePoint® PET/CT						
	- 200–350 MBq injected						
	 < 150 mg/dL (8.3 mmol/L) blood glucose level 						
	- 5 min acquisition time						
^{[18} FIEDG	- 60 min uptake time						
[1] 00	- 605 mm transaxial FOV						
	- Iterative TrueX reconstruction, 4 iterations per 21 subsets						
	- 168 × 168 axial matrix size						
	- 3.6 × 3.6 × 5 mm voxel size						
Image Co-registration							
Software	Hermes Hybrid 3D ver 4.0						
Co-registration step	Automated as of DICOM coordinate parameters						
Data conversion							
Stop 1 (all images)	Initial voxel values determined by transforming the DICOM raw voxel values with						
	the DICOM tags Rescale Scope (0028 1053) and Rescale Intercept (0028 1052).						
	Initial voxel values transformed to tumor-to-background ratio (TBR) by dividing all						
Step 2 (PET)	voxel values with the mean of the reference region drawn as a $4 \times 4 \times 4$ cuboid VOI						
	in the mediastinum region in each patient.						
Delineation							
Software	Hermes Hybrid 3D ver 4.0						
VOI definition	Standard semi-automated iso-count 3D VOI tools						

Number of experts	1 + 1 (1 nuclear medicine expert participated in independent delineations, followed by 1 senior nuclear medicine specialist cross-validation and if necessary, modification of first-round results) and 1 + 1 (1 breast imaging expert participated in independent delineations, followed by 1 breast imaging specialist cross-validation and if necessary, modification of first-round results)						
Reference image	PET						
Image / VOI interpolation	on						
Method	Kriging interpolation in 3D, including nearest neighbors in distance of voxel size main diagonal [2]						
Grid	Align by voxel center						
Extrapolation beyond original image	Neighbor distance search calculated as original voxel size main diagonal + epsilon. Missing value: image minimum						
Voxel dimensions	1.0 mm and 4.0 mm uniform voxel sizes as of [3]						
Partially masked voxels (VOI)	If more than half of original voxel area included						
Discretization							
Method	Fixed bin width, variable number of bins						
Bin width	0.01 and 5 [3]						
Image biomarker comp	utation / Parameters						
Biomarker set	 Intensity-based statistical features (6 per image): Minimum intensity, Maximum intensity, Mean intensity, Intensity variance, Intensity range (Maximum – Minimum), Intensity sum Intensity histogram features (6 per image): Discretised intensity uniformity, Discretised intensity entropy, (Excess) discretised intensity kurtosis, Mean discretised intensity, Discretised intensity skewness, Discretised intensity variance GLCM features (18 per image): Angular second moment, Autocorrelation, Cluster prominence, Cluster shade, Contrast, Correlation, Difference entropy, Difference variance, Dissimilarity, Joint entropy, Joint maximum, Joint variance, Inverse difference, Inverse difference moment, Sum average, Sum entropy, Sum variance, Information correlation 1 GLSZM features (11 per image): Gray level non-uniformity, High gray level zone emphasis, Large zone high grey level emphasis, Large zone low grey level emphasis, Large zone emphasis, Low grey level zone emphasis, Small zone high grey level emphasis, Small zone low grey level emphasis, Small zone emphasis, Zone size non-uniformity, Zone percentage 						

	 Morphological features (4): Volume (voxel counting), Compactness 1, Spherical disproportion, Area NGTDM features (5 per image): Coarseness, Contrast, Busyness, 					
	Complexity, Strength					
Custom set	 Fusion features (14 per image): Angular second moment, Auto correlation, Cluster prominence, Cluster shade, Contrast, Correlation, Dissimilarity, Entropy, Information correlation, Inverse difference, Inverse difference moment, Maximum probability, Normalized mutual information, Sum of squares variance 					
	Fusion features are generated from a 2D joint histogram [4, 5] for which overlapping voxel values coming from images A and B are determined within the given VOI mask. The generated joint histogram is afterwards handled in the same way as it was a GLCM.					
Software	MUW radiomics engine 2.0 [3]. Software availability upon reasonable request from the corresponding author.					
Distance weighting	No					
CM symmetry	Symmetric					
CM / ZM distance	Chebyshev distance 1					
CM / ZM aggregation	3D, full-merging					
Exclusion criteria	VOIs with less than 64 voxels were excluded from the analysis					

Machine learning predictive models

Five random forest (RF) algorithms [6] with different hyperparameter configuration were employed in an ensemble learning scheme. The final model decision was obtained by averaging across the five predictive models. (See Supplemental Table S2).

Supplemental Table S2: Algorithms settings of the 5 RF models employed in the ensemble learning scheme [6]. KDE = Kernel Density Estimation [7].

Parameter	RF-1	RF-2	RF-3	RF-4	RF-5
Number of trees	100	400	300	300	200
Quality metric			gain		
Max depth	5	10	10	15	15
Min samples at leaf			5		
Feature selection			Random		
KDE attributes per split	10	15	20	25	25
Random features	10	6	4	4	4
Number selected trees			10		
Bagging method			equalized		
Bag fraction			1.0		

Data preparation pipelines across all machine learning predictive models

In order to perform data preparation steps on the training data, a pipeline was established following the logic where firstly, the dataset is cleansed from outliers by utilizing the Isolation Forest algorithm [8], High feature dimensionality was considered and handled by applying Sequential Forward Selection (SFS) [9] feature selection algorithm, followed by removal of noise and borderline samples with Tomek Link [10]. Furthermore, the dataset was balanced by utilizing advanced oversampling methods such as Synthetic Minority Oversampling Technique (SMOTE) [11].

Supplemental Table S3: Data preparation pipelines across all machine learning predictive models.

Model	Algorithms pipeline			
Breast cancer detection (malignant vs benign)				
ER				
PR	-			
HER2	Isolation forest -> SFS -> Tomek Links -> SMOT			
Ki-67	-			
Triple negative	-			
Luminal A/B	-			

SFS = Sequential Forward Selection; SMOTE = Synthetic Minority Oversampling Technique; ER = estrogen; HER2 = Human Epidermal growth Receptor 2; PR = progesterone

Best performing machine learning predictive models over sham data

Supplemental Table S4: Machine learning results of best performing models (per reference label) over sham data. Confusion matrix values are presented as percentages (%), while area under the curve (AUC) values are presented as ratios.

Model	ACC	SENS	SPEC	NPV	PPV	AUC
Breast cancer detection (malignant vs benign)	47	46	49	47	47	0.48
ER	54	67	41	55	53	0.52
PR	49	70	27	48	49	0.48
HER2	50	17	84	50	52	0.48
Ki-67	52	50	55	52	53	0.51
Triple negative	59	47	72	57	62	0.59
Luminal A/B	51	15	88	50	55	0.47

ACC = Accuracy; AUC = Area under the receiver operator characteristic curve; ER = Estrogen; HER2 = Human Epidermal growth Receptor 2; NPV = Negative Predictive Value; PPV = Positive Predictive Value; PR = Progesterone; SENS = Sensitivity; SPEC = Specificity.

Conventional positron emission tomography (PET)-based correlation analysis

Supplemental Table S5: Conventional positron emission tomography (PET)-based correlation analysis for malignancy, estrogen (ER), progesterone (PR), human epidermal growth receptor 2 (HER2), Ki-67 protein, triple negative, and luminal A/B status, expressed in *P*-values.

Model		SUV _{mean}		SUV _{min}		SUV _{max}		SUV _{peak}		SUV _{TLG}	
		mean $\pm \sigma$	P-value	mean $\pm \sigma$	0.21226	mean $\pm \sigma$	P-value	$\text{mean} \pm \sigma$	P-value	mean ± σ	P-value
ma Malignancy	malignant	2.98 ± 0.68	0.00004	1.82 ± 0.57	0.00000	5.81 ± 1.37	0.00021	3.81 ± 0.96	0.00145	44.71 ± 19.12	0.21226
	benign	1.67 ± 1.79		0.75349	0.00026	2.48 ± 5.25		1.81 ± 3.68		10.88 ± 162.98	
	+	2.80 ± 1.59	0.00500	1.85 ± 0.79	0 704.04	5.14 ± 4.17	0.00016	3.44 ± 2.92	0.00289	42.75 ± 184.45	0.75349
EK	-	4.17 ± 2.48	0.00509	0.43446	0.79181	10.58 ± 8.42		6.52 ± 6.38		57.43 ± 103.19	
	+	2.80 ± 1.44	0.00700	1.87 ± 0.78	0 7770	5.08 ± 3.64	0.0032	3.40 ± 2.59	0.0185	36.91 ± 176.59	0.43446
РК	-	3.67 ± 2.53	0.03739	0.21124	0.7778	8.73 ± 8.24		5.48 ± 5.96		67.78 ± 162.46	
	+	3.14 ± 1.76	0.00000	1.85 ± 0.72	0.03718	6.45 ± 5.20	0.00286	4.16 ± 3.61	0.00521	55.90 ± 197.27	0.21124
KI-07	-	1.98 ± 0.77	0.00269	0.39311		3.10 ± 1.69		2.00 ± 0.98		4.66 ± 4.38	
	+	2.79 ± 1.48	0 5 2 0 4 5	1.76 ± 0.65	0.5554	5.38 ± 3.92	0 5 4 4 0 2	3.27 ± 2.40	0.37348	16.75 ± 27.83	0.39311
HEKZ	-	3.07 ± 1.93	0.53045	0.47311	0.5554	6.20 ± 5.89	0.54183	4.12 ± 4.22		52.67 ± 193.90	
Triple regetive	Yes	4.94 ± 2.68		1.99 ± 0.72	0.5450	13.36 ± 9.17	0.000001	8.26 ± 7.25	0.00006	80.45 ± 121.89	0.47311
i ripie negative	No	2.78 ± 1.55	0.00019	0.61971	0.5459	5.13 ± 4.07		3.41 ± 2.85		40.45 ± 137.34	
Luminal A/B	А	2.96 ± 1.58	0 70704	1.80 ± 0.71	0.01000	5.84 ± 4.29	0.80613	3.61 ± 3.37	0.85397	17.90 ± 32.67	0.61971
	В	2.79 ± 1.60	0.70784	P-value	/alue 0.81099	5.51 ± 4.84		3.44 ± 2.63		41.11 ± 177.88	

SUV = standard uptake value;

Performance comparison of machine learning predictive models and standard uptake value (SUV)-based predictive models

Model		SENS	SPEC	NPV	PPV	ACC
Breast cancer detection	ML-based	80	78	79	78	80
(malignant vs benign)	SUV-based	71	44	61	58	56
EB	ML-based	82	56	76	69	65
ER	SUV-based	86	23	62	55	53
BB	ML-based	78	35	61	56	54
FK	SUV-based	77	37	62	57	55
LED2	ML-based	17	84	50	50	51
HER2	SUV-based	2	80	45	41	09
Ki-67	ML-based	62	68	64	65	66
	SUV-based	78	48	68	63	60
Triple perstive	ML-based	85	78	84	79	82
Thple negative	SUV-based	51	82	63	67	74
Luminal A /P	ML-based	16	89	51	53	59
Luminai A/B	SUV-based	14	82	49	48	44

Supplemental Table S6: Holomics-based vs standard uptake value (SUV)-based ML performance comparison across all predictive models.

ACC = Accuracy; ER = estrogen; HER2 = Human Epidermal growth Receptor 2; NPV = Negative Predictive Value; PPV = Positive Predictive Value; PR = progesterone; SENS = Sensitivity; SPEC = Specificity.

Predictive model performance is expressed in percentages (%).

References

1. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295:328-38.

doi:10.1148/radiol.2020191145.

2. Stytz MR, Parrott RW. Using kriging for 3d medical imaging. Computerized Medical Imaging and Graphics. 1993;17:421-42. doi:10.1016/0895-6111(93)90059-V.

3. Papp L, Rausch I, Grahovac M, Hacker M, Beyer T. Optimized feature extraction for radiomics analysis of 18 F-FDG-PET imaging. Journal of Nuclear Medicine. 2018:jnumed.118.217612-jnumed.118. doi:10.2967/jnumed.118.217612.

4. Sun S, Guo C. Medical Image Registration by Maximizing a Hybrid Normalized Mutual Information. IEEE. p. 964-7.

5. Oubel E, Beaumont H, Iannessi A. Mutual information-based feature selection for radiomics. In: Zhang J, Cook TS, editors. p. 97890L-L.

6. Papp L, Spielvogel CP, Grubmüller B, Grahovac M, Krajnc D, Ecsedi B, et al. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging. 2020. doi:10.1007/s00259-020-05140-y.

7. Geng X, Hu G. Unsupervised feature selection by kernel density estimation in wavelet-based spike sorting. Biomedical Signal Processing and Control. 2012;7:112-7. doi:10.1016/j.bspc.2011.03.002.

8. Liu FT, Ting KM, Zhou ZH. Isolation forest. Proceedings - IEEE International Conference on Data Mining, ICDM. 2008:413-22. doi:10.1109/ICDM.2008.17.

9. Marcano-Cede??o A, Quintanilla-Dom??nguez J, Cortina-Januchs MG, Andina D. Feature selection using Sequential Forward Selection and classification applying Artificial Metaplasticity Neural Network. IECON Proceedings (Industrial Electronics Conference). 2010:2845-50. doi:10.1109/IECON.2010.5675075.

10. Elhassan T, Aljurf M, F A-M, Shoukri M. Classification of Imbalance Data Using Tomek Link (T-Link) Combined with Random Under-sampling (RUS) as A Data Reduction Method Samplingbased Methods Basic Sampling Methods. Journal of Informatics and Data Mining. 2016;1:1-12.

11. Chawla NVBKWHLOKWP. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research. 2002;16:321-57. doi:10.1613/jair.953.