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Simple Summary: Hyperthermia is a method to expose a tumor to elevated temperatures. Heating
of the tumor promotes the effects of various treatment regimens that are based on chemo and
radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This
review provides an overview of the effects and limitations of hyperthermia and discusses how current
drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a
mechanism that cells activate to defend themselves against hyperthermia.

Abstract: Cancer treatments based on mild hyperthermia (39–43 ◦C, HT) are applied to a widening
range of cancer types, but several factors limit their efficacy and slow down more widespread
adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window
and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT,
the cellular responses to these effects and their clinically-relevant consequences. We then identify
the heat stress response—the cellular defense mechanism that detects and counteracts the effects of
heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting
this mechanism as a potentially universal strategy for improving their efficacy.

Keywords: hyperthermia; heat stress; heat shock response

1. Introduction

Hyperthermia (HT)—the exposure of malignant tissues to supraphysiological
temperatures—is gaining popularity in clinical cancer treatment, and a wide range of
HT-based strategies have been developed to achieve various clinical goals. In this review,
we focus in particular on temperatures in the range of 39–43 ◦C, referred to as mild HT [1],
which is generally applied to enhance the cytotoxic effects of chemo and radiotherapy [2–4].
Moreover, we focus on the sublethal effects of heat, as opposed to the effects caused by
ablative hyperthermia temperatures (>45/46 ◦C).

Despite the clinical successes that have been achieved thus far, the efficacy of these
treatments is limited by several factors including the emergence of thermotolerance—a
phenotype of temporarily increased resistance to ongoing and subsequent heat exposure—in
treated cells. Overcoming these limitations carries the promise of improving the clinical
outcomes, irrespective of tumor or treatment type. In this review, we provide an overview
of the biological effects of HT and their clinical implications. We then describe the various
strategies by which cells detect heat stress and activate the transcriptional program known
as the heat stress response. Finally, we discuss how the activation of this mechanism may be
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driving some of the important limitations of clinical HT-based treatments and conclude that
targeting this mechanism may potentially be a universal strategy to improve their efficacy.

2. Applications and Limitations of Hyperthermia-Based Cancer Treatments
2.1. The Origins of Hyperthermia in Cancer Treatment

HT is among the oldest existing methods in cancer treatment. Records dating back
to around 3000 B.C. describe the use of heat to burn tumor masses by a process known
as cauterization in ancient India, Egypt, and China [5], along with the use of natural
heat sources (e.g., hot mud baths and volcanic steam) for general wellbeing. Moreover,
illustrious philosophers of ancient Greece and Rome (500 B.C.–50 A.D.), such as Parmenides,
Hippocrates and Celsus, shared the opinion that manipulating body temperature is the
key to curing cancer, at least when other treatment options fail [6]. The origins of the
modern HT treatments, however, date back to the 1850s when surgeons William B. Coley
and Carl D.W. Busch observed that in some cases the severity of fever positively correlates
with tumor regression and overall patient survival. Moreover, artificial induction of fever
by the injection of a mixture of dead bacterial strains, nowadays known as “Coley’s toxin”,
could lead to similar outcomes [7]. Indeed, as the immune response against Coley’s
toxin likely contributed to the observed responses, Coley’s findings not only marked the
beginning of modern HT therapy, but are also considered pioneering work in the field
of immunotherapy. Although technical difficulties related to heating and temperature
monitoring [4] temporarily prevented HT from competing with the gold standards in
cancer treatment (i.e., surgery, chemotherapy, and radiotherapy), different forms of HT
therapies are now gaining popularity as standalone treatments, or in combination with
other therapeutic agents.

2.2. Clinical Application of Hyperthermia

Three parameters are particularly relevant in HT treatment protocols. First is the
amount of applied heat or, more specifically, the thermal dose, which depends on both the
achieved temperature and the duration of heating. Second is the size of the heated body
region, with whole-body, (loco-)regional and local HT referring to the application of heat
to the entire patient body, a specific region (e.g., a body cavity, limb, or organ) or only the
tumor, respectively [1,8] (Table 1). Third, relatively understudied and underappreciated, is
the kinetics of heat application: results of some interesting studies suggest that at a constant
total thermal dose, a steep temperature increase can be considerably more cytotoxic than
gradual heating [9,10].

The physiological and cellular effects caused by HT are largely temperature depen-
dent [11], providing opportunities for achieving distinct clinical goals. Temperatures
exceeding 50 ◦C are generally used to cause direct thermal ablation in small solid neo-
plasms, e.g., in the kidneys, liver, lungs, prostate and bones [8]. Mild HT, on the other
hand, is applied locally or regionally to promote the effects of chemo and radiotherapy on
a variety of tumors, including breast, cervix, head & neck, soft tissue sarcoma, rectum and
bladder [2–4]. The external methods to induce mild HT for superficial and deep-seated
tumors include radiative techniques employing electromagnetic (e.g., radiofrequency, mi-
crowaves or infrared) or acoustic waves (e.g., ultrasound) [1,8]. The internal techniques
include intraluminal and interstitial mild HT and involve placing heating probes in or
near the tumor [1,8]. Regional mild HT can also be established by isolated perfusion
of a part of the body, whereby a section of the blood circulation is rerouted through an
external heating device [1,12], or by circulating warm liquids containing chemotherapy in
body cavities, as performed in hyperthermic intraperitoneal chemotherapy (HIPEC) and
hyperthermic intravesical chemotherapy (HIVEC) for the peritoneal cavity and the bladder,
respectively [12–14]. In addition to these routinely used clinical approaches, experimental
strategies for optimizing and integrating mild HT therapies with other modalities are under
investigation. For example, in magnetic fluid HT, multifunctional magnetic nanoparticles
are selectively targeted to tissues, generate efficient local tumor heating when exposed to
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an alternating magnetic field and carry different appropriate payloads [15–17]. In addition,
the development of thermosensitive liposomal drug carriers allows for controlled drug
release in tumor regions subjected to mild HT [18–20]. Thus, a wide range of methods have
been developed to achieve heat delivery, and ongoing efforts could potentially improve
the clinical applicability and versatility of mild HT.

2.3. Limitations of Hyperthermia-Based Therapies

Clinical successes have been achieved by utilizing mild HT as a chemo or radiosensi-
tizing agent [2–4], but the efficacy of these treatments is nevertheless limited by a number
of factors, irrespective of the treated tumor subtype. Firstly, to efficiently sensitize a tumor
to chemo or radiotherapy, an adequate thermal dose must be delivered to the entire tumor
volume while minimizing the temperature increase in the surrounding noncancerous tis-
sues [21]. Higher tumor temperatures are associated with better clinical outcomes [22,23].
Due to both technical and biological reasons, however, achieving these goals remains chal-
lenging. For example, well vascularized subvolumes within the tumor can result in local
“cool spots”, and excessive temperatures (“hot spots”) can occur in poorly vascularized
normal tissue regions outside the tumor or at the interface between different tissue types.
These hot spots must be suppressed as they cause discomfort and, potentially, toxicity to
the patient, and clinicians are often forced to decrease the power delivered to the tumor to
the extent that the desired target temperature or thermal dose cannot be achieved [24]. Sec-
ondly, most sensitizing effects of mild HT are of a temporary nature, resulting in a relatively
short time window during which the tumor is optimally sensitized to the coadministered
treatment modalities. This is illustrated, for example, by the finding that a long time-
interval between HT and radiotherapy negatively affects the overall survival of women
with locally advanced cervical cancer [25], but a debate is ongoing to what extent these
findings are patient and treatment dependent [26–28]. Thirdly, heat stress triggers a protec-
tive cellular response, known as the heat stress response, which counteracts the effects of
HT and temporarily renders cells less sensitive or even insensitive (i.e., thermotolerant) to
a subsequent treatment, thereby reducing its chemo and radiosensitizing effects [29,30].
Consequently, there is a practical limit on the frequency at which HT can be applied, such
that HT sessions are scheduled at intervals of at least three days. Finally, the ability of
HT-based therapies to sensitize metastases, in addition to the primary tumor, is currently
restricted to the local metastases that are targeted in regional HT. In conclusion, there are
important limitations to the efficacy of clinical mild HT-based therapies and overcoming
these limitations could improve their clinical performance and patient outcomes.

Table 1. Clinical application of mild hyperthermia (HT). An overview of the most common indications and the equipment used.

Region of Exposure Tumor Stage or Position Mode of Clinical Application Cancer Types Treated Clinical Studies,
Technical Literature [1,8]

Local

Superficial

• Acoustic waves (e.g.,
Ultrasound)

• Electromagnetic waves
(radiofrequency, microwave,
infrared)

• Breast cancer
• Soft tissue sarcoma
• Head & neck cancer
• Malignant melanoma

Vernon et al. (1996) [31]

Issels et al. (2018) [32]

Deep seated
• Intraluminal
• Interstitial
• Acoustic waves

Valdagni et al. (1994) [33]

Overgaard et al. (1995) [34]

Regional

Deep seated
• Electromagnetic waves
• Hyperthermic intravesical

chemotherapy (HIVEC)

• Cervix cancer
• Bladder cancer
• Ovarian cancer
• Prostate cancer
• Pancreatic cancer
• Rectal cancer
• Soft Tissue Sarcoma
• Malignant melanoma
• Pseudomyxoma peritonei
• Peritoneal mesothelioma
• Primary peritoneal carcinoma
• Gastric cancer
• Colon cancer

van der Zee et al. (2000) [35]

Local metastasis
• Perfusion
• Hyperthermic intraperitoneal

chemotherapy (HIPEC)

Colombo et al. (2011) [36]
Maluta et al. (2007) [37]

van der Horst et al. (2018) [38]
Wust et al. (2002) [39]
Issels et al. (2018) [32]

Eggermont et al. (2003) [40]
Koops et al. (1998) [41]

Kusamura et al. (2021) [42]
Goéré et al. (2017) [43]

van Driel et al. (2018) [12]
Verwaal et al. (2003) [44]

Whole-body Distant metastasis • Thermal chambers • Malignant melanoma Lassche et al. 2019 [45]
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3. The Biological Effects of Hyperthermia
3.1. The Effects of Hyperthermia at the Macroscopic Level
3.1.1. Promotion of Tumor Perfusion and Alteration of the Tumor Microenvironment

The tumor microenvironment (TME) encompasses all components of a tumor that
are not cancer cells, such as the vasculature, the extracellular matrix, various cell types
(e.g., immune cells, cancer-associated fibroblasts and tumor-associated endothelial cells), as
well as the factors that they secrete (e.g., cytokines, growth factors) [46,47]. It has become
clear that the TME plays a considerable role in many aspects of cancer progression [46] and
aids in the development of therapy resistance [47]. An important feature of the TME is the
presence of hypoxic, acidic and nutrient-deprived regions, as their existence and extent
positively correlate with drug resistance, metastatic potential and poor prognosis [47–50].
These regions generally arise due to difficulties in establishing a homogenous blood supply
throughout the tumor volume.

Mild HT has the ability, however, to alter many of these microenvironmental param-
eters, as temperatures of 39–43 ◦C maintained for 30–60 min have generally been found
to increase perfusion for the subsequent 4–8 h [51] in both well and poorly-vascularized
regions of solid tumors [52–55]. This leads to normalization of oxygen, nutrient and pH
levels. Although this effect was already observed in the 1980s [56–58], enhanced tumor
perfusion and oxygenation are still thought to be the predominant mechanisms by which
mild HT improves chemo and radiotherapeutic treatments [4,59,60]. Accordingly, mild HT
boosts the sensitivity of tumors to agents such as radio and chemotherapy, which require
oxygen for maximum cytotoxicity [61–63]. In addition, the increase in tumor perfusion can
locally increase drug concentrations at the tumor site. Although this is still under debate
for nonencapsulated drugs, various studies have convincingly shown that the extravasa-
tion of liposomal drug carriers increases upon mild HT, in part by increasing the size of
blood vessel pores, which allows their escape from the circulation [18,51,64,65]. Increased
tumor perfusion and the subsequent alterations of the TME are thus underlying multiple
beneficial effects of mild HT-based treatments.

3.1.2. Immunostimulatory Effects

Antitumor immunity plays a key role in cancer, and intensive investigation during the
last decades have led to insights into the contribution of a wide range of immune cells to
this effect [66,67]. The interaction between the tumor and the immune system is a constantly
evolving process, wherein the immune system attempts to eliminate transformed cells
as the tumor executes various countermeasures, such as attracting immunosuppressive
cells and inhibiting the function of others [68]. In line with the notion that the thermal
component of fever plays an important role in immune activation [69], an increasing body
of data suggests that both mild HT and thermal ablation therapies can tip the delicate
balance between the tumor and the immune system, in favor of the latter [70,71].

Several effects provoked by mild HT contribute to this phenomenon. Heat has been
shown, for instance, to enhance immune cell recruitment by stimulating perfusion and
circulation in the tumor, along with the upregulation of adhesion molecules of the vas-
culature, such as ICAM-1, which promote immune cell recruitment [72]. The activity of
various immune cells is also increased by heat directly [69], and by the altered activity
of proteins on the surface of immune and tumor cells [71]. Furthermore, the release of
immunostimulatory factors by cancer cells, including exosomes [73,74] and tumor antigen-
bound chaperone proteins [75,76], is enhanced by heat stress. In line with these findings,
multiple preclinical studies have shown that the reduction in tumor growth and prolonged
survival after mild HT treatments positively correlate with the enhanced infiltration and
activation of immunity-promoting cells (e.g., APC, NK, CD4+ T and CD8+ T cells), and
with higher concentrations of proinflammatory cytokines and other immune-stimulating
factors [77–80]. In short, important local and systemic effects of mild HT are exerted by
boosting antitumor immunity, which might be further exploited in novel combination
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therapies that aim to promote antitumor immune responses, including immune checkpoint
inhibition [81] and chimeric antigen receptor (CAR) T-cell therapy [82].

3.2. The Effects of Hyperthermia at the Cellular Level
3.2.1. Effects on the Folding and Structure of Proteins and Lipids

Exposure to heat has wide-ranging effects on the cell (Figure 1), mainly by affecting
the structure of proteins and lipids. Most proteins have evolved to operate at the optimal
growth temperature of the host organism [83]. A deviation from this temperature can
cause protein unfolding and aggregation in virtually all cellular compartments [84,85],
thereby affecting the functioning of the corresponding cellular pathways. Aggregates can,
however, also immobilize fully functional proteins by a principle known as coaggregation.
For this reason, the effects of heat-induced protein unfolding are not limited to the cellular
processes that these proteins are involved in. In addition, the alteration of lipid structures
translates into enhanced permeability of various cellular membranes. Ultimately, heat
can result in a cell cycle halt in any phase [86], followed by cell death or senescence if the
amount of damage exceeds the capacity of cellular countermeasures. In the remainder of
this section, we focus on the cellular effects of mild HT that are currently believed to be
most consequential for cell survival.
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Figure 1. Effects of hyperthermia at the cellular level. Exposure to heat induces unfolding and aggre-
gation of proteins (orange) and membrane permeabilization. The most detrimental consequences
include cytoskeletal collapse (green) and difficulties in processes that require its function (e.g., vesicu-
lar transport, chromosome segregation, cell-cell communication, migration, maintenance of organelle
structure). In addition, protein synthesis is impaired, as depicted by fragmentation of the ER-Golgi
apparatus (grey). A drop in energy production arises from mitochondrial dysfunction. Furthermore,
various DNA repair pathways are affected, which sensitizes tumor cells to DNA-damaging therapies.

3.2.2. Heat Alters Membrane Characteristics and Promotes Drug Influx

Elevated temperature increases the fluidity, and therefore the permeability, of cellular
membranes. This can lead to a loss of ion (e.g., Ca2+, K+, Mg2+) homeostasis and a decline
in cytosolic pH [87–90]. These alterations, however, are not necessarily all detrimental, as
has been suggested for Ca2+ [89]. In contrast, a well-known consequence is the loss of the
proton gradient over the mitochondrial inner membrane (i.e., mitochondrial uncoupling),
leading to a temporary drop in mitochondrial ATP production. In addition, mitochon-
drial uncoupling leads to enhanced production of reactive oxygen species (ROS) by these
organelles [91–94], including under hyperthermic conditions [95–98]. By transferring elec-
trons to various cellular components, including DNA, proteins and lipids, ROS can then
cause widespread detrimental effects on various cellular components, and especially on
genetic material [99].

The permeability of membranes towards various compounds is also enhanced, and
several in vitro studies suggest that this could contribute to the effects of certain chemoth-
ermotherapy regimens [100–102]. In some cases, mild HT can promote the active uptake
of drugs. Heat was shown, for example, to activate CTR1, the copper transporter that is
known to play a role in the uptake of cisplatin [103]. Mild HT can thus alter the charac-
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teristics of membranes, thereby interfering with various cellular processes and sensitizing
cancer cells to other treatment modalities.

3.2.3. Cytoskeletal Defects Further Impede the Function of Organelles

Another major consequence of heat exposure is the collapse of the cytoskeleton,
governed by the unfolding and aggregation of filament forming proteins (e.g., actin, tubulin,
and intermediate filaments) [104]. This leads to the deregulation of cellular processes that
heavily rely on the cytoskeleton (e.g., vesicular transport, chromosome segregation, cell-cell
communication, migration). Combined with the alterations in membrane properties and
protein integrity, cytoskeletal dysfunction results in the disruption of the localization and,
therefore, the functioning of organelles [86,105,106]. Heat stress causes, for instance, a drop
in translation and protein synthesis due to fragmentation and impairment of the ER-Golgi
apparatus. Finally, impaired cytoskeleton function reduces the number of mitochondria,
further disturbing energy production. In short, the collapse of the cytoskeleton by mild HT
contributes to the dysregulation of multiple other cellular functions.

3.2.4. Hyperthermia Interferes with Nuclear Processes and Sensitizes Cells to
DNA-Damaging Agents

Of all organelles, the effects of heat on the nucleus have been studied most intensively.
It is a highly vulnerable structure, as even temperatures as low as 40 ◦C cause denaturation
of some nuclear proteins [107]. This is partially due to the relatively high protein and DNA
concentration, which can lead to rapid coaggregation once protein denaturation occurs [96].
Heat stress has additionally been shown to cause a massive redistribution of proteins to the
nuclear matrix, and to alter the import and export of proteins [108–111], thus interfering
with a wide range of nuclear processes. For instance, exposure to mild HT leads to a
short-lived halt in DNA replication by impeding replicon initiation, chromatin maturation
and replication fork activity [86,112]. In addition, heat interferes with transcription and
RNA processing [113,114]. These effects are, however, not irreversible, allowing for the
activation of transcriptional programs that are, as will be discussed in later sections, part
of the heat stress response. The ability of heat to interfere with the function of various
DNA repair mechanisms (e.g., homology-directed repair, nonhomologous end-joining,
base-excision repair) are known to greatly contribute to the efficacy of DNA-damaging
therapies, including chemo and radiotherapy [115]. Heat may further amplify these
effects by inducing various types of DNA damage, including nucleotide modifications
and even, albeit controversially, DNA double-strand breaks (DSBs) [112,116–118]. In
conclusion, mild HT affects various nuclear processes and sensitizes tumor cells to DNA-
damaging therapies.

4. Response and Adaptation to Hyperthermia
4.1. Detection of Hyperthermia
4.1.1. The Heat Stress Response Is Activated in Response to Hyperthermia

Cells predominantly sense heat and other forms of stress (e.g., oxidative, pH, hypoxic,
toxin, replication, mutation and metabolic stress) in an indirect manner by monitoring
the integrity of proteins. Most cellular compartments contain a dedicated mechanism
that communicates heat stress to the nucleus, leading to the activation of a transcriptional
program that counteracts its effects, known as the heat stress response.

In the cytosol, most forms of stress cause unfolding of proteins, resulting in the
activation of the “heat shock response” [119]. A hallmark of the heat shock response is
the induction of heat shock proteins (HSPs) [120,121]. HSPs are a subgroup of molecular
chaperones that are involved in a myriad of functions by folding and refolding various
“client” proteins [122]. HSPs protect animals from oxidative stress, endotoxin-mediated
microvascular injury and ischemic heart damage, among various other important non heat-
related functions [122]. As heat stress triggers protein unfolding, HSPs play an important
role in the heat shock response.
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Although novel mediators are continuously being uncovered, the family of heat
shock factors (HSFs) is known to play an important role in the onset of the heat shock
response [123]. HSF1 seems to be a key player, as its deletion in mice completely abol-
ishes the induction of HSPs [124,125]. In the absence of heat stress, HSF1 is kept inactive
by intramolecular interactions and association with various (co)chaperones (e.g., HSP90,
HSP70, and HSP40). Heat stress, however, leads to the increased affinity of these chaper-
ones towards other (unfolded) proteins, thereby releasing HSF1. Under the regulation of
numerous post-transcriptional modifications [126,127], HSF1 forms homotrimers, translo-
cates to the nucleus and stimulates transcription by binding to the consensus heat shock
elements (HSEs). After the cell recovers from heat stress, similar but inverse processes are
involved in returning HSF1 to its inactive state. Although HSF1 has long been regarded
as an essential transcription factor in the overall activation of the heat shock response,
recent studies revealed that its role may be limited to the induction of HSPs, whereas other
transcription factors, including serum response factor (SRF) [128], orchestrate the bulk of
the response [129,130]. In addition, accumulating evidence indicates a modifying role of
other HSFs, such as HSF2, HSF3, and HSF4 [124,125]. For instance, although HSF2 depends
on HSF1 for its role in the heat shock response, it has been shown that HSF2 can also bind to
HSEs and interacts with HSF1 [131]. Currently available evidence seems to neither confirm
nor deny the involvement of additional HSFs, such as HSF5, HSFX, and HSFY [127]. It
is also noteworthy that major modulators of the heat shock response, such as the Hippo
signaling pathway, have eluded discovery until quite recently [132]. Another signaling
cascade that is activated in response to (heat) stress is the pathway of the stress response
kinases SAPK and p38 [133]. Triggered at the cellular membrane by receptors such as
TNFα, IL1β or G-protein coupled receptors, the pathway involves a complex, multilevel,
and multiprotein cascade that finally activates SAPK and p38 and, in turn, Elk1, cJun and
ATF-2 transcription factors. Downstream effector processes include adaptation to stress,
but also immune system activation, inflammation and apoptotic responses. Interestingly,
HSP70 can prevent activation of this cascade, and especially its apoptosis-stimulating
effects [134,135], thereby contributing to stress-resistance.

Similar to the cytosol, compromised integrity of proteins in organelles results in the
activation of the so-called “unfolded protein response” (UPR), and is well-characterized
for the ER-Golgi system (UPRER) [136] and mitochondria (UPRmt) [137,138]. The ER is the
primary site for synthesis and modification of proteins, and protein integrity is, therefore,
vital for its function. HT and other forms of stress, however, lead to protein unfolding
in the ER [139]. Interestingly, short pre-exposure to heat has been shown to reduce ER
stress upon subsequent exposure [140], suggesting that recovery of ER homeostasis is
an important feature of the UPR. ER stress is sensed by transmembrane proteins IRE1,
PERK, and ATF6. Although these proteins activate separate signaling pathways, crosstalk
between the pathways is evident, and their activation eventually leads to the triggering
and nuclear translocation of ATF6, XBP1 and eIF2α. Subsequently, the repertoire of UPRER

induced genes relieves ER stress by enhanced chaperone activity, removal of damaged
ER by ER-associated protein degradation (ERAD) and expansion of the ER by promoting
lipid synthesis [136]. In mitochondria, the UPRmt is activated when the level of misfolded
proteins exceeds the capacity of chaperones in the mitochondrial matrix. In yeast, this
excess of proteins is degraded by the protease ClpXP, allowing for their transport to the
cytosol via the peptide transporter HAF-1. Subsequently, the presence of peptides triggers
activation and nuclear translocation of transcription factor ZC376.7. Studies in yeast are,
however, difficult to translate into the context of higher organisms, and which proteins
communicate mitochondrial protein stress to the cytosol in mammalian cells remains
elusive. It is known, however, that JNK2 activation and translocation to the nucleus is
an important consequence, as JNK2 phosphorylates the Jun transcription factor, which
promotes expression of CHOP and C/EBPβ. These transcription factors, together with
others that are yet to be defined, drive expression of mitochondrial chaperones [137,141].
To conclude, the monitoring of protein integrity plays a key role in the detection of heat
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and in the activation of pathways that are collectively forming the heat stress response
(Figure 2).
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Figure 2. Activation and functions of the heat stress response. Heat stress is mainly sensed by
monitoring protein integrity. The unfolded protein response (UPR) is activated when heat stress
is detected in organelles [136,137], whereas the heat shock response communicates cytosolic heat
stress [119,126]. These pathways, collectively termed the heat stress response, initiate cellular
countermeasures that drive heat adaptation. Solid and dashed arrows indicate direct and indirect
involvement, respectively. Figure adapted and extended from [142].

4.1.2. Thermosensors as Direct Regulatory Mediators of Thermal Stress

Although it was assumed at first that activation of the heat stress response is ini-
tiated solely by the detection of unfolded proteins, it has become apparent that it can
also be activated in their absence. Cells contain a set of biomolecules, often referred to
as thermosensors, which can be nucleic acid-, protein- or membrane-based. The con-
formational changes of these molecules in response to heat are directly coupled to the
regulation of elements of the heat stress response. Most studies initially focused on the role
of prokaryotic thermosensors in the regulation of virulence genes to obtain insights in their
pathogenicity [143–145]. Recent studies, however, provide evidence for the existence of
similar mechanisms in eukaryotes. For instance, alterations in membrane fluidity, compa-
rable to the alterations at febrile temperatures, have been shown to activate the heat stress
response in the absence of unfolded proteins [146,147]. Although we have just started
to unravel the functioning of these mechanisms, they might provide novel therapeutic
opportunities in combination therapies that involve heat application.

4.1.3. Activation of the Heat Stress Response on the Systemic Level

Next to the cell-autonomous mechanisms described above, a growing body of evidence
suggests that eukaryotes communicate and react to heat stress on a systemic level. It has



Cancers 2021, 13, 1243 9 of 20

been shown in Caenorhabditis elegans, for instance, that heated tissues excrete various stress
factors and trigger neuronal signaling, thereby initiating the activation of the heat stress
response in distant body regions [148–150]. With some emerging studies demonstrating
the interplay between tumors and the nervous system [151], more research is needed to
elucidate whether and how the tumor heat stress response is affected by systemic responses.

4.2. The Heat Stress Response Activates Various Counteractive Measures

Studies focusing on the heat stress response in various species have led to the consen-
sus that exposure to elevated temperatures results in the induction of seven functionally
distinct classes of proteins originating from 50–200 genes [152–159]. Conversely, heat stress
also results in the temporary repression of thousands of genes, mostly involved in tran-
scription, translation, cell growth and several aspects of RNA processing [129,142,160,161].
Furthermore, accumulating evidence suggests an important role for post-translational
modifications in the regulation of the heat stress response [162]. Molecular chaperones,
such as HSPs, belong to the most upregulated class, and their expression is initiated
within minutes. Following suit are proteins involved in the proteolytic system, includ-
ing proteases and components of the proteasome. Together, molecular chaperones and
the proteolytic system ensure that misfolded and (co)aggregated proteins either undergo
refolding or are degraded, thereby facilitating rapid recovery of proteostasis. Other upreg-
ulated protein classes respond to more specific forms of damage. For example, DNA/RNA
repair/modifying enzymes are upregulated to counteract the induction of DNA damage,
replication stress and the initial drop in transcription and translation. Components and
regulators of the cytoskeleton are overexpressed to counteract the detrimental effects of
heat on the cytoskeleton, and subsets of metabolic enzymes are overexpressed to accom-
modate for the reduced energy production. In short, the heat stress response regulates the
expression of a wide range of processes to counterbalance the detrimental effects of heat.

4.3. Thermotolerance

The phenotype emerging from all the discussed responses to heat stress—thermo-
tolerance—provides a degree of limited and temporary adaptation to the ongoing and/or
subsequent exposures. Thermotolerance can be manifested in multiple complex ways on
the level of cells, tissues and organs, but a common denominator is an increased resistance
to the stressor, which is generally proportional to its magnitude [163]. In the context of
clinical HT, the phenomenon complicates and restricts treatment scheduling and reduces
efficacy [164]. The kinetics of acquisition and persistence of the thermotolerant state
strongly depend on the activation of the heat stress response pathways and, despite their
complexity discussed above, thermotolerance can be modelled based on network analysis
of HSP upregulation alone, at least in in vitro experiments [9].

5. Optimizing Hyperthermia-Based Treatments by Manipulating the Heat
Stress Response
5.1. Inhibition of the Heat Stress Response Enhances the Efficacy of Hyperthermia-Based
Treatments in Preclinical Research

As discussed in the earlier sections, therapies based on mild HT frequently fail to
reach the required thermal dose and offer a short therapeutic window, while the acquisition
of thermotolerance limits the frequency at which they can be applied. Since the ability
to generate an adequate heat stress response is a prerequisite for (cancer) cells to survive
exposure to heat, it can be hypothesized that interfering with this process will improve
treatment efficacy. Accordingly, a lower thermal dose may elicit similar cytotoxic effects,
the duration of the therapeutic window may be extended and thermotolerance may be
reduced or eliminated, offering opportunities to increase the treatment frequency. Various
studies indeed support the notion that the acquisition of thermotolerance can be counter-
acted. For instance, mouse embryonic fibroblasts lacking HSF1 have been shown to be
incapable of generating the thermotolerant phenotype, whereas heat preconditioning of the
wildtype counterpart did result in a reduced sensitivity to subsequent HT [165]. Disruption
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of HSF1 function by lentiviral overexpression of its dominant-negative counterpart has,
similarly, been shown to sensitize the highly thermotolerant Bcap37 breast cancer cell line
to mild HT [166]. Next to these genetic approaches, others have demonstrated that the
pharmacological inhibition of various HSPs by different compounds, such as STA-9090
(also known as ganetespib, targeting HSP90), quercetin, and KNK437 (targeting HSP70
and HSF1), impedes the acquisition of a thermotolerant state by cervix, prostate and colon
cancer cells [167–169]. Furthermore, it has been shown in a squamous cell carcinoma mouse
model that heat-preconditioned tumors can be resensitized to mild HT by pharmacolog-
ically inhibiting the activation and the function of HSPs by KNK437 [170]. The notion
that the suppression of the heat stress response could allow for lower thermal dosages to
be effective is also supported by recent studies that achieved a similar reduction in cell
survival and tumor growth with milder heat treatment schedules when the function of
chaperones such as HSP90 and HSP70 was pharmacologically inhibited [167,171]. In line
with the potential of heat stress response intervention to reduce the drawbacks of mild
HT-based therapies, all studies mentioned above, as well as others, reported an increased
efficacy of heat treatments that were combined with manipulation of the heat stress re-
sponse as compared to heat alone. Pharmacological inhibition by quercetin, Pifithrin-µ, or
RNAi-mediated knockdown of HSP70 and HSF1, led to enhanced cell killing of prostate
and melanoma cancer cells in vitro and in vivo [172–174]. Further, the combined inhibition
of HSP90, HSP70, and HSF1 by 17-DMAG and quercetin enhanced the treatment efficacy
of magnetic nanoparticle-mediated HT treatment in a melanoma mouse model [175]. Im-
plementation of HSP90 inhibition in a chemo and radiotherapy-based mild HT treatment
regimen did result in enhanced treatment efficacy in cervix cancer cells [167]. Thus, ac-
cumulating evidence indicates that the heat stress response may be responsible for many
major drawbacks of mild HT-based treatments, and that inhibition of this response could
reduce these drawbacks, as well as improve the overall performance (Table 2).

Table 2. Preclinical support for combining mild HT with heat stress response inhibition. Overview of studies that
successfully used heat stress response inhibition to improve the performance of mild HT-based treatments.

Study Tissue of Interest Target Intervention
Strategy Biological Context Effect on HT Treatment

Vriend et al. (2017)
[167] Cervix cancer HSP90 Pharmacological:

Ganetespib in vitro
• Enhanced treatment efficacy
• Disruption of thermotolerance
• Lower thermal dose required

Koishi et al. (2001)
[170]

Squamous cell
carcinoma

HSPs Pharmacological:
KNK437

in vitro • Enhanced treatment efficacy
• Disruption of thermotolerancein vivo

McMillan et al. (1998)
[165] Untransformed HSF1 Genetic:

Knockout in vitro
• Enhanced treatment efficacy
• Disruption of thermotolerance

Wang et al. (2002)
[166] Breast cancer HSF1 Genetic:

Knockout in vitro
• Enhanced treatment efficacy
• Disruption of thermotolerance

Sahin et al. (2011)
[168] Prostate cancer HSF1

HSPs

Pharmacological:
KNK437,
quercetin

in vitro
• Enhanced treatment efficacy
• Disruption of thermotolerance

Court et al. (2017)
[171] Ovarian cancer HSP70

Pharmacological:
Pifithrin-µ

in vitro • Enhanced treatment efficacy
• Lower thermal dose requiredin vivo

Asea et al. (2001)
[172] Prostate cancer HSPs

Pharmacological:
Quercetin

in vitro • Enhanced treatment efficacyin vivo

Sekihara et al. (2013)
[173] Prostate cancer HSP70 Pharmacological:

Pifithrin-µ in vitro • Enhanced treatment efficacy

Yokota et al. (2000)
[169] Colon cancer HSPs Pharmacological:

KNK437 in vitro
• Enhanced treatment efficacy
• Disruption of thermotolerance

Nakamura et al.
(2010) [174] Melanoma HSF1 Genetic:

Knockdown in vitro • Enhanced treatment efficacy

Miyagawa et al.
(2014) [175] Melanoma HSPs

HSF1

Pharmacological:
17-DMAG,
Quercetin

in vitro
in vivo

• Enhanced treatment efficacy
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5.2. Inhibiting the Heat Stress Response in Hyperthermia-Based Therapies: Opportunities
and Challenges

The past decades yielded valuable insights into the tumor-supporting effects of stress
response mechanisms, and especially of the molecular chaperones. These have been shown
to drive tumor progression by chaperoning oncoproteins, thereby promoting cancer pro-
gression in multiple aspects, including elevated stress tolerance, enhanced proliferation,
escape from cell death, induction of the epithelial-to-mesenchymal transition, migration
and invasion [122,176]. Driven by these insights, a considerable effort has been invested
into the development of specific inhibitors of HSPs, such as HSP90 and HSP70, and promis-
ing compounds displaying favorable toxicity profiles are currently being evaluated for
their use against a multitude of different cancer types [177,178]. Additionally, potent in-
hibitors of transcriptional regulators of the heat stress response, such as HSF1, have been
generated [179], but their current generations lack potency and specificity and display
unfavorable toxicity profiles in vivo [180,181]. Although these targeted agents are applied
systemically, potentially exposing patients to unwanted side-effects, the chaperone addic-
tion shared by most advanced tumors makes them considerably more sensitive than normal
tissues, yielding a certain degree of specificity [182–184]. But, perhaps more importantly,
in the context of HT the specificity is a result of the local nature of most currently applied
HT-based treatments. Unfortunately, however, the mixed outcomes of clinical trials testing
heat stress response inhibitors have, thus far, precluded their regulatory approval, reducing
the chance for fast clinical adaptation.

A deeper understanding of the heat stress response is required to develop new se-
lective inhibitors of the heat stress response because a large portion of our knowledge
is derived from studying plants, bacteria and fungi. Although such studies have led to
valuable insights into the core functions of the heat stress response, e.g., prevention of
protein dysfunction, these findings cannot be directly translated to the clinical HT context
for several reasons. Firstly, as different organisms display varying sensitivity to heat [83],
and as its effects show a clear dose-dependence in many cases, such as its effects on DNA
repair [115], the various heating conditions used in these studies are incompatible with mild
HT-based therapies. Secondly, the functional scope of the heat stress response can differ per
organism. For instance, whereas HSF1 is only activated in response to stress in mammalian
cells, it has recently been shown that yeast, a model organism that is intensively used in
heat stress-related research, has a need for constitutively active HSF1 to prevent protein
aggregation [185], yielding it incomparable to many higher organism models. Thirdly,
a growing body of evidence suggests that cellular stress responses, including the heat
stress response, are differently organized and take on noncanonical functions in several
processes in the context of cancer. For example, HSF1 has been shown to play a more
pronounced role in pathways responsible for energy metabolism, DNA repair, cell cycle
signaling and apoptosis in colon, breast and lung tumors [154]. Importantly, the degree by
which the heat stress response is activated, and the extent by which it takes on these other
roles, are correlated with tumor stage, metastasis and patient survival [154,176]. These
findings reveal an extra layer of complexity, but also provide a basis for understanding why
potent HSP inhibitors have only produced promising clinical results under very specific
conditions, where tumors showed a dependency on these chaperones for the maintenance
of particular oncoproteins. For instance, recent studies showed that chaperones in a subset
of tumors may display a higher degree of functional overlap [186]. This increases the
capacity of the chaperone system, thereby enabling the tumor to thrive in a highly stressful
environment, either caused by external factors or by the high mutational burden leading to
misfolded proteins. This carries the drawback, however, of a diminished redundancy of
the system, rendering these tumors highly sensitive to inhibition of individual chaperones
and their cofactors [186]. In retrospect, these findings offered a convincing explanation
for the disappointing clinical results that have been obtained with, for instance, HSP90
inhibitors [187]. They also underscored the importance of understanding how heat stress
response is regulated in the context of cancer. In summary, the heat stress response appears
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to drive some of the important mechanisms that limit the efficacy of therapies based on
mild HT, but more research is clearly needed to efficiently exploit these mechanisms in
clinical settings.

6. Conclusions and Future Perspectives

Treatments based on mild HT are applied to a widening range of cancer types. In the
clinic, however, their efficacy is often limited by the insufficient thermal dose delivery, the
short therapeutic window and the acquisition of thermotolerance, which limits treatment
frequency. The evidence presented in this review suggests that a common mechanism—the
cellular heat stress response—may be underlying many of these limitations (Figure 3),
and that mild HT combination therapies that target this mechanism might improve the
clinical outcomes. The good news is that some heat shock response inhibitors, especially
those targeting HSP90 (e.g., ganetespib), have shown promise in dozens of preclinical
studies and displayed favorable pharmacological profiles in advanced, large, phase II and
III clinical trials. Considerable challenges remain, however. First, none of these drugs
have been approved for use by regulatory authorities, and this is unlikely to change in
the short term. Second, the safety and efficacy of HT combination therapies needs to be
demonstrated in new trials, which are generally slow in patient accrual. This could be
offset by multicenter studies, but the local differences in HT application protocols make
such an approach difficult as well. Third, due to the currently overall low number of
patients eligible for HT treatments, and thus the limited potential market for drug sale,
there is relatively little interest from pharmaceutical companies in sponsoring the required
costly studies.
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Figure 3. Current limitations of HT-based therapies. Venn diagram displaying the major limitations
of the current mild HT-based therapies. The cellular heat stress response underlies many of these
limitations, including insufficient thermal dose delivery, the short therapeutic window and the
acquisition of thermotolerance.

So, what can be done to overcome these challenges? It is unlikely that late-stage
clinical trials will be initiated by the HT field, but the considerable clinical interest in
heat stress response inhibitors for other indications may facilitate the development of
HT-based combination therapies via off-label use. Clinical translation may also be easier if
the inhibitors are applied locally, rather than systemically. This can be especially attractive
in HIVEC and HIPEC therapies, wherein heated chemotherapeutic cocktails are circulated
in the abdominal cavity or the bladder, respectively. Locally-applied “thermosensitizers”
would have a smaller chance of inducing systemic toxicity, likely accelerating the approval
process. Finally, one path that is yet to be explored systematically in hyperthermic oncology
is drug discovery and repurposing. To our knowledge, no large-scale compound screens
have been performed to uncover new thermosensitizers, or to reveal thermosensitizing
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properties of existing drugs. Such screens could not only provide valuable new information
on the mechanisms driving the cellular heat stress responses, but also new, safe therapeutic
strategies available in the short term.
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