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Simple Summary: Increasing evidence supports a role for complement in the development of cancer
and the response to cancer treatments. Dysregulated complement expression within the tumour
microenvironment has been linked to the suppression of anti-tumour immunity and poor clinical
outcomes. Complement signals have been demonstrated to alter the immune milieu, promote
proliferation and facilitate metastasis. Targeting complement signalling in combination with current
treatments may have the potential to achieve improved control of tumour growth.

Abstract: In recent years, our knowledge of the complement system beyond innate immunity has
progressed significantly. A modern understanding is that the complement system has a multifaceted
role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response
to therapies. The ability of local immune cells to produce and respond to complement components
has provided valuable insights into their regulation, and the subsequent remodeling of the tumour
microenvironment. These novel discoveries have advanced our understanding of the immunosup-
pressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This
review discusses the current understanding of complement in cancer, outlining both direct and
immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy,
radiation and immunotherapy is also presented. While complement activities are largely context
and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in
particular in combination therapies.
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1. Introduction

A dynamic relationship exists between the immune system and cancer, owing to
the fact that a system designed to defend the host and maintain homeostasis has the
potential to promote and foster malignant transformation [1,2]. Complement, an innate
inflammatory system, is no exception to this paradox [3]. Traditionally, the elimination of
foreign antigens was considered the primary, if not sole function of complement, however
we now understand that complement activities extend beyond this [4]. The complement
system, for instance, plays an important role coordinating adaptive immune responses, as
an opsonin, in synapse elimination and during angiogenesis [5–8]. Several studies have
demonstrated that complement is also capable of recognising and eliminating malignant
cells [9]. The net effect of these diverse functions renders the complement system a key
player in immune surveillance and homeostasis [4]. The delicate equilibrium between
developing tumours and the immune system is well documented, with evasion of immune
destruction defined as a hallmark of cancer [10]. In line with reports of an altered immune
milieu in several human cancers, dysregulation of the complement system in the cancer
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setting has been observed [11–15]. More recently, pro-oncogenic roles for complement
cascade components have been described [16,17]. Analysis of the current literature suggests
that the complement system has a dual role in malignancy [4,18] and whether complement
protects against or enables tumour pathogenesis may depend on the context of the tumour
microenvironment (TME) [19]. This review will discuss the current understanding of the
roles played by complement components in cancer, in particular focusing on how they may
influence response to cancer therapy.

2. The Complement System

In 1901, Jules Bordet described complement as a heat-labile factor that augmented
antibody-mediated bacterial lysis [20]. Subsequent discoveries have since established that
complement is not a single entity but represents a family of many proteins [21]. The comple-
ment system is composed of approximately 50 soluble and membrane-bound complement
effectors, regulators and receptors, with the main complement proteins numbered C1-9 [4].
Many complement precursors exist as zymogens, which require cleavage in order to gain
functionality [22]. The C3 and C5 convertase enzymes are central to the complement cas-
cade, cleaving C3 and C5 respectively to generate anaphylatoxins (C3a, C5a) and opsonins
(C3b, C5b) [4,23]. The small anaphylatoxin molecules are potent inflammatory mediators
with many effector functions [22,24]. Complement proteins are primarily produced by the
liver before systemic dissemination via the bloodstream, however, we now understand
that T cells, macrophages, endothelial cells and more recently, cancer cells, are capable of
complement production.

2.1. Complement Activation Pathways

There are three pathways by which the complement system may be activated, the
classical, the lectin and the alternative pathways (Figure 1). The classical pathway is
principally initiated when C1q of the C1 complex (C1q, C1r and C1s) recognises antigen-
antibody (Immunoglobulin (Ig) G or IgM containing) immune complexes, but several
antibody-independent signals such as C-reactive protein and viral proteins can activate
this pathway also [25–31]. Viral and bacterial carbohydrate-based pathogen-associated
molecular patterns (PAMPs) activate the lectin pathway by binding to mannose-binding
lectin (MBL), ficolins or collectins [32–35]. In the alternative pathway, C3 is spontaneously
hydrolysed to C3H2O in a process known as ‘tick-over’ [36,37]. Bacterial and yeast polysac-
charides and damaged tissue are among the initiators of this pathway [38,39]. The binding
of properdin to target microbial surfaces can facilitate the assembly of the alternative
pathway C3 convertase [40,41]. The alternative pathway also acts as an amplification
loop for the classical and lectin pathways [23,42]. Irrespective of the course of activation,
the three activation pathways converge to initiate the terminal pathway. This pathway
culminates with the assembly of complement components C5b–C9 to form a membrane
attack complex (MAC) [43,44]. MAC insertion into target cell membranes can trigger lysis
known as complement-dependent cytotoxicity (CDC) [45], or at sublytic doses may activate
signalling pathways to promote cell survival [46,47].
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Figure 1. Complement activation pathways. There are three routes by which the complement system can become activated: 
the classical, the lectin and the alternative pathways. Classical pathway activation is initiated primarily by antigen-
antibody immune complexes. C1q of the C1 complex (C1q, C1r and C1s) interacts with the fragment crystallistion (Fc) 
portion of antigen-bound immunoglobulins, activating C1r, which subsequently cleaves and activates C1s. Activated C1s 
cleaves C4 into C4a and C4b, and C2 into C2a and C2b leading to assembly of C4bC2a, the C3 convertase. Carbohydrate-
based pathogen-associated molecular patterns (PAMPs) trigger activation of the lectin pathway. Mannose-binding lectin 
(MBL), ficolins or collectins recognise PAMPs, activating MBL-associated serine proteases (MASPs). Similar to the classical 
pathway, C4 and C2 are cleaved to generate C4bC2a. The classical and lectin complement activation pathways converge 
at this point to cleave C3 into the potent anaphylatoxin C3a, and C3b, which joins the C3 convertase to form C4bC2aC3b, 
the C5 convertase. Cleavage of C5 yields the C5a anaphylatoxin and C5b, which polymerises with C6, C7, C8 and C9 to 
form the membrane-attack complex (MAC). This inserts into target cell membranes to induce lysis. Spontaneous 
hydrolysis of C3 into C3H2O occurs in the alternative pathway. Cleavage of factor B (FB) by factor D yields Bb, which 
associates with C3H2O to form a C3 convertase. Cleavage of C3 and FB produces C3b and Bb, respectively. The binding 
of properdin to microbial surfaces recruits C3b, facilitating the assembly of the C3 convertase (C3bBb), and initiating 
pathway activation. Subsequent cleavage of C3 produces C3b, which combines with the C3 convertase to form a C5 
convertase (C3bBbC3b). From this point, the terminal pathway is initiated to assemble the MAC, similarly to the classical 
and lectin pathways. Complement activation is regulated at various stages of the pathways by several membrane-bound 
complement regulatory proteins (Complement receptor 1 (CR1), CD46, CD55 and CD59) and circulating factors (C1-
inhibitor (C1-INH), factor H (FH), factor I (FI), C4-binding protein (C4BP), clusterin and vitronectin), which are depicted 
in red, and properdin, which stabilises the alternative pathway C3 convertase. 

2.2. Regulation of Complement Activation 
Activation and amplification of the complement system induces a powerful 

inflammatory response, necessitating a regulatory system to avoid damage to host cells. 
This is achieved by a number of soluble and membrane-bound effector molecules which 
modulate various critical stages of the pathway, including the widely expressed 
membrane-bound complement regulatory proteins (mCRPs) (Table 1) and the fluid phase 
proteins C1 inhibitor, C4b-binding protein, factor H (FH) and factor I (FI) [35,48,49]. The 
alternative pathway C3 convertase is stabilised when bound by properdin [50]. 
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Figure 1. Complement activation pathways. There are three routes by which the complement system can become activated:
the classical, the lectin and the alternative pathways. Classical pathway activation is initiated primarily by antigen-antibody
immune complexes. C1q of the C1 complex (C1q, C1r and C1s) interacts with the fragment crystallistion (Fc) portion of
antigen-bound immunoglobulins, activating C1r, which subsequently cleaves and activates C1s. Activated C1s cleaves
C4 into C4a and C4b, and C2 into C2a and C2b leading to assembly of C4bC2a, the C3 convertase. Carbohydrate-based
pathogen-associated molecular patterns (PAMPs) trigger activation of the lectin pathway. Mannose-binding lectin (MBL),
ficolins or collectins recognise PAMPs, activating MBL-associated serine proteases (MASPs). Similar to the classical pathway,
C4 and C2 are cleaved to generate C4bC2a. The classical and lectin complement activation pathways converge at this
point to cleave C3 into the potent anaphylatoxin C3a, and C3b, which joins the C3 convertase to form C4bC2aC3b, the C5
convertase. Cleavage of C5 yields the C5a anaphylatoxin and C5b, which polymerises with C6, C7, C8 and C9 to form the
membrane-attack complex (MAC). This inserts into target cell membranes to induce lysis. Spontaneous hydrolysis of C3
into C3H2O occurs in the alternative pathway. Cleavage of factor B (FB) by factor D yields Bb, which associates with C3H2O
to form a C3 convertase. Cleavage of C3 and FB produces C3b and Bb, respectively. The binding of properdin to microbial
surfaces recruits C3b, facilitating the assembly of the C3 convertase (C3bBb), and initiating pathway activation. Subsequent
cleavage of C3 produces C3b, which combines with the C3 convertase to form a C5 convertase (C3bBbC3b). From this
point, the terminal pathway is initiated to assemble the MAC, similarly to the classical and lectin pathways. Complement
activation is regulated at various stages of the pathways by several membrane-bound complement regulatory proteins
(Complement receptor 1 (CR1), CD46, CD55 and CD59) and circulating factors (C1-inhibitor (C1-INH), factor H (FH), factor
I (FI), C4-binding protein (C4BP), clusterin and vitronectin), which are depicted in red, and properdin, which stabilises the
alternative pathway C3 convertase.

2.2. Regulation of Complement Activation

Activation and amplification of the complement system induces a powerful inflam-
matory response, necessitating a regulatory system to avoid damage to host cells. This is
achieved by a number of soluble and membrane-bound effector molecules which modulate
various critical stages of the pathway, including the widely expressed membrane-bound
complement regulatory proteins (mCRPs) (Table 1) and the fluid phase proteins C1 in-
hibitor, C4b-binding protein, factor H (FH) and factor I (FI) [35,48,49]. The alternative
pathway C3 convertase is stabilised when bound by properdin [50].
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Table 1. Membrane-bound complement regulatory proteins.

Regulator Alternative Name (s) Distribution Function Reference

CD35 Complement receptor
1 (CR1)

Primarily
lymphocytes,
erythrocytes,
phagocytes,

dendritic cells

Cofactor for C3b and
C4b degradation by

Factor H
Accelerates C3 and C5

convertases

[51–55]

CD46 Membrane cofactor
protein (MCP)

All nucleated
cells

Cofactor for C3b and
C4b degradation by

Factor H
[56–58]

CD55 Decay accelerating
factor (DAF)

Ubiquitously
expressed

Accelerates decay of
C3 and C5 convertases [59–61]

CD59

Membrane-inhibitor
of reactive lysis
(MIRL), MAC

inhibitory protein
(MAC-IP), Protectin

Ubiquitously
expressed

Binds C5b-C9 to
prevent

polymerization of C9
[62,63]

2.3. Functions of Complement

MAC-induced lysis is the central cytotoxic event resulting from complement cas-
cade activation, however, complement opsonins and anaphylatoxins also contribute to
host defence. C3a and C5a exert their biological functions by binding to their respective
receptors, the C3a receptor (C3aR) and the C5a receptor 1 (C5aR1/CD88), two G protein-
coupled receptors [64,65]. A second, lesser understood C5aR, C5aR2 (previously C5L2)
also exists [66]. In contrast, this 7-transmembrane receptor is uncoupled to G-proteins
but is capable of recruiting β-arrestins [67–69]. C3a and C5a have been demonstrated to
induce chemotaxis of mast cells [70,71] and eosinophils [72], with C5a also acting as a
chemoattractant for macrophages [73], monocytes [74] neutrophils [74,75], basophils [76]
and T and B lymphocytes [77,78]. Complement opsonins such as the C3 fragments C3b
and iC3b aid phagocytosis by allowing recruited phagocytes to adhere to target cells via
complement receptor 1 (CR1), complement receptor 3 (CR3), complement receptor 4 (CR4)
and complement receptor Ig [4,79]. The phagocytic response to immune complexes may
be enhanced by C5a-mediated upregulation of activating fragment crystallisation (Fc) γ
receptors (FcγR) on the surface of phagocytes [24,80].

Complement cascade components also play key roles in orchestrating adaptive immu-
nity. The complement receptors CR1 and CR2 are essential in the generation of B cell and
follicular dendritic cell responses [81]. B cell responses are augmented by the binding of
antigen opsonized by C3d to CR2, which leads to enhanced signalling through the B cell
receptor and subsequent lowering of the threshold for activation [82–84]. In addition, com-
plement components play roles in the priming and differentiation of T cells and provide
survival signals to naïve T cells in an autocrine fashion [85–88]. Complement-mediated
regulation of immune cells has been demonstrated within the TME [16,89]. The implication
of these interactions on the efficacy of cancer treatment will be discussed later in this review.

3. The Complement System and Cancer
3.1. Activation of the Complement System in Cancer

As a key mediator in host defence, traditionally complement has been considered a
component of anti-tumour immune defence. Indeed, several studies have demonstrated
that the system is activated systemically and within the TME. Increased MBL/MASP
activity and MBL levels have been observed in the serum of patients with colorectal cancer
when compared to non-cancer controls [90]. In lung cancer cell lines, incubation with
normal human serum has been demonstrated to activate complement and give rise to
increased C5 deposits when compared to cell lines derived from the normal bronchial
epithelium [91]. Furthermore, increased C5a levels have been reported in the plasma of non-
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small cell lung cancer (NSCLC) patients when compared to healthy controls, suggesting
that local activation of complement is followed by systemic diffusion [91]. Complement
components are deposited in many tumour tissues, for instance C4d, a C4-derived fragment,
has been reported in oropharyngeal squamous cell carcinomas [92] and follicular and
mucosal-associated lymphoid tissue lymphomas [93]. Similarly, others have demonstrated
that C3c is abundantly deposited in tumour tissue from glioblastoma multiforme patients,
when compared to non-malignant controls [94]. In addition, this study reported deposition
of the C5b–C9 MAC on tumour cells. The presence of MAC complexes in tumour tissue
has also been reported in breast [95], gastric [96] and thyroid [97] cancers, and within
ovarian cancer-associated ascitic fluid [98] demonstrating local complement activation
up to advanced stages. The complex relationship between cancer cells and the MAC has
recently been reviewed in detail, including the pro-lytic signals responsible for mediating
the necrotic cell death induced by MACs [99].

Collectively, these observations provide evidence for tumour-induced activation of
the complement system. Given the role of complement in immune defence, it may be
expected that complement activation within the TME would associate with positive impact.
Paradoxically, in some cancer types, complement system activity is observed to correlate
with poor prognosis, including cervical [100], colorectal [101] and ovarian cancer [102].
These studies suggest that dysregulation of the complement system occurs in a number
of human cancers. It is widely accepted that a chronic inflammatory state facilitates
neoplastic transformation [1] and current evidence suggests that complement activity, even
if primarily initiated as a mechanism of host defence, may become tumour promoting as a
result of sustained inflammation within the TME.

3.2. Tumour Expression of Complement Regulators

In the process of tumour development, a range of mechanism exist to avoid immune
destruction [10]. Host cells express mCRPs to limit complement activation and avoid
damage to healthy tissue [49]. This strategy is exploited by cancer cells, which often
express complement regulators at levels higher than those observed in non-malignant
tissue [103–106]. For example, head and neck squamous cell carcinoma (HNSCC) cells
express significantly elevated levels of CD46, CD55 and CD59, when compared to benign
keratinocyte cells. Furthermore, tumour infiltrating lymphocytes (TILs) from HNSCC
patients have significantly increased expression of mCRPs, when compared to those from
healthy controls [13]. Although there is evidence for complement activation in cancer, the
expression of mCRPs within the TME provides evidence for tumour evasion of complement
activities. Importantly, this attempt by tumour cells to avoid complement-mediated lysis
appears successful. Expression of mCRPs correlates with poor clinical outcomes in cancer
more often than not [107]. An extensive overview of the contribution of mCRPs to tumour
growth and their current status as biomarkers, is presented in a recent review by Geller
and Yan [108].

Soluble complement regulators are also employed by tumours in a bid to regulate
complement activation. Lung cancer cells produce and secrete FH, and FI is secreted by
NSCLC cells providing them with protection from complement-mediated lysis [109–111].
Together with evidence for the expression of mCRPs in the TME, the expression of fluid-
phase complement effectors by cancer cells is consistent with an active attempt by tumours
to evade detection by complement. A recent study has demonstrated that mice deficient in
FH spontaneously develop hepatic tumours [112]. Furthermore, analysis of The Cancer
Genome Atlas (TCGA) demonstrated that increased expression of FH was associated with
improved patient disease-free survival (DFS) and overall survival (OS) when compared to
patients expressing unaltered levels of FH, while mutations in FH were associated with
poor OS [112]. These data illustrate that altered expression of complement regulators
contributes to tumorigenesis and may have a prognostic impact.
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3.3. Complement in Tumour Growth

Although the expression of complement regulators may allow tumour cells to prolif-
erate ‘unchecked’ [108], a pan-cancer contribution of complement in directly enhancing
tumour growth is yet to be, and is unlikely to be elucidated, largely due to the heterogene-
ity among cancer types and patients. Despite this, in recent years advances have been
made in understanding the relationship between complement and cancer with several
studies demonstrating pro-tumorigenic roles for complement. Several excellent reviews
have recently discussed the role of complement in tumour growth and dissemination in
detail [3,19,113].

3.3.1. Murine Studies

The complement system was often overlooked as an integral component of the TME.
A seminal paper in 2008 from Markiewski and colleagues however, provided the first clear
evidence for complement in tumourigenesis. They demonstrated using a syngeneic TC-1
mouse model, that C3−/−, C4−/− and C5aR−/− mice have significantly reduced tumour
growth [16]. It is well established that local cells within the TME, and the mediators they
produce, play key roles in tumour growth [114]. In this model, they demonstrated that in
the absence of C5a signalling, fewer myeloid-derived suppressor cells (MDSCs) migrated to
tumours, allowing for increased infiltration of CD8+ T cells [16]. Since then, several others
have demonstrated pro-tumour roles for complement, in particular providing evidence
for complement modulation of the anti-tumour immune response (Table 2). Signalling
through the C3a/C3aR and C5a/C5aR axes has been observed to remodel the TME, altering
immune infiltrates and inducing immunosuppressive phenotypes. Complement-mediated
regulation of T cell function is the most well described relationship between the com-
plement system and an immune cell. This is likely due to the roles played by autocrine
complement in T cell homeostasis, differentiation and metabolism [85,115–117].

Other key mechanisms and pathways distinct from the immune system have also
been described. In a mouse model of ovarian cancer, activation of the C3aR and C5aR by
their respective anaphylatoxins promotes proliferation of cancer cells by signalling through
the PI3K/AKT pathway [118]. Enhanced proliferation and migration of melanoma and
cutaneous squamous cell carcinoma (SCC) cells has also been ascribed to complement
signalling [119–122]. Furthermore, complement has also been reported to induce angio-
genesis [15,119,123] and foster acquisition of an epithelial-mesenchymal transition (EMT)
phenotype by promoting expression of stemness genes [122], enhancing invasion [124–126]
and increasing motility [127–130] of cells in several cancer types. Detailed overviews of
the roles played by complement components in facilitating metastasis have recently been
published by Ajona et al. [113] and Kochanek et al. [131].

It is notable that whilst the majority of murine studies have demonstrated pro-
oncogenic roles for complement, a small number of studies have reported anti-tumour
functions for complement. In mouse models of breast cancer C3, C5a, C1q and Factor P
have been demonstrated to protect against tumour growth [132–135].

Table 2. Functional effects of complement on immune cells which promote tumour growth in mouse models.

Immune
Cell Model Component Observation Mechanism Ref

MDSC
CD8+ T cell

Ovarian cancer,
syngeneic

(TC-1 cells)
C5a, C5aR

Tumour growth is impaired
in C5aR−/− mice
Pharmacological blockade
of C5aR reduces tumour
growth

Recruitment of PMN
MDSCs to tumours and
production of ROS/RNS by
MO MDSCs, suppresses
CD8+ T cell responses

[16]
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Table 2. Cont.

Immune
Cell Model Component Observation Mechanism Ref

CD8+ T cell

Melanoma, syngeneic
(B16 cells)

Breast cancer,
syngeneic (E0771)

C3, C3aR
C5aR

Tumour growth is impaired
in C3−/− mice
C3aR and C5aR antagonism
reduces tumour growth.

Complement signalling
inhibits IL-10 expression by
CD8+ tumour-infiltrating
lymphocytes (TILs),
hindering the anti-tumour
response

[136]

CD8+ T cell

Breast cancer,
syngeneic

(4T1 and 4TI-GFP
cells)

C5a, C5aR

Reduced lung and liver
metastases in C5aR−/−

mice
C5aR antagonism reduces
lung metastases

Recruitment of MDSCs, and
induction of TGFB and IL-10
production, leads to
suppression of CD8+ T cell
function by Treg cells

[89]

CD8+ T cell

Lung cancer,
syngeneic

KrasLSL-G12D/+ mice
(393P cells)

C5aR

Decreased tumour volume
in C5aR−/− mice
Pharmacological blockade
of C5a and PD-1 impairs
tumour growth

Fewer MDSCs accompanied
by an increase in CD8+ T
cells, which had lower levels
of exhaustion markers

[137]

CD8+ T cell
Colon cancer,

syngeneic
(MC38)

C3

Complement (C3) depletion
using cobra venom factor
(CVF) impairs tumour
growth

C3 contributes to the
generation of an
immunosuppressive
environment (Increased
MDSCs, fewer CD8+ T cells,
lower expression of CCL5,
CXCL10 and CXCL11)

[138]

MDSC
CD8+ T cell

Colitis-associated
colorectal cancer

(Induced by
azoxymethane and

dextran sulfate
sodium)

C5aR

Tumour growth is impaired
in C5aR−/− mice
C5aR antagonism reduces
tumour growth

C5a recruits MDSCs to CRC
tissue, inhibiting CD8+ T
cell responses

[139]

CD4+ T cell
CD8+ T cell

Lymphoma, syngeneic
(RMA-3CF4 and
RMA-1474 cells)

C5a

Tumour growth is impaired
in mice with lymphoma
cells producing low C5a
levels

Increase in effector (IFN-y
producing) CD4 and CD8+

T cells
[140]

CD4+ T cell

Lung cancer,
syngeneic and

orthotopic
(LLC-luc, CMT-luc

and EML4-ALK cells)

C3, C3aR,
C5aR

Tumour growth is impaired
and metastases are reduced
in C3−/− mice
C3aR or C5aR antagonism
reduces tumour growth.

Signalling of C3 prevents
cytokine production by
CD4+ T cells

[141]

MDSC
Lung cancer,

syngeneic
(3LL cells)

C5a, C5aR C5aR antagonism reduces
tumour growth

C5a contributes to the
generation of an
immunosuppressive
microenvironment

[91]

MDSC
Hepatocellular

carcinoma, syngenic
(H22 cells)

C3
Tumour growth is impaired
in mice with C3−/− hepatic
stellate cells

Hepatic stellate cells
produce C3 leading to
MDSC accumulation and
immunosuppression

[142]

Neutrophil
Small intestine
tumorigenesis

(APCMin/+ mice)
C3aR Tumour growth is impaired

in C3aR−/− mice

Engagement of C3aR on
neutrophils drives NETosis
and coagulation pathways
to induce pro-tumorigenic
low density neutrophils

[143]
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Table 2. Cont.

Immune
Cell Model Component Observation Mechanism Ref

Neutrophil

Colitis-associated
colorectal cancer

(Induced by
azoxymethane and

dextran sulfate
sodium)

C3, C5, C5aR
Tumour growth is impaired
in C3−/−, C5−/− and
C5aR−/− mice

C5a induces neutrophil
infiltration and IL-1B
expression which drives
IL-17A production

[144]

Neutrophil Melanoma, syngeneic
(B16F10) C3aR

Tumour growth is impaired
in C3aR−/− mice
C3aR antagonism arrests
growth of established
tumours

C3aR signalling reduces
infiltrating neutrophils and
CD4+ T cell populations

[145]

Macrophage Melanoma, syngeneic
(B16F10) C3a, C3aR C3a neutralization impairs

tumour growth

C3a recruits macrophages
which suppress the CD8+ T
cell response

[146]

Macrophage
Sarcoma

(Induced by 3-
methylcholanthrane)

PTX3, C5a

PTX3 controls complement
activation by recruiting
Factor H.
Ptx3−/− mice are more
susceptible to
carcinogenesis

In the absence of PTX3, C5a
generation is uninterrupted.
An increase in CCL2 skews
macrophages to an M2
phenotype

[147]

Macrophage

Colon cancer
(metastatic), syngeneic

(SL4 cells)
Colon cancer

xenograft
(HCT116 and SW116

cells)

C5a, C5aR

Growth of hepatic
metastases is impaired in
C5aR−/− mice or when C5
is downregulated or
targeted via
pharmacological blockade

C5a induces MCP-1
production by macrophages
via the Akt pathway and
promotes an
immunosuppressive
microenvironment

[148]

Macrophage

Pancreatic
neuroendocrine

tumours, transgenic
(BT2B6)

C5aR C5aR antagonism reduces
tumour growth.

Increased infiltration of
macrophages [149]

Macrophage
Colon cancer,

syngeneic
(SL4-luc)

C5aR
Growth of hepatic
metastases is impaired in
C5aR−/− mice

C5a polarises tumour
associated macrophages
(TAMs) to an M2 phenotype
via NF-kB signalling

[150]

Macrophage
and

Mast cells

Squamous cell
carcinoma, transgenic

(K14-HPV16)
C5aR Tumour growth is impaired

in C5aR−/− mice

C5aR signalling activates
macrophages and mast cells,
promoting a pro-tumour
microenvironment and
limiting CD8+ T cell
responses

[151]

Natural
Killer cell

Melanoma, syngeneic
(B16gp33 cells) C3

Complement (C3) depletion
using CVF impairs tumour
growth

Complement limits natural
killer (NK) cell-mediation of
the CD8+ T cell anti-tumour
immune response

[152]

Natural
Killer cell

Melanoma, syngeneic
(B16-luc cells) CR3

Metastases were reduced in
CD11b−/− (CR3 deficient)
mice and mice with CR3
deficient NK cells

Interaction of iC3b with CR3
suppresses NK cells by
activating SHIP and JNK
pathways

[153]
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3.3.2. Human Studies

In humans, the expression of complement components is typically associated with
adverse features and poor outcomes [91,100,107,154]. At the gene level, mutations, in
particular driver mutations, as well as alterations and deletions in complement system
genes are prevalent across at least 32 cancer types including lung, pancreatic and haemato-
logical malignancies [104]. The functional impact of these on cancer progression is further
supported by the correlation between groups of complement mutations and survival; for
example, the association of complement mutations with poor OS in low grade glioma [104].
Altered protein expression of complement components has also been described. In gastric
cancer, tumours exhibit enhanced deposition of C3 and C3a relative to adjacent healthy
tissue, with high C3 deposition observed to correlate with worse 5 year OS [155]. Evidence
suggests that C3 deposits may activate JAK2/STAT3 to enhance tumour growth [155].
Others have observed increased C5aR expression and phosphorylated PI3K/AKT in gastric
cancer tissue, when compared to matched normal tissue, with in vitro studies demon-
strating C5a activation of PI3K/AKT [156]. Together, these studies provide evidence for
complement-driven proliferation of gastric tumours. In breast cancer, expression of C5aR
is associated with larger tumours, metastases in the lymph nodes and advanced clinical
stages [14]. Furthermore, patients with C5aR negative tumours had improved survival
rates when compared to those with C5aR positive tumours. Supporting this, C5a was
demonstrated to promote proliferation of breast cancer cell lines, suggesting a role for
complement signalling in breast cancer progression [14].

Conversely, complement has also been correlated with favourable clinical outcomes,
suggesting a role for protection against tumour growth. High C3 levels are indicative
of good prognosis in NSCLC, with greater numbers of infiltrating CD4+ and CD8+ T
cells reported in tumours with increased C3 expression [157]. The differing prognostic
implications of complement expression in tumour tissues demonstrate that complement
functions in a context-dependent manner. This is likely due to the heterogenous TMEs
that exist across cancer types and between cancer patients. The most recent transcriptomic
analysis of complement genes expressed in cancer demonstrated that while there is little
heterogeneity in whether complement genes are expressed by different cancer types, the
heterogeneity of the specific complement genes expressed is great [19]. There is no doubt
that the context-dependent nature of complement in facilitating tumour growth will have
implications for identifying novel therapeutic approaches to target the complement cascade,
but also in patient responses to first line therapies and immunotherapies.

4. Role of the Complement System in the Response to Cytotoxic Therapy

The many documented interactions between complement components and the TME
highlight the potential of complement to induce alterations in immune cell function, local
vasculature and the proliferative capability of tumour cells, all recognised hallmarks of
cancer. These hallmarks also impact on the efficacy of traditional anti-cancer therapies such
as chemotherapy and radiotherapy, as well as novel approaches such as immunotherapy.
As such, it is unsurprising that emerging evidence demonstrates a role for complement in
the response to anti-cancer therapy.

4.1. Complement and the Response to Radiotherapy

Radiation therapy (radiotherapy) is a major cancer treatment modality, received by
over 50% of cancer patients [158]. The number of patients requiring radiotherapy is
estimated to increase by 16% by the year 2025, based on projected cancer cases [159].
Understanding the molecular biology and TME related factors responsible for response
to radiation is vital to optimise individual treatment regimens and to ensure therapeutic
efficacy. Several studies in the literature demonstrate a relationship between radiation and
the complement system, with recent evidence suggesting a role for complement in the
tumour response to radiotherapy [17,160].
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Radiotherapy is now understood to be an immunogenic process which initiates both
innate and adaptive immune responses, however, control of tumour growth is primarily
achieved via direct cell killing [161,162]. Irreparable DNA damage induced by ionising
radiation causes tumour cell death via apoptosis and mitotic catastrophe, or cell cycle arrest
leading to senescence [162]. Elvington et al. hypothesised that inhibiting complement
would reduce complement-mediated clearance of apoptotic cells resulting in increased
inflammation and necrotic cells, and a more immunogenic environment [17]. In a murine
model of lymphoma, they demonstrated that complement inhibition in combination with
radiotherapy significantly reduced the tumour growth rate, decreased tumour burden and
improved survival when compared to radiotherapy alone [17]. Although complement acti-
vation is an inflammatory process, in this model, inhibition of complement in combination
with radiotherapy promoted inflammation, when compared to radiotherapy alone. This
was characterised by increased levels of IFN-γ, IL-6 and IL-17 [17]. Furthermore, early
neutrophil infiltration followed by later infiltration of mature dendritic cells (DCs) and
CD8+ T cells was observed, resulting in an enhanced anti-tumour immune response [17].
Ultimately, targeting complement improved therapeutic efficacy, suggesting that the inter-
actions between complement and the TME can alter response to radiotherapy [17].

It is well established that radiotherapy induces immunogenic cell death and promotes
anti-tumour immunity by enhancing T cell priming and effector phases [161,163–165]. The
earliest step triggered by radiation that is responsible for initiating an immune response,
however, is unclear. A potential mechanism involving complement was uncovered by
Surace et al., who demonstrated that radiation activated the complement system, producing
anaphylatoxins, which were essential for the subsequent response to radiotherapy [160]. In
both mouse and human tumours, the classical and alternative complement pathways were
activated following treatment with radiation. Radiotherapy failed to control tumours in
mice deficient in either C3, C3aR or C5aR, indicating a functional role for complement in
achieving treatment efficacy [160]. Analysis of infiltrating immune cells from irradiated and
unirradiated tumours demonstrated that radiation induced complement expression in DCs
and upregulated the expression of the C3aR and C5aR [160]. In line with previous reports,
complement signals were essential for DC activation [85]. The functional importance of
complement was also demonstrated in mice deficient in the C3aR and C5aR, with CD8+ T
cells producing less IFN-γ post-radiation when compared to controls [160]. Independent
of radiation, tumours from mice lacking the expression of complement receptors were
characterised by increased numbers of regulatory T cells (Tregs) when compared to controls.
These data demonstrate that in this model, complement is essential for activating DCs
and promoting an efficient anti-tumour CD8+ T cell response [160]. When radiation was
combined with the use of dexamethasone, a glucocorticoid that inhibits complement
activation, the therapeutic effect of radiation was abolished, highlighting further the
essential role for complement in the response to radiotherapy [160].

From these studies by Elvington et al., and Surace et al., it seems that two contradic-
tory roles for complement may exist, with both inhibition and activation of complement
demonstrated to enhance the tumour response, respectively [17,160]. There are several
differences between the two studies which may explain these opposing results. Firstly,
different murine models are utilised, a syngeneic model of lymphoma [17] and a syngeneic
melanoma model [160]. Similar to the heterogeneity observed between human cancer
types at a molecular and TME level, these tumour types will likely interact with immune
cells and respond to treatment regimens differently. Notably, the response-enhancing
effects of complement inhibition in a model of lymphoma was validated in a breast cancer
model also [17]. Different methods of achieving complement inhibition were also used
in each study. Elvington et al. used CR2-Crry, a complement inhibitor which directly
targets sites where complement has been activated [166], while dexamethasone was used
by Surace et al. [160]. Although dexamethasone inhibits complement activation [167] there
is evidence that it can enhance the production of complement effectors under some circum-
stances such as high levels of IL-1α [168–170]. Importantly, the authors of these studies
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utilised different radiation regimens. Elvington et al. irradiated tumours using fractionated
doses of radiation, which resulted in predominantly apoptotic cell death [17]. The bolus
dose of radiation administered by Surace et al. induced necrosis and enhanced the accu-
mulation of CD8+ T cells [160]. In these studies, fractionated radiotherapy in combination
with complement inhibition [17] or single high dose radiotherapy without complement
inhibition, efficiently controlled tumour growth [160], respectively. The dosage and method
of administration of radiotherapy may be important. There is evidence that fractionated
and ablative radiation doses have different effects on the immune system. Some studies
demonstrate that single high doses of radiotherapy induce superior anti-tumour immunity,
when compared to fractionated doses [171,172]. Interestingly, fractionated regimens are
reported to generate efficient CD8+ T cell immune responses when combined with anti-
CTLA-4 or anti-PD-1/PD-L1 immunotherapies [173–175]. It is possible that the chronic
inflammation and increased complement activation induced by fractionated radiation
limits the effector function of CD8+ T cells, as complement impairs effector CD8+ T cell
function [16,89,136–138,140]. Further study of ablative versus fractionated radiotherapy
regimens and their effects on immunogenicity and the activation of complement is required
to understand how complement impacts the response to radiotherapy. However, together
these two studies highlight that radiation induces local complement activation, which
subsequently interacts with the TME to influence immune cell phenotype and alter the
radioresponse.

4.2. Complement and the Response to Chemotherapy

As for radiation therapy, chemotherapeutic agents may alter the TME and enhance the
immunogenicity of tumours by inducing immunogenic cell death. The interactions between
complement and local immune cells may have a key role in this process. Medler et al.
identified a role for macrophage-produced C5a in squamous cell carcinogenesis, whereby
signalling through the C5aR activates mast cells and macrophages, promoting a pro-tumour,
immunosuppressive microenvironment [151]. They demonstrated, in a murine model,
improved tumour response to paclitaxel (PTX) chemotherapy following treatment with a
C5aR antagonist, PMX-53. The combination of PTX and PMX-53 resulted in transcriptional
reprogramming of tumour-associated macrophages and subsequent recruitment of CXCR3+

effector and memory CD8+ T cells to significantly reduce tumour burden, when compared
to treatment with PTX alone [151]. This suggests that C5a signalling remodels the TME
by restricting CD8+ T cell infiltration. Inhibiting complement within the TME of SCCs
therefore may have potential for improving response to chemotherapy.

More recently, a role for complement signalling in the response to chemotherapy in
breast adenocarcinoma was identified. Transcriptomic analysis of intratumoural B cells
highlighted an inducible T cell costimulatory ligand (ICOSL) positive B cell population,
which was enriched following initiation of neo-adjuvant chemotherapy, when compared to
pre-treatment [176]. In agreement, murine studies demonstrated a doxorubicin-induced
increase in ICOSL+ CR2+ B cells [176]. Importantly, ICOSL+ B cells were of clinical signifi-
cance, correlating with improved DFS and OS, and were also associated with complement
activation. Chemotherapy-associated immunogenic cell death was demonstrated to induce
complement activation. Complement activation fragments bound CR2, promoting B cell
switching to an ICOSL+ phenotype. In patients with tumours overexpressing CD55, the
accompanying reduction in complement activation correlated with chemoresistance and
poorer outcomes [176]. Complement largely appears to protect against tumour growth in
breast adenocarcinoma [132–135]. These data support that in this cancer type, complement
activation has an anti-tumour function and is essential for chemotherapeutic efficacy [176].
Further study of the impact of ICOSL+ B cells in the TME is required to determine their
relevance in the response to therapy of other cancers [177].

Complement has also been demonstrated to alter response to chemotherapy inde-
pendent of immune cells. Endometrioid tumours overexpress CD55 relative to benign
tissue [178]. This expression is associated with resistance to cisplatin chemotherapy, with
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CD55 positive cells exhibiting markedly increased self-renewing ability when compared
to CD55 negative cells [179]. In particular, CD55 is highly expressed by cancer-stem cells
and cisplatin-resistant cancer cells. Functional studies have demonstrated that CD55 lo-
calises to lipid rafts to activate ROR2-JNK and LCK pathways [179]. Signalling through
these pathways drives self-renewal and resistance to cisplatin, respectively. This tumour-
promoting role for CD55 is in contrast with that elucidated by Lu et al., whereby expression
of CD55 inhibits complement activation required for the B cell response to chemotherapy
in breast cancer [176]. Together, these studies provide evidence of context-dependent roles
for complement in the response to chemotherapy.

4.3. Potential Mechanisms Underlying Complement-Mediated Resistance to Cytotoxic Therapy
4.3.1. Hypoxia

In addition to an altered immune milieu within the TME, one of the greatest barriers to
achieving therapeutic efficacy in the treatment of solid tumours is hypoxia. Hypoxia refers
to regions that are oxygen deprived (<2% O2), which in tumours arise due to the rapid
proliferation of neoplastic cells and disorganised vasculature [180]. Within hypoxic areas,
hypoxia-inducible factors (HIFs) drive the expression of pro-survival genes, promoting
tumour progression through activation of angiogenesis and metastasis [181,182]. Tumour
hypoxia is a major challenge to radiotherapy, given that oxygen is essential for the gener-
ation of DNA-damaging free radicals during treatment [183–185]. Hypoxic cancer cells
are three times less sensitive to killing by radiation, when compared to oxygenated cancer
cells, and as a result hypoxia is associated with poor patient prognosis and treatment
outcomes [186–188]. Additionally, chemosensitivity is impaired under hypoxic condi-
tions [189,190]. In this context, hypoxia has been demonstrated to induce activation of
all three complement pathways [191]. Olcina and colleagues recently demonstrated in
colorectal cancer that mutations in complement genes were associated with enrichment of
hypoxia gene signatures and poor OS [104]. This suggests that complement may contribute
to the development of a hypoxic TME, potentially having a negative impact on patient
outcomes [104]. They also demonstrated HIF-dependent upregulation of CD55, which
promoted resistance to CDC [104]. Thus, there appears to be bidirectional crosstalk between
complement and hypoxia in colorectal cancer [104].

Direct evidence for altered treatment response as a result of hypoxia-mediated regu-
lation of complement has not been reported. At present, the literature demonstrates the
complexity of this relationship and its potential to modify the TME, with evidence that
exposure to hypoxia induces alterations in complement gene expression [192–194]. Further
investigation of the hypoxia-complement interplay will yield insights into how this may be
impacting therapeutic efficacy.

4.3.2. DNA Repair

In addition to hypoxia, alterations in DNA repair capabilities have been associated
with poor response to standard cancer therapies. The DNA damage response (DDR) is es-
sential to preserving genomic integrity. Recognition of compromised cellular DNA initiates
the DDR, leading to damage repair or activation of downstream pathways to halt cell cycle
progression or induce apoptosis [195]. The progression from a pre-cancerous to neoplastic
cell is enabled by increased genomic instability, with cancer cells acquiring defects in, or
loss of, DDR pathways [10,196]. Dependence on fewer repair pathways is exploited by
conventional radiotherapy and some chemotherapies, which induce lethal DNA damage,
and also by newer targeted therapies which can inhibit specific DDR pathways, making it
difficult for cells to repair damage [197]. Despite this, we and others have demonstrated
that cancer cells displaying resistance to treatment possess more efficient DNA repair
strategies [198–200]. Previously, our group demonstrated that C3 mRNA expression was
significantly increased in tumour biopsies of oesophageal adenocarcinoma patients with
a subsequent poor response to neoadjuvant chemoradiotherapy (neo-CRT) [201]. Global
micro-RNA (miR) profiling revealed that miR-187 was significantly decreased in these
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tissue samples. Similarly, in a miR-187 overexpressing oesophageal adenocarcinoma (OAC)
cell line, C3 mRNA was downregulated, suggesting negative regulation of C3 by miR-187.
Interestingly, these in vitro studies demonstrated that overexpression of miR-187 sensitised
OAC cells to both radiotherapy and cisplatin and this was accompanied by downregula-
tion of several DDR genes. While the mechanism of action by which miR-187 expression
alters response to treatment remains to be elucidated, its regulation of C3 expression and
DDR genes suggests that complement may interact with DDR genes to influence response
to therapy.

Genetic polymorphisms in DNA repair genes impact on carcinogenesis and thera-
peutic resistance. The DNA repair protein x-ray repair cross complementing 3 (XRCC3)
is a key participant in homologous recombination of DNA double-strand breaks [202].
Genotype variants at the rs1861539 polymorphic site of the XRCC3 gene result in defective
DNA repair and are associated with increased risk for several cancers including lung and
childhood acute lymphoblastic leukemia [203]. Low serum levels of complement C3 and
C4 have been correlated with specific genotypes of the XRCC3 gene at this site, when com-
pared to the wildtype genotype [204]. While this research investigated styrene-exposed
individuals, it would be interesting to repeat in the setting of cancer. Elucidating the
potential relationship between altered complement expression levels and polymorphisms
in DNA repair genes may provide new therapeutic perspectives.

4.3.3. Metabolism

Successful propagation of malignant tumours is generally accompanied by altered
energy metabolism, a hallmark required to fuel the rapid growth demands of cancer [10].
The Warburg effect refers to the preferential use of glycolysis over oxidative phosphoryla-
tion (OXPHOS) by cancer cells, even in the presence of oxygen [205,206]. Modifications in
cellular metabolism are associated with resistance to most cancer therapeutics, including
targeted inhibitors and adopted cell therapy [207–211]. Metabolism, and the drivers of these
metabolic alterations therefore represent potential therapeutic targets to improve treatment
response. Considering the roles played by the complement system in homeostasis, it is
unsurprising that complement components also function in metabolism, in particular, in T
cells, a subject recently reviewed [212–214]. Autocrine complement signalling is essential
for the survival of naïve T cells and optimal T cell expansion following activation [85,86,116].
Intracellularly, complement signals orchestrate Th1 effector responses [115,116,215], the
induction of which are characterised by complement-driven metabolic reprogramming of
CD4+ T cells [117]. Interaction of C3b with CD46 drives metabolic events to induce the
Th1 response. Upregulation of glucose and amino acid transporters facilitates nutrient
uptake, while LAMTOR5 expression increases glycolysis and OXPHOS [117]. Complement
signalling therefore joins antigen recognition, co-stimulation and cytokines as an important
modulator of T cell differentiation. Unfortunately, patients with a poor response to cancer
therapy have poorly infiltrated tumours, with evidence of phenotypically exhausted or
dysfunctional effector T cells [216]. Given the increasing evidence for dysregulated comple-
ment expression within the TME, it is likely that perturbations in the levels of complement
components impact T cell metabolism and effector induction. Further study is necessary to
understand the potential impact on patient response to treatment.

4.3.4. PI3K/Akt Signalling

The phosphatidylinositol 3 kinase (PI3k)/Akt signalling pathway is a key regulator
of several cell death and survival mechanisms [217]. Frequently mutated in cancer, this
pathway is exploited by cancer cells to undergo accelerated growth and resist apoptosis,
often rendering them treatment-resistant [218]. In renal cell carcinoma, the C5a/C5aR
axis has been demonstrated to activate PI3K and extracellular signal-related kinase (ERK)
signalling pathways, promoting invasiveness and metastasis [125]. Similarly, in ovarian
cancer cells, signalling through anaphylatoxin receptors plays a pro-tumorigenic role by
enhancing proliferation [118]. Evidence for complement-mediated activation of PI3K/Akt
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suggests that these signals may allow cancer cells to resist treatment through downreg-
ulation of apoptotic pathways, a known mechanism of treatment resistance. The MAC
has also been demonstrated to control cell survival. Sublytic insertion of MACs induces
PI3K/Akt pathway activation and inhibits apoptosis in oligodendrocytes [219]. Many
studies have reported deposition of MAC in various cancers [99]. It is possible that these
deposition levels may trigger PI3K/Akt signalling and contribute to poor therapeutic
responses. This axis may be another opportunity for complement to modulate cancer cells
and reduce treatment efficacy. Further characterisation of complement-mediated activation
of PI3K/Akt signalling pathways is required to determine if this contributes to patient
response to treatment in cancer.

4.3.5. Exosomes

The transport of biological material by extracellular vesicles (EVs) has emerged as
an important mechanism of intercellular communication [220]. Exosomes are small EVs
of endosomal origin, which range in size from 30–150 nm [221,222]. All cells secrete
exosomes including immune [223] and cancer cells [224], and they are present in bodily
fluids such as blood, saliva and cerebrospinal fluid [225,226]. Structurally, exosomes
consist of a phospholipid bilayer, which encloses protein and nucleic acids derived from
the cell of origin [227]. Exosome contents can have effects on target cells through fusion
with the plasma membrane and subsequent delivery of their cargo to the recipient cell
or by binding to cell surface receptors [228]. This intercellular transfer of information
by exosomes has many functionally important roles in normal tissue physiology [229].
Increasing evidence demonstrates that exosomes and their contents also play roles in
cancer [228,230,231]. Exosomes appear to largely play a tumour promoting role [224,232]
and have been associated with immunosuppression within the TME [233,234] and the
development of pre-metastatic niches [235,236]. Complement components are among the
many proteins associated with exosomes, a subject recently reviewed in detail [237]. Briefly,
complement proteins have been identified in exosomes secreted from numerous cell types
including antigen-presenting cells [238,239] and cancer cells [240,241]. Tumour cells can
also eliminate surface MAC complexes by shedding microvesicles, allowing them to escape
from complement-mediated lysis [242,243].

Increasing evidence suggests that exosomes play a role in treatment resistance, both by
acting as a decoy for immunotherapies and by exporting drugs from cancer cells [244,245].
A recent proteomic analysis has demonstrated that complement components including
C3 and CD55 are among the proteins enriched in exosomes derived from cisplatin resis-
tant lung cancer cells, relative to cisplatin sensitive cells [241]. As previously discussed,
emerging evidence has indicated that CD55 is associated with resistance to chemother-
apy [176,179]. Together, these data suggest that exosome-associated mCRPs potentially
engage in roles that influence response to cancer treatment. There is great interest in
understanding the immunosuppressive mechanisms within the TME responsible for ther-
apeutic resistance. Exosomes derived from ovarian tumours have been demonstrated to
induce T cell arrest [246]. This has been linked to the presence of phosphatidylserine, an
activator of the classical complement pathway, on the surface of these tumour-derived
exosomes [246]. Further investigation of complement signals driven by exosome-associated
complement components or ligands is necessary to determine whether this may promote
immunosuppression within the TME. In patients with sepsis, neutrophil dysfunction is
associated with shedding of the C5aR, potentially via EVs [247]. In the context of cancer,
investigation of the shedding of complement receptors by immune cells is necessary to
determine whether exosome-driven loss of receptors may also be influencing immune
dysfunction. Given the roles for complement in immune cell activation [248], the presence
of mCRPs on tumour-derived exosomes may additionally have effects in coordinating the
immune response [237].

Although studies demonstrating a role for complement in exosome-associated ther-
apeutic resistance are limited, the body of research is growing [237]. For example, we
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now understand that in B-cell lymphoma, complement may be consumed by exosomes to
protect against anti-CD20 antibodies [244]. It is likely that the impact of exosome-mediated
signalling in cancer is far greater than currently understood. Further investigation of the
presence of complement components in exosomes in a range of cancer types, and the
functional impact of these within the TME is required to understand if exosome-associated
complement alters response to treatment.

4.4. Complement as A Biomarker of Response to Cytotoxic Therapy

There is global interest in identifying biomarkers of response to chemotherapy, radio-
therapy or combined chemoradiation therapy (CRT) with the aim of reducing treatment-
associated toxicities and ensuring optimal treatment strategies for patients.

The expression of several complement cascade genes has recently been correlated with
the chemosensitivity of soft tissue sarcomas (STS) [249]. Analysis of TCGA by Zhang et al.
indicated that several genes were differentially expressed between STS subtypes with
varying chemosensitivities, many of which coded for complement system components.
Those STS that were relatively insensitive to chemotherapy treatment expressed high levels
of complement system genes, and this had clinical significance [249]. High expression of
the C3aR, C1QC and FI correlated with poor OS. Upregulation of C3aR was also associated
with worse DFS, suggesting that these complement components play a role in the tumour
response to chemotherapy in STS [249]. These genes thus represent novel biomarkers of
tumour chemosensitivity and patient survival in STS.

In breast cancer, resistance to neo-adjuvant chemotherapy remains a clinical challenge.
Proteomic analysis of human plasma from breast cancer patients has demonstrated that
complement is modulated by epirubicin and docetaxel, with alterations in complement
components reported as early as 24 h following the initiation of treatment [250]. Interest-
ingly, the levels of C3 isoforms differed between responders and non-responders. As the
immediate response in plasma correlated with the final tumour response to treatment, this
suggests that C3 isoforms may have potential as early predictive biomarkers of response to
epirubicin and docetaxel in breast cancer [250].

We have performed proteomic profiling of pre-treatment serum samples from oe-
sophageal cancer patients and reported that increased C3a and C4a levels predict a sub-
sequent poor response to neo-CRT [251]. Our study was the first to implicate these ana-
phylatoxins in the response to neo-CRT. In support of this, using pre-treatment tissue,
we demonstrated that oesophageal cancer patients with a subsequent poor pathological
response to neo-CRT had increased tumoural expression of C3, when compared to good
responders [201]. This work suggests that complement may have potential as a tumoural
and/or circulating biomarker of response to treatment. To determine the full potential of
complement components as predictive markers of therapeutic response, further validation
studies encompassing more cancer types and treatment regimens are required.

5. The Implications of the Complement System and Immunotherapy

The cancer immunotherapy field has celebrated many notable milestones in the last
two decades, with clinically approved immunotherapies greatly improving therapeutic
options for patients with metastatic cancer, most notably melanoma and NSCLC [252].
These treatments take advantage of the host immune system by overcoming suppression of
immune cells or boosting their effector potential. In addition, cancer vaccines, adoptive cell
therapy, oncolytic viruses and monoclonal antibodies are all among the treatment regimens
used to exploit natural defence mechanisms and augment anti-tumour immunity [253,254].

Monoclonal antibody (mAb) therapy is arguably the most successful branch of im-
munotherapy at present. Several mAbs have been approved for the treatment of solid
and haematological malignancies following clinical demonstration of impaired disease
progression and improved patient survival [255,256]. Various tumour antigens and tumour
promoting signalling pathways can now be targeted by mAbs, with activity of the com-
plement system essential for mAb-induced cytotoxicity. Complement plays a role in the
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cytotoxicity of mAbs which target B cell antigens, including rituximab and daratumumab
and also trastuzumab, a HER2 specific mAb [257–260]. Binding of mAbs to specific tu-
mour cell antigens may initiate CDC, antibody-dependent cellular cytotoxicity (ADCC)
or aid phagocytosis in a mechanism referred to as complement-dependent cell-mediated
cytotoxicity (CDCC) [261–263]. Fc regions of Igs bound to tumour cells interact with C1q,
inducing activation of the complement cascade and MAC-mediated cell lysis (CDC). This
functional contribution of complement towards the cytotoxicity of mAbs has influenced
their design. Many clinically approved mAbs are of the IgG class, in particular IgG1 and
IgG4, as C1q is effective at fixing these isotypes [264]. Activation of the complement system
further contributes to the efficacy of mAbs by aiding phagocytic cells. Phagocytosis of
malignant cells is enhanced due to opsonisation of cells by complement fragments such as
C3b which interact with CR3/CR4 expressed by phagocytes [265,266]. The Fc portion of
mAbs can also interact with activating FcγRs of natural killer (NK) cells, macrophages and
neutrophils recruited by complement anaphylatoxins, to induce ADCC [267–270].

5.1. Immune Checkpoint Inhibition

Among the most promising of mAb therapies are immune checkpoint inhibitors [271].
These drugs target immune cell receptors or ligands that engage in inhibitory interactions
and downregulate immune responses. Most notable are cytotoxic T lymphocyte-associated
protein 4 (CTLA-4) and programmed death-1 (PD-1) expressed by activated T and B
cells [272,273]. When PD-1 expressed by T cells binds its ligands PD-L1 or PD-L2, T
cell receptor signalling is impaired, consequently limiting proliferation and inhibiting
cytokine secretion [274]. This interaction therefore plays a key role in maintaining T cell
homeostasis [275,276]. Expression of PD-L1 by cancer cells provides a mechanism for
tumours to downregulate the immune response, escaping elimination by cytotoxic effector
cells [277]. Currently three anti-PD-1 mAbs are approved for the treatment of specific cancer
types [278–280]. PD-1 blockade is successful in restoring effector potential of dysfunctional
T cells [281]. Although effective in susceptible patient cohorts, primary and acquired
resistance is a clinical challenge to anti-PD-1 and anti-PD-L1 therapy [282,283].

Combination Inhibition of Complement and PD-1 Signalling

Combinations of immune therapies are proposed to counter resistance [284]. Comple-
ment may have a role in treatment response as it suppresses local immune cells (Table 2)
and is associated with resistance to anti-PD-1 therapy in melanoma [285]. In several studies,
a relationship between complement components and expression of immune checkpoints
has been demonstrated [15,91,286]. In clear-cell renal cell carcinoma, C1q expression has
been correlated with expression of PD-L1, PD-L2, PD-1, lymphyocyte-activation gene
3 (LAG3), T cell immunoglobulin and mucin-domain containing 3 (TIM3) and CTLA4
expression, suggesting that complement may contribute to T cell exhaustion [15]. In a
murine model of lung cancer, C5a antagonism results in decreased expression of PD-L1,
LAG3 and CTLA4, again highlighting that complement signalling potentially controls
the T cell phenotype within the TME [91]. C5a has also been reported to induce PD-L1
expression in a whole blood model [286]. Considering these data, the complement system
therefore appears an attractive target to overcome immunosuppression. In order to im-
prove patient responses, complement inhibition has been proposed as a potential addition
to immunotherapy [138,287,288].

Several studies have interrogated the effects of targeting both complement and PD-
1/PD-L1 signalling. Wang et al. demonstrated using murine melanoma and breast cancer
models that complement signalling in CD8+ T cells inhibits IL-10 production, reducing
the anti-tumour immune response [136]. Although IL-10 has widely been regarded as
an immunosuppressive mediator, recent clinical studies have indicated that IL-10 can
re-invigorate CD8+ T cell responses [289,290]. Interestingly, C3aR and C5aR antagonism in
combination with PD-1 blockade demonstrated superior inhibition of melanoma tumour
growth, when compared to either treatment alone [136]. The anti-tumour effect of targeting
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both complement and PD-1 suggests that dual blockade of these pathways may synergise
to overcome immunosuppression [136].

This synergism has also been demonstrated in murine models of lung cancer, with
combined C5aR and PD-1 inhibition demonstrated to induce greater tumour regression
relative to monotherapy [137]. Depletion of MDSCs in addition to PD-1 blockade achieved
control of tumour growth similar to combination complement and PD-1 inhibition [137].
Importantly, targeting both complement and PD-1 lowered expression of exhaustion mark-
ers by CD8+ T cells [137]. These data suggest that complement signalling is a driver of
immunosuppression within the TME, inhibiting the C8+ T cell response and potentially
limiting therapeutic efficacy. Similarly, Zha and colleagues demonstrated that inhibition
of C5aR signalling improves response to PD-L1 blockade in murine colon cancer and
melanoma models [291]. They also highlighted that CD8+ T cells are essential to thera-
peutic efficacy and demonstrated that complement inhibition reduces MDSC-mediated
immunosuppression [291].

Complement regulation of macrophages has been demonstrated to reduce the ef-
ficacy of anti-PD-L1 mAbs. Signalling of tumour cell-derived C3a via C3aR expressed
by tumour-associated macrophages (TAMs) promotes an M2 phenotype and suppresses
effector CD8+ T cells in colon cancer [292]. Improved effectiveness of PD-L1 therapy has
been demonstrated in C3-deficient tumours when compared to controls [292]. Collectively,
these studies establish complement as a modulator of immune cells within the TME, which
subsequently may affect response to radiotherapy, chemotherapy and immunotherapy
treatment (Figure 2). A phase I trial (STELLAR-001) initiated by Innate Pharma is cur-
rently investigating an anti-C5aR drug in combination with durvalumab (anti-PD-1), with
preliminary results suggesting that treatment toxicity is manageable [293].

On account of the complement-mediated regulation of IL-10 production by CD8+

T cells, it has been proposed that the C3a and C5a receptors represent novel immune
checkpoints [294]. There are caveats, however. First, a greater understanding of autocrine
complement signalling in CD8+ T cells is required to determine the full potential of com-
plement in this regard. Essential roles for complement in the T cell life cycle and Th1
differentiation are well established [85–88]. These homeostatic functions contrast greatly
with the observed negative influence of complement on T cell effector functions, as dis-
cussed in this review. Notably, these initial studies were focused on CD4+ T cells while
investigations in the cancer setting studied CD8+ T cells [295]. Second, complement signals
have been demonstrated to modulate regulatory T cells (Tregs). Signalling via C3aR and
C5aR lowers forkhead box P3 (FoxP3) expression to limit Treg function [296]. As a result,
in the absence of complement signals, Treg suppressive abilities are enhanced. There is
potential that complement blockade may favour these suppressive T cells. It appears that
complement effects differ depending on the disease setting and T cell subset, as once
again, the context-dependent nature of complement signals become apparent. Due to the
widespread expression of complement receptors, C3aR and/or C5aR blockade is likely
to have diverse effects on the cellular component of the TME. Moreover, despite current
evidence highlighting the potential therapeutic benefits of targeting complement signalling,
complement is recognised to contribute to the efficacy of most mAbs. Manipulating com-
plement signalling has the potential to restore an effective anti-tumour immune response,
however the functional impact of this on mAb-induced cytoxicity remains to be determined.
Finally, elucidating the full potential of combined PD-1 and complement receptor blockade
requires investigation in a range of cancer stages and models.
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Figure 2. The influence of complement on response to treatment within the tumour microenvironment. The current
understanding of the roles for complement in the response to radiotherapy, chemotherapy and monoclonal antibody-based
immunotherapies are depicted. Green arrows illustrate events where complement component(s) have been demonstrated
to activate an immune cell or signalling pathway, while inhibitory effects are shown in red. Black arrows indicate the
observed influence of complement activities on the therapeutic efficacies of the designated chemotherapy, radiotherapy or
immunotherapy treatment, in specified cancer types.

5.2. Implications of CRPs for Immunotherapy

There is reasonable evidence to assume that incorporation of complement-targeted
therapeutics into immunotherapy regimens may improve treatment response. One strategy
is the neutralisation of mCRPs, overexpression of which have been observed to interfere
with response to mAbs such as trastuzumab and rituximab [297–300]. Key stages of the
complement cascade are inhibited by mCRPs, a technique cancer cells exploit to escape
complement-mediated killing [301]. These regulators are a major obstacle to mAb-based
therapy as they limit the degree to which CDC can contribute to mAb efficacy [103]. Block-
ade of mCRPs has been demonstrated to overcome resistance to mAb therapy by enhancing
cytotoxic efficacy [297–299]. The relationship between mCRP expression and response
to immune checkpoint inhibitors has not yet been investigated. It has been proposed
that the use of neutralising antibodies against mCRPs may not be useful in the setting of
PD-1/PD-L1 blockade as they would increase complement activation products such as C5a,
which have been demonstrated to have a negative influence on this signalling axis [108].
Of mCRPs to target, CD59 blockade may have the potential to improve therapeutic efficacy
and outcomes by increasing CDC [108]. The use of complement therapeutics to modulate
mCRP function in combination with immune checkpoint inhibitors requires further un-
derstanding of the expression of mCRPs in cancers treated with these antibodies, and also,
the degree to which they contribute to therapeutic resistance in this setting. Importantly,
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combining complement inhibition with immunotherapy warrants investigation of optimal
scheduling in order to ensure that therapeutic efficacy is maximised.

5.3. Cancer Vaccines

Cancer vaccines are another branch of immunotherapy demonstrating considerable
potential to revolutionise cancer therapeutics. In contrast with vaccines for microbial-
associated diseases, a unique set of challenges are associated with cancer vaccine develop-
ment including a typically immunosuppressive TME and the challenge of identifying a
suitable tumour antigen to target [302]. One mechanism to circumvent the former of these
issues is the use of vaccine adjuvants to stimulate and promote anti-tumour immunity.
Complement system components play essential roles in coordinating the adaptive immune
response, therefore it is unsurprising that they have been investigated as vaccine adjuvants
to boost the immune response. Conformationally-biased agonists of C5a have previously
been reported to enhance antigen processing and presentation by DCs and induce Th1-type
cytokine production [303,304]. Conjugation of C5a with a live fungal vaccine has also
demonstrated the potential of complement components as immune adjuvants, by polaris-
ing the T cell repertoire to a Th1/Th17 response, reducing histopathological inflammation
and improving survival [305]. In the context of cancer, a C5a agonist linked to known
tumour-antigens has been investigated in a murine model of melanoma, demonstrating
a reduction in tumour growth and improved survival [306]. The potential of C5a-based
agonists has also been demonstrated in a model of B cell lymphoma [307]. The proposed
mechanism of action responsible for therapeutic efficacy is via the C5aR expressed by
DCs and subsequent processing and presentation of tumour antigens to stimulate an
anti-tumour immune response [306]. Further studies are required to fully elucidate the
events occurring upon binding of C5a agonists to the C5aR and to characterise the antigen
processing [306].

Evidence has also been provided for the potential of C3d-based adjuvants in cancer
vaccines. While the roles played by antigen-bound C3d in B cell responses are well
established, less is known about the function of free C3d in immunity. In murine lymphoma
and melanoma models, vaccination with C3d+ killed cancer cells was associated with
enhanced adaptive immunity and greater tumour control, when compared to unvaccinated
and C3d− vaccine controls [308]. This was characterised by enhanced T cell infiltration,
apoptosis of Tregs and a reduction in PD-1 expression [308]. C3d has also been investigated
as a molecular adjuvant to an anti-angiogenic (vascular endothelial growth factor receptor 2)
vaccine, demonstrating impaired tumour growth and conferring a significant survival
advantage [309]. Together, these studies demonstrate that complement components can
enhance vaccine-induced anti-tumour immunity. Further research is required to determine
the full potential of complement components as vaccine adjuvants including the specific
interactions with local immune cells that lead to control of tumour growth.

6. Conclusions

Cancer is a disease that arises when cellular division deviates from homeostasis. Con-
sidering the recent discoveries that identify the complement system as a key component of
many homeostatic processes, it could only be expected that a relationship between com-
plement and cancer is beginning to emerge. Although roles for the complement system in
cancer are often paradoxical, perhaps similar to the contrasting impact of acute compared
with chronic inflammation on tumour pathogenesis, it appears that the complement system
has context-specific properties with respect to anti-tumour immunity and response to
cancer therapies. New knowledge from TCGA and other sources highlights that, although
transcriptomic analysis may be useful in determining the potential prognostic significance
that accompanies expression of complement genes, such analyses exclude key microen-
vironmental influences such as local production of anaphylatoxins by immune cells that
have great relevance in vivo [19]. The integration of the complement system with many
other cellular processes presents a challenge, with a limiting factor being the difficulty in
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deriving mechanistic evidence from patient biopsies and blood samples when compared
to rodent models. Although rodent models have provided much information on this
subject, heterogenous observations between cancer types and regarding the complement
activation pathway responsible demonstrates that we may be just at the tip of the iceberg
in elucidating the relationship between complement and cancer.

Despite these complexities in the elucidation of the role of complement in carcino-
genesis, increasing evidence suggests that manipulation of complement holds significant
promise in understanding resistance to standard and emerging cancer therapies, and in
the development of novel therapies. Determining the true potential of complement as a
companion therapeutic target certainly requires further understanding of the interactions
between complement and the cellular and non-cellular components of the TME. In time,
this will allow us to elucidate how harnessing these interactions can improve response to
radiotherapy, chemotherapy and immunotherapy treatments.
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