Are In Vitro Human Blood–Brain–Tumor-Barriers Suitable Replacements for In Vivo Models of Brain Permeability for Novel Therapeutics?

Archana Prashanth, Heather Donaghy, Shihani P. Stoner, Amanda L. Hudson, Helen R. Wheeler, Connie I. Diakos, Viive M. Howell, Georges E. Grau and Kelly J. McKelvey

Section/Topic		Checklist Item	Reported on Page #
TITLE			1 0
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study ap- praisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
INTRODUC- TION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web ad- dress), and, if available, provide registration information including registration number.	n.a.
Eligibility crite- ria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report char- acteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Figure 1, pg 2–3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Figure 1, pg 2–3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Table S1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in sys- tematic review, and, if applicable, included in the meta-analysis).	Figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, inde- pendently, in duplicate) and any processes for obtaining and confirming data from investigators.	Figure 1, pg 2–3
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	2–3
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	3
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Figure 3–6 legends
Synthesis of re- sults	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	n.a.
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	3
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	n.a.

Table S1. PRISMA Checklist.

RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the re- view, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study charac- teristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	n.a.
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level as- sessment (see item 12).	n.a.
Results of indi- vidual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) sim- ple summary data for each intervention group (b) effect estimates and confi- dence intervals, ideally with a forest plot.	Figures 3–6
Synthesis of re- sults	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	n.a.
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	n.a.
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup anal- yses, meta-regression [see Item 16]).	n.a.
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	18
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review- level (e.g., incomplete retrieval of identified research, reporting bias).	3,18
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	18
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	19

Table S2. Number of articles identified from ke	eyword search results.
---	------------------------

Keywords	PubMed	Medline	Embase	Scopus	Filters Applied
"in vitro mode*" AND "blood brain barrier" AND "permeability"	153	175	36	201	Full text, English, Pub- lished <5 years ago
"in vivo mode*" AND "blood brain barrier" AND "permeability"	67	69	57	91	Full text, English
"in vitro mode*" AND "blood brain barrier" AND "brain cancer"	3	3	10	7	Full text, English
"in vivo mode*" AND "blood brain barrier" AND "brain cancer"	2	2	16	6	Full text, English
"in vitro mode*" AND "blood brain barrier" AND "glioblastoma"	22	21	36	30	Full text, English
"in vivo mode*" AND "blood brain barrier" AND "glioblastoma"	13	13	36	18	Full text, English
"in vitro mode*" AND "blood brain barrier" AND "glioma"	37	37	56	44	Full text, English
"in vivo mode*" AND "blood brain barrier" AND "glioma"	13	12	28	14	Full text, English
"in vitro mode*" AND "blood brain tumor barrier" AND "permeability"	1	0	1	1	Full text, English
"in vivo mode*" AND "blood brain tumor barrier" AND "permeability"	1	1	1	1	Full text, English
TOTAL	312	333	277 35	413	

Searches were conducted using multiple keyword combinations in four search databases.

Model	Cell Types	Advantages	Disadvantages	Refs
Transwell (10/19 studies)	EC: Human EC ^a ECV304 ^{b,d} HBEC-5i ^b hCMEC/D3 ^b hTERT ^b HBMEC/ci18 ^a HBMEC ^a hPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-BMEC ^c iPSC-C ^c CD34 ⁺ -EC ^c HUBEC ^a Astrocytes: HASTR/ci35 ^b HBPC/ci37 ^b Primary iPSC-astrocytes ^c Pericytes: Primary HBVP ^a iPSC-pericytes ^c Neurons: Primary iPSC-neurons ^c Glioma: U87 DIPG-007 ^a DIPG-013 ^a DIPG-014 ^a	 Reproducible Easy to use Scalability No extensive time- and cost-consuming labor BBB functionality and practicability Easy, simple cell culture setup Easy to control Allow access to both apica and basal compartments for therapeutic testing Allows visualization of cells for the duration of the experimental timeline Uses minimal resources Versatile 	 Limited mimicking of BBB and micro-environmental features e.g., cell-cell/cell-matrix interactions Lack of accurate brain capillary models due to inefficient junctional protein and membrane transporter expression Modification of culture conditions necessary for each model Improvement of barrier tightness and efflux functionality necessary EC cannot form tight junctions along inner apical chamber wall which causes incomplete coverage of transwell inserts at monolayer perimeter Transwell inserts can be subject to "edge effects"-artificial paracellular diffusion at the perimeter of the monolayer membrane that causes leakage into side channels No 3D cellular organization No direct cell-cell contact ECs can distribute unevenly on inserts, causing imperfect barriers Requires large number of cells 	[17–33]
Microfluidic (5/19 studies)	ECs: iPSC-EC ^c hCMEC/D3 ^b TY10 ^a HBMEC ^b Astrocytes: hAst ^b HA ^a Pericytes: hBPCT ^b HBVP ^b	 Precise control of cellular and extracellular environment Mimic structures and inter actions found in vivo More physiologically rele- vant morphology Different cell types can eas ily be incorporated into device Can include additional fea tures e.g., growth factors, differ- entiation factors etc. Cell type ratios can be modified to explore different re- gions of the brain Can be modified to explore healthy and diseased brain states Can mimic physiological flow and shear stress conditions Supports perfusion in cell cultures 	 Current models have larger ves- sel diameters (~100–800 μm) than in vivo BBB vasculature (capillaries ~7–10 μm) Do not realistically recreate in vivo BBB micro-vasculature morphol- ogy and function, which alters transport exchange mechanisms Permeability measurements lim-[1 ited to quantifying fluorescent tracer concentrations Non-specific protein and small hydrophobic molecule adsorption dur- e ing long-term interaction Complex assembly Expensive Inaccessible to many laborato- ries 	7,18,20,21,34– 37]
Spheroidal (1/19 studies)	EC: HBMEC ^a hCMEC/D3 ^b Astrocytes: Primary	 More accurate representa- tion of in vivo environment Cost effective Each cell type can interact directly with each other 	 Limited ability to mimic BBB morphology and physiology Difficult to assemble Expensive compared to transwell 	[17]

Table S3. Cell lines, advantages and disadvantages of in vitro BBB/BBTB model systems.

	Pericytes: Primary	 Greater expression of BBB modulators compared to transwell Requires lower number of cells Reproducible High throughput Scalability Few reagents necessary to establish model 	• Cannot simulate physiological flow and shear stress	
Hollow-fiber (1/19 studies)	EC: hCMEC/D3 ^b Astrocytes: Primary	 Can mimic shear stress and physiological flow conditions Long term cell culture Easy to recover cell samples Versatile Easy to reconfigure Same platform device can be used for experiments of varying complexity Cylindrical – no sidewalls, no leaky edges Allows non-invasive observation Fiber thickness more closely mimics in vivo thickness of vessel walls 	 Can be difficult to extract cell samples in some device designs More commonly support 2D cell cultures 	[16]
Filter-free (1/19 studies)	EC: hCMEC/D3 ^b	 Better cell-cell interactions More physiologically relevant 	• Limited working distance of high magnification microscopy limits image acquisition due to >2 mm thick- ness of collagen gel and use of conven- tional well plate	[15]
Hydrogel scaffold (1/19 studies)	EC: iPSC-BMEC °	 Hydrogels mimic many aspects of the natural extracellular matrix Observe cell behavior in a more physiology mimicking, 3D environment 	• Channel sizes are still larger than in vivo vessel diameters	[35]

^a Primary cell line; ^bImmortalized cell line; ^cStem cell-derived cell line; ^dCell line later identified to be a human urinary bladder carcinoma cell line, presenting many EC phenotypic characteristics [30]. BMEC, brain microvascular endothelial cell; DIPG, diffuse intrinsic pontine glioma; EC, endothelial cell; HA/hAst/HASTR, human astrocyte; HBEC/HBMEC/HUBEC/hCMEC, human brain/cerebral (microvascular) endothelial cell; HBPC/HBPCT, human brain pericyte; iBMEC, induced brain microvascular endothelial cell; iPSC, induced pluripotent stem cell.

TEER Method	Cell Types	TEER Values (Ω/cm ²)	Refs
EVOM2 with En- dohm-6 chamber electrode	iPSC-hBEC	458 ± 225	[24]
EVOM2, not speci- fied	iPS-EC1 iPS-EC1 + astrocytes + pericytes + neurons iPS-EC2 iPS-EC2 + astrocytes + pericytes + neurons hCMEC/D3	773 ± 52 1267 ± 68 52 ± 3 150 ± 3 45 ± 2 67 ± 5	[25]
EVOM2 with En- dohm-6 chamber electrode	iBMEC (EC medium) iBMEC (neuron medium) iBMEC + astrocytes + pericytes + neurons (EC medium) iBMEC + astrocytes + pericytes + neurons (neuron medium)	$ \begin{array}{r} 67 \pm 3 \\ 1423 \pm 592 \\ 1920 \pm 774 \\ 1454 \pm 263 \\ 1908 \pm 582 \\ \end{array} $	[23]
Millicell ERS-2 with STX01 electrode	HBMEC/ci18 EC HBMEC/ci18 EC + HBPC/ci37 pericyte + HASTR/ci35 astrocyte	78.8 ± 4.2 134.4 ± 5.5	[19]
EVOM with En- dohm-12 chamber electrode	ECV304 ª ECV304 + C6 rat glioma	41.5 ± 2.12 25% decrease	[27]
EVOM with STX2 electrode	HBEC-5i HBEC-5i + HASTR media	35.8 ± 2.14 39.8 ± 0.81	[29]
EVOM, not specified	hCMEC/D3 hCMEC/D3 + U87 glioma	32.9 ± 7.2 18.2 ± 6.7	[28]

Table S4. TEER values for transwell in vitro BBB/BBTB models.

^a ECV304 was later identified to be a human urinary bladder carcinoma cell line, presenting many EC phenotypic characteristics [30]. Data is expressed as mean ± SD for ≥3 independent experiments. BMEC, brain microvascular endothelial cell; EC, endothelial cell; EVOM, epithelial voltohmmeter; HASTR, human astrocyte; HBEC/HBMEC/hCMEC, human brain/cerebral (microvascular) endothelial cell; HBPC, human brain pericyte; iBMEC, induced brain microvascular endothelial cell; iPSC, induced pluripotent stem cell.

Model	Cell Type	Tight junction	Adherens junction	Transporters and other	Refs
		Claudin-5		P-gp	
	HUBEC ^a	Occludin		MRP2	
		ZU-I Claudin 5		DAIPI	- [32]
	HUBEC ^a	Occludin		r-gp MRP2	
	Glioma ^a	ZO-1		OATP1	
	LPMEC a	Claudin-5	CD21	JA/E	
	IIBMEC "	ZO-1	CD31	VVVF	_
	hCMEC/D3 b	Claudin-5	CD31	vWF	
	· · · ·	20-1		14/1	- [25]
	iPS-EC1 °	Claudin-5		caveolin1	[25]
	iPS-EC2 °	Occludin	CD31	GLUT1	
	iPS-astrocyte °	ZO-1	VE-cadherin	P-gp	
	IPS-pericyte			BCRP	
		Claudin-5			
	ECV304 ^{b,d}	Occludin			[27]
		ZO-I			
	FCV304 b,d	Occludin			[30]
	Levoor	ZO-1			[00]
		Claudin-5			[20]
	HBEC-51 ^b	ZO-1			[29]
	hCMEC/D3 ^b	Claudin-5	VE-cadherin		
		Occludin	12 cuulterint		- [28]
	hCMEC/D3 ^b	Claudin-5	VE-cadherin		
	087 giloma ^o	Occludin		P-m	
	HBMEC ^a	Claudin-5	VE-cadherin	BCRP	
				GLUT1	
Transwell				P-gp	_
Tanswen	HBMEC/ciβ ^b	Claudin-5	VE-cadherin	BCRP	
				GLUT1	_
				vWF	
				r-gp BCRP	
				LRP1	[19]
		Claudin-5	VE-cadherin	INSR	
	HBMEC/CI18 b	ZO-1 CD31	CD31	MRP4	
			GLUT1		
				MFSD2A	
				MC18 TFP	
		Claudin-5			_
	HBMEC/ci18 b HBPC/ci37 b HASTR/ci35 b	Occludin	VE-cadherin	P-gp	
		ZO-1	β-catenin	BCKP	
		Claudin-5		GLUT1	
	hPSC-BMEC c	Occludin		P-gp	[22]
		ZO-1			
				VVVF	
				GLUT1	
		Claudin-5	VE as discuire	P-gp	
	IBMEC	70-1	v E-caunerin	LAT1	
		201		INSR	
				BCRP	[23]
					_
	iBMEC °	Claudin-5		Agglutinin-I	
	iCell Astrocyte ^c	Occludin	VE-cadherin	GLUT1	
	Pericytes a	ZO-1		P-gp	
	ICEII GADAINEUIUII -			LAT1	

Table S5. Junctional protein and efflux transporter expression in in vitro BBB/BBTB models.

				INSR	
				BCRP	
				MRP1	
				P-gp	
				LRP1	
				MRP1	
	1770	70.4	CD31	BCRP	
	hBEC a	ZO-1	β-catenin	caveolin1	
			I	caveolin2	
				TfR	
				ISNR	
				P-gp	[24]
				LRP1	
				MRP1	
		Claudin-5		BCRP	
	iPSC-hBEC c	70-1	CD31	caveolin1	
		201		caveolin?	
				TfR	
				ISNR	
				P-gn	
		Claudin-5		I 5P BCRP	
	CD34+-EC ^c	70-1		MRP1	
		20-1		MDD2	
	CD24+ EC c			D are	[33]
	CD34*-EC C			P-gp	
	DIPG-007 ª	Claudin-5		BCKP MDD1	
	DIFG-013 "	20-1		MRP1	
	DIFG-014 "	Classifier F		WIKI'2	
	hCMEC/D3 b	Claudin-5			[18]
		Z0-1	0001		
	TY10 ^b (static)	Claudin-5	CD31	TfR	
			VE-cadherin		— [<u>34</u>]
	TY10 ^b (perfused)	Claudin-5	CD31		L- 1
	(F)		VE-cadherin		
				P-gp	
	HBMEC ^b	Occludin	CD31	GLUT1	
		ZO-1	VE-cadherin	CERP	
				LRP1	[37]
	HBMEC ^b			P-gp	[0,]
	Astrocytes a	Occludin	CD31	GLUT1	
	Periovtes ^a	ZO-1	VE-cadherin	CERP	
				LRP1	
				Laminin	
				Collagen IV	
				GLUT1	
				CERP	
Microfluidic		Claudin 5		MRP1	
Whereinare	iPSC EC s	Occludin		MRP4	
	II SC-EC	70.1		LAT1	
		20-1		LRP1	
				TfR	
				CAT1	
				MCT1	
				P-gp	[17]
				Laminin	[17]
				Collagen IV	
				GLUT1	
				CERP	
				MRP1	
	iPSC-EC c	Claudin-5		MRP4	
	Pericytes ^a	Occludin		LAT1	
		ZO-1		LRP1	
				TfR	
				CAT1	
				MCT1	
				P-gp	

				Laminin	
				Collagen IV	
				GLUT1	
				CERP	
				MRP1	
	IPSC-EC C	Claudin-5		MRP4	
	Astrocytes a			LAT1	
	Pericytes ^a	ZO-1		LRP1	
				TfR	
				CAT1	
				MCT1	
				P-gp	
	HBMEC a		CD31	01	
	HBMEC ^a	Claudin-5		Dava	
Spheroidal	Astrocytes ^a	Occludin		r-gp	
	HBVP b	ZO-1		LKP1	
	LCMEC (D2 h		VE-cadherin	vWF	[21]
	nCMEC/D3 ^b		CD31		
	hCMEC/D3 b	Claudin-5		D and	
	Astrocytes ^a	Occludin		r-gp	
	HBVP b	ZO-1		LKI'1	
Hollow-fiber	hCMEC/D3 b	ZO-1		P-gp	[16]
Filter-free	hCMEC/D3 b	ZO-1			[15]
		Claudin E		MFSD2A	
	iPSC-BMEC c (static)	Claudin-5	VE-cadherin	Caveolin1	
_		Occludin		GLUT1	
	iPSC-BMEC ^c (perfused)	Claudin-5	VE-cadherin		
Hydrogel scaffold	HUVEC ^a (static)	Claudin-5	VE-cadherin		[35]
	HUVEC ª (perfused)	Claudin-5	VE-cadherin		
		Claudin-5		MFSD2A	
	μvas ^a (static)		v E-cadherin	Caveolin1	
	μVas ª (perfused)	Claudin-5	VE-cadherin		

^a Primary cell line; ^bImmortalized cell line; ^cStem cell-derived cell line; ^dCell line later identified to be a human urinary bladder carcinoma cell line, presenting many EC phenotypic characteristics [30]. μVas, microvascular; BCRP, breast cancer resistance protein; BMEC, brain microvascular endothelial cell; CAT1, cationic amino acid transporter 1; CERP, cholesterol efflux regulatory protein; DIPG, diffuse intrinsic pontine glioma; EC, endothelial cell; GLUT1, glucose transporter 1; HA/hAst/HASTR, human astrocyte; HBEC/HBMEC/HUBEC/hCMEC, human brain/cerebral (microvascular) endothelial cell; HBPC/HBPCT, human brain pericyte; HUVEC, human umbilical vein endothelial cell; iBMEC, induced brain microvascular endothelial cell; INSR, insulin receptor; iPSC, induced pluripotent stem cell; LAT1, L-type / large neutral amino acid transporter 1; LRP1, low-density lipoprotein receptor-related protein 1; MCT, monocarboxylate transporter; MRP, multi-drug resistance protein; P-gp, P-glycoprotein protein; OATP1, organic anion transporter polypeptide 1; TfR, transferrin receptor; VE-cadherin, vascular endothelial cadherin; vWF, von Willebrand factor; ZO-1, zonulae occludens-1.

Cell Type	Compound	Molecular Weight (Da)	Permeability Coefficient (cm/s)	Refs	
Fluorescent tracer					
hCMEC/D3	FITC-dextran	10,000 40,000	15 × 10 ⁻⁶ 3.7 × 10 ⁻⁶	[18]	
	Sodium salt	376	$5.99 \pm 4.91 \times 10^{-6}$	[0/]	
hCMEC/D3	FITC-dextran	70,000	$4.95 \pm 2.37 \times 10^{-7}$	[36]	
	EITC destaur	4000	$11.4 \pm 0.4 \times 10^{-6}$		
hCMEC/D3	FIIC-dextran	40,000	$5.2 \pm 0.9 \times 10^{-6}$		
	Day 7	70,000	$0.6 \pm 0.1 \times 10^{-6}$	[28]	
LCMEC/D2 + 1197		4000	$6.6 \pm 0.3 \times 10^{-6}$		
$\mathrm{NCMEC}/\mathrm{D3} + \mathrm{U8}/\mathrm{CMEC}/\mathrm{D3}$		70,000	$1.8 \pm 0.2 \times 10^{-6}$		
hCMEC/D3		4000	$1.33 \pm 0.012 \times 10^{-5}$		
hCMEC/D3 (cAMP + rolipram treat-		4000	$7.55 \pm 0.005 \times 10^{-6}$		
ment)	FITC-dextran	4000		[31]	
hCMEC/D3 (arachidonic acid treat- ment)		4000	$3.17 \pm 0.064 \times 10^{-5}$		
	FITC -Dextran				
hCMEC/D3	Day 7	4000	$8.33 \pm 0.007 \times 10^{-6}$	[16]	
(hollow-fiber)	Day 14	4000	$3.33 \pm 0.001 \times 10^{-6}$		
h C ME C / D 2 / (ill are (as a))		4000	$6.17 \pm 0.004 \times 10^{-6}$		
nCMEC/D3 (filter-free)		2,000,000	$4.50 \pm 0.000 \times 10^{-7}$	[1=]	
bCMEC/D2 (transmull)	FIIC-dextran	4000	$5.27 \pm 0.003 \times 10^{-6}$	[15]	
nCMEC/D3 (transwell)		2,000,000	$3.17 \pm 0.000 \times 10^{-7}$		
HPEC 5: ECa + EC modium	Na-Fl	376	$7.8 \pm 0.1 \times 10^{-6}$		
HBEC-51 ECs + EC medium	FITC-dextran	4000	$6.4 \pm 0.2 \times 10^{-6}$		
	Caffeine	212	$67.0 \pm 4.4 \times 10^{-6}$	[29]	
HBEC-5i ECs + HA medium	Na-Fl	376	$5.7 \pm 0.1 \times 10^{-6}$		
	FITC-dextran	4000	$3.6 \pm 0.1 \times 10^{-6}$		
iPSC FCs		10,000	12×10^{-7}		
II 5C-ECS		40,000	6.6 × 10 ⁻⁷		
iPSC-ECs + human primary peri-	FITC-devtran	10,000	4.8×10^{-7}	[17]	
cytes	III C-ucxtuar	40,000	2.5×10^{-7}	[1/]	
iPSC-ECs + human primary astro-		10,000	2.2×10^{-7}		
cytes + human primary pericytes		40,000	8.9×10^{-8}		
	FITC-dextran Day 1	3000	$1.2 \pm 0.6 \times 10^{-7 \text{ b}}$		
-	THC-dexital Day 1		$1.9 \pm 0.2 \times 10^{-7 \text{ c}}$		
iPSC-derived BMFC	FITC-dextran Day 7	3000	$4.5 \pm 2 \times 10^{-7 \text{ b}}$		
	The destruit Day 7		$1.4 \pm 0.8 \times 10^{-7} \mathrm{c}$		
	FITC-dextran Day 14	3000	$20.1 \pm 26 \times 10^{-7 \text{ b}}$		
	THE desidant Day 14	_	$0.4 \pm 0.3 \times 10^{-7 \text{ c}}$		
	FITC-dextran Day 1	3000	$118 \pm 28 \times 10^{-7} \mathrm{b}$		
_	The desidan Day 1	_	$119 \pm 130 \times 10^{-7 \text{ c}}$		
HUVEC	FITC-dextran Day 7	3000	$69.8 \pm 10 \times 10^{-7 \text{ b}}$	[35]	
	The desiral Day /	_	$76.2 \pm 49 \times 10^{-7 \text{ c}}$	[00]	
	FITC-dextrap Day 14	3000	$195 \pm 150 \times 10^{-7 \text{ b}}$		
	FITC-dextrait Day 14	_	$228 \pm 48 \times 10^{-7 \text{ c}}$		
	FITC-dextran Day 1	3000	$5 \pm 3.6 \times 10^{-7 \text{ b}}$		
_	The dexiral Day 1	_	$6 \pm 2.3 \times 10^{-7 \text{ c}}$		
uVas	FITC-devtran Day 7	3000	$31 \pm 3 \times 10^{-7 \text{ b}}$		
μνα5	111C-uchilali Day /	_	5.3 ± 1 × 10 ^{-7 c}		
	FITC-dextran Day 14	3000	$33 \pm 0.9 \times 10^{-7 b}$		
	111C acruan Day 14		$15.6 \pm 13.7 \times 10^{-7 \text{ c}}$		
Blank inserts	Lucifer Yellow	452	$1.0 \pm 0.001 \times 10^{-5}$	[30]	

Table S6. Permeability coefficients for in vitro BBB/BBTB models.

	ECV304			$5.17 \pm 0.000 \times 10^{-6}$	
$ \begin{array}{c c} CD34-EC + pericytes + astrocytes \\ Day 7 \\ CD34-EC + pericytes + DIPG-007 \\ Day 1 \\ CD34-EC + pericytes + DIPG-013 \\ Day 7 \\$	CD34+-EC + pericytes	Lucifer Yellow		$9.0 \pm 0.001 \times 10^{-6}$	
$ \begin{array}{c} \text{CD34-EC + pericytes + DIPC 07} & \text{Day 1} & \text{I.35 \pm 0.00 \times 10^{\circ}} \\ \text{CD34-EC + pericytes + DIPC 07} & \text{Day 1} & \text{I.35 \pm 0.00 \times 10^{\circ}} \\ \text{CD34-EC + pericytes + DIPC 013} & \text{Day 1} & \text{I.25 \pm 0.00 \times 10^{\circ}} \\ \text{CD34-EC + pericytes + DIPC 014} & \text{Day 1} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{CD34-EC + pericytes + DIPC 014} & \text{Day 1} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{CD34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{Day 7} & \text{I.22 \pm 0.00 \times 10^{\circ}} \\ \text{ID34-EC + pericytes + DIPC 014} & \text{ID33} & \text{ID34} & \text{ID34} & \text{ID34} \\ \text{ID34-EC + DIPC 014} & \text{ID34} & \text{ID34} & \text{ID34} \\ \text{ID34-EC + DIPC 014} & \text{ID34} & \text{ID34} & \text{ID34} & \text{ID34} \\ \text{ID34-EC + DIPC 014} & \text{ID34} & \text{ID34} & \text{ID34} & \text{ID34} \\ \text{ID34-EC + DIPC 014} & \text{ID34} & \text{ID34} & \text{ID34} & \text{ID34} & \text{ID34} \\ \text{ID34-EC + DIPC 014} & \text{ID34} & $	CD24t EC monimutes astromates	Day 1	_	$1.13 \pm 0.001 \times 10^{-5}$	
$ \begin{array}{c c} CD34+EC + perioytes + DIPG-007 \\ CD34+EC + perioytes + DIPG-013 \\ Day 7 \\ CD34+EC + perioytes + DIPG-014 \\ Day 7 \\ CD34+EC + perioytes + DIPG-014 \\ Day 7 \\ CD34+EC + perioytes + DIPG-014 \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ Day 7 \\ 1.00 + 000 + 10^{-1} \\ Day 7 \\ Day 7 \\ 1.00 + 000 \\ 1.00 + 00^{-1} \\ Day 7 \\ Day 7 \\ Day 7 \\ 1.00 + 000 \\ 1.00 + 00^{-1} \\ Day 7 \\ Day 7 \\ Day 7 \\ 1.00 + 000 \\ 1.00 + 00^{-1} \\ Day 7 \\ Day 7 \\ Day 7 \\ Day 7 \\ 1.00 + 000 \\ 1.00 + 00^{-1} \\ Day 7 \\ Day$	CD34 ⁺ -EC + pericytes + astrocytes	Day 7		$1.37 \pm 0.002 \times 10^{-5}$	
	CD24t EC + manifester + DIPC 007	Day 1	_	$1.15 \pm 0.001 \times 10^{-5}$	
$\begin{array}{c c} CD34^{+}\text{-BC} + \operatorname{pericytes} + DIPC-013 & Day 1 & 1.25 \pm 0.001 \times 10^{5} \\ CD34^{+}\text{-BC} + \operatorname{pericytes} + DIPC-014 & Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 1 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 7 & 1.22 \pm 0.001 \times 10^{5} \\ Day 1 & 2.24 \times 10^{6} \\ Day 1 & 2.24 \times 10^{6} \\ Day 1 & 2.24 \times 10^{6} \\ Day 1 & 1.23 \pm 2.001 \times 10^{5} \\ Day 1 & Day 1 & 0.24 \times 10^{6} \\ Day 1 & Day 1 & 0.24 \times $	CD34 [°] -EC + pericytes + DIPG-007	Day 7	452	$1.25 \pm 0.001 \times 10^{-5}$	[33]
$ \begin{array}{c} \text{LOA+EC+"percytes = DIPG-013} & \text{Day 7} & 1.22 \pm 0.008 \times 10^{-5} \\ \text{CD34-EC+"percytes = DIPG-014} & \text{Day 1} & 1.22 \pm 0.008 \times 10^{-5} \\ \text{LCD34-EC+"percytes = DIPG-014} & \text{Day 7} & 1.30 \pm 0.001 \times 10^{-5} \\ \text{IBMEC/ci18} & \text{Lociter Yellow} & 452 & 0.32 \pm 4 \times 10^{-5} \\ \text{IBMEC/ci18} & \text{Lociter Yellow} & 452 & 0.32 \pm 4 \times 10^{-5} \\ \text{IBMEC/ci18} + \text{HASTR/ci35 astro-} & \text{Locifer Yellow} & 452 & 0.31 \pm 4 \times 10^{-5} \\ \text{IBMEC/ci18} + \text{HASTR/ci35 astro-} & \text{Locifer Yellow} & 452 & 0.31 \pm 1 \times 10^{-5} \\ \text{Chemicals (not included in Figure 6)} & \text{Locifer Yellow} & 452 & 0.31 \pm 1.02 \pm 0.091 \times 10^{-5} \\ \text{Chemicals (not included in Figure 6)} & \text{Locifer Yellow} & 452 & 0.31 \pm 0.91 \times 10^{-5} \\ \text{CMEC/D3 & Succose} & 342 & 1.52 \pm 0.01 \times 10^{-5} \\ \text{Incluin S000} & 8.46 \pm 0.02 \times 10^{-5} \\ \text{Incluin S000} & 8.46 \pm 0.02 \times 10^{-5} \\ \text{Incluin S000} & 8.46 \pm 0.02 \times 10^{-5} \\ \text{Incluin S000} & 7.55 \pm 0.3 \times 10^{-5} \\ Incluin S$		Day 1	-	$1.25 \pm 0.001 \times 10^{-5}$	
	CD34 ⁺ -EC + pericytes + DIPG-013	Day 7		$1.22 \pm 0.000 \times 10^{-5}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Day 1	-	$1.22 \pm 0.001 \times 10^{-5}$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CD34 ⁺ -EC + pericytes + DIPG-014	Day 7		$1.30 \pm 0.001 \times 10^{-5}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Na-Fl	376	$32 \pm 4 \times 10^{-6}$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hBMEC/ci18	Lucifer Yellow	452	$30 \pm 4 \times 10^{-6}$	[19]
bBMEC/c118 + HASTR/c135 astro- cytes + HBPC/c137 pericytes Na-FI 376 18 ± 4 × 10 + ECV304 * Rhodamine123 381 5 ± 4 × 10 + ECV304 * Rhodamine123 381 5 ± 4 × 10 + Chemicals (not included in Figure 6)		Rhodamine123	381	$9 \pm 1 \times 10^{-6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Na-Fl	376	$18 \pm 4 \times 10^{-6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nBMEC/c118 + HAS1 K/c135 astro-	Lucifer Yellow	452	$18\pm4 imes10^{-6}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	cytes + HBPC/ci3/ pericytes	Rhodamine123	381	$5 \pm 4 \times 10^{-6}$	
	ECV304 ª	Rhodamine123	381	$12.38 \pm 0.91 \times 10^{-6}$	[27]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Chemicals (not included	in Figure 6)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Urea	60	$2.96 \pm 0.11 \times 10^{-5}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mannitol	182	$1.98 \pm 0.05 \times 10^{-5}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hCMEC/D3	Sucrose	342	$1.52 \pm 0.13 \times 10^{-5}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Inulin	5000	$8.46 \pm 0.02 \times 10^{-6}$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		PEG-4000	4000	$3.93 \pm 0.36 \times 10^{-6}$	
$\begin{array}{ccccc} hCMEC/D3 + primary astrocytes (di-rect co-culture) & Mannitol 182 1.52 \pm 0.07 \times 10^{-5} \\ Sucrose 342 1.17 \pm 0.008 \times 10^{-5} \\ Inulin 5000 7.55 \pm 0.13 \times 10^{-5} \\ PEG-4000 4000 3.57 \pm 0.10 \times 10^{-5} \\ \hline PEG-4000 3.57 \pm 0.10 \times 10^{-5} \\ \hline MCMEC/D3 + primary astrocytes (in-direct co-culture) & Sucrose 342 1.53 \pm 0.12 \times 10^{-5} \\ \hline Propranolol 259 21.7 \times 3.1 \times 10^{-5} \\ \hline Propranolol 259 21.7 \times 3.1 \times 10^{-5} \\ \hline Drugs & & & & & & & & & & & & & & & & & & &$		Urea	60	$2.43 \pm 0.15 \times 10^{-5}$	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mannitol	182	$1.52 \pm 0.07 \times 10^{-5}$	[26]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hCMEC/D3 + primary astrocytes (di-	Sucrose	342	$1.17 \pm 0.008 \times 10^{-5}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rect co-culture)	Inulin	5000	$7.55 \pm 0.3 \times 10^{-6}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		PEG-4000	4000	$3.57 \pm 0.10 \times 10^{-6}$	
$\frac{direct co-culture)}{direct co-culture)} \\ \hline Sucrose \\ 342 \\ 1.53 \pm 0.12 \times 10^{-5} \\ 1PSC-hBEC \\ Propranolol \\ Sucrose \\ 342 \\ 2.9 \pm 1.6 \times 10^{-5} \\ 241 \\ 29 \\ 29 \pm 1.6 \times 10^{-5} \\ 241 \\ 29 \\ 29 \\ 28.42 \pm 1.25 \times 10^{-5} \\ 23.25 \pm 0.87 \times 10^{-5} \\ Quinitine \\ 324 \\ 24.46 \pm 1.61 \times 10^{-5} \\ 23.25 \pm 0.87 \times 10^{-5} \\ Quinitine \\ 324 \\ 24.46 \pm 1.61 \times 10^{-5} \\ 24.45 \pm 1.61 \times 10^{-5} \\ Propanolol \\ 259 \\ 1872 \pm 749 \times 10^{-5} \\ Propanolol \\ 259 \\ 1872 \pm 749 \times 10^{-5} \\ Propanolol \\ 259 \\ 1872 \pm 749 \times 10^{-5} \\ Propanolol \\ 259 \\ 1872 \pm 749 \times 10^{-5} \\ Propanolol \\ 259 \\ 1872 \pm 749 \times 10^{-5} \\ Propanolol \\ 259 \\ 1872 \pm 749 \times 10^{-5} \\ Propanolol \\ Quinidine \\ 324 \\ 501 \pm 224 \times 10^{-5} \\ Quinidine \\ 324 \\ 501 \pm 224 \times 10^{-5} \\ Quinidine \\ 314 \\ 199 \pm 50 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 259 \\ 1280 \pm 668 \times 10^{-5} \\ Propanolol \\ 250 \\ 251 \pm 100 \times 10^{-5} \\ Propanolol \\ 252 \\ 7.84 \pm 0.38 \times 10^{-5} \\ Prazosin \\ 420 \\ 10.36 \pm 0.07 \times 10^{-5} \\ Prazosin \\ 420 \\ 10.36 \pm 0.07 \times 10^{-5} \\ Prazosin \\ 420 \\ 10.36 \pm 0.07 \times 10^{-5} \\ Prazosin \\ 448 \\ 16.36 \pm 3.33 \times 10^{-5} \\ [22] \\ Propanolol \\ 26 \\ Propanolol \\ 26 \\ 21 \\ 194 \pm 34.6 \times 10^{-5} \\ Propanolo \\ 21 \\ 194 \pm 34.6 \times 10^{-5} \\ Propanolo \\ 22 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 2$	hCMEC/D3 + primary astrocytes (in-	Mannitol	182	$1.89 \pm 0.15 \times 10^{-5}$	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	direct co-culture)	Sucrose	342	$1.53 \pm 0.12 \times 10^{-5}$	
$\frac{iPSC-BBEC}{Drugs} \xrightarrow{1}{342} 2.9 \pm 1.6 \times 10^{+5} [24]$ $\frac{Drugs}{28.42 \pm 1.25 \times 10^{+5}} \xrightarrow{1}{342} 2.9 \pm 1.6 \times 10^{+5} [30]$ $ECV304^{+} \xrightarrow{1}{0} Verapamil 455 23.25 \pm 0.87 \times 10^{+5} Quinidine 324 24.46 \pm 1.61 \times 10^{+5} Digoxin 781 3.29 \pm 0.16 \times 10^{+5} Digoxin 781 3.29 \pm 0.16 \times 10^{+5} Propanolol 259 1872 \pm 749 \times 10^{+5} Propanolol 259 1872 \pm 749 \times 10^{+5} Pyrilamine 285 854 \pm 218 \times 10^{+5} Digoxin 79 849 \pm 233 \times 10^{+5} Digoxin 234 161 \pm 31 \times 10^{+$		Propranolol	259	$21.7 \pm 3.1 \times 10^{-6}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	iPSC-hBEC	Sucrose	342	$2.9 \pm 1.6 \times 10^{-6}$	[24]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drugs				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	Propranolol	259	$28.42 \pm 1.25 \times 10^{-6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Verapamil	455	$23.25 \pm 0.87 \times 10^{-6}$	
$\begin{array}{ c c c c c c } \hline Digoxin & 781 & 3.29 \pm 0.16 \times 10^{-6} \\ \hline Propanolol & 259 & 1872 \pm 749 \times 10^{-6} \\ Pyrilamine & 285 & 854 \pm 218 \times 10^{-6} \\ Memantine & 179 & 849 \pm 233 \times 10^{-6} \\ Dipenhydramine & 255 & 681 \pm 195 \times 10^{-6} \\ Dantrolene & 314 & 199 \pm 50 \times 10^{-6} \\ \hline Dantrolene & 314 & 199 \pm 50 \times 10^{-6} \\ \hline Desloratadine & 311 & 301 \pm 105 \times 10^{-6} \\ \hline Pyrilamine & 285 & 1398 \pm 324 \times 10^{-6} \\ \hline Pyrilamine & 255 & 523 \pm 100 \times 10^{-6} \\ \hline Pyrilamine & 255 & 523 \pm 100 \times 10^{-6} \\ \hline Dipenhydramine & 255 & 523 \pm 100 \times 10^{-6} \\ \hline Dyenhydramine & 255 & 523 \pm 100 \times 10^{-6} \\ \hline Dipenhydramine & 255 & 523 \pm 100 \times 10^{-6} \\ \hline Dipenhydramine & 255 & 523 \pm 100 \times 10^{-6} \\ \hline Dipenhydramine & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Dantrolene & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \hline Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \hline Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ \hline Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ \hline Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \hline Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \hline Memantine & 216 & 43.0 \pm 2.41 \times 10^{-6} \\ \hline \end{array}$	ECV304 ª	Ouinidine	324	$24.46 \pm 1.61 \times 10^{-6}$	[30]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Digoxin	781	$3.29 \pm 0.16 \times 10^{-6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Propanolol	259	$1872 \pm 749 \times 10^{-6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Pyrilamine	285	$854 \pm 218 \times 10^{-6}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Memantine	179	$849 \pm 233 \times 10^{-6}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hBMEC/ci18	Dipenhydramine	255	$681 \pm 195 \times 10^{-6}$	[19]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Quinidine	324	$501 \pm 224 \times 10^{-6}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Dantrolene	314	$199 \pm 50 \times 10^{-6}$	
$\begin{array}{c cccc} & Propanolol & 259 & 1280 \pm 686 \times 10^{-6} \\ Pyrilamine & 285 & 1398 \pm 324 \times 10^{-6} \\ Memantine & 179 & 640 \pm 122 \times 10^{-6} \\ Dipenhydramine & 255 & 523 \pm 100 \times 10^{-6} \\ Quinidine & 324 & 161 \pm 31 \times 10^{-6} \\ Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Desloratadine & 311 & 72 \pm 60 \times 10^{-6} \\ Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ Hydroxyzine & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ Caffeine & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \end{array}$		Desloratadine	311	$301 \pm 105 \times 10^{-6}$	
$\begin{array}{c} \mbox{hBMEC/ci18 + HASTR/ci 35 astro-cytes + HBPC/ci37 pericytes} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$		Propanolol	259	$1280 \pm 686 \times 10^{-6}$	
$ \begin{array}{c} \mbox{hBMEC/ci18 + HASTR/ci 35 astro-cytes + HBPC/ci37 pericytes} & Memantine & 179 & 640 \pm 122 \times 10^{-6} \\ \mbox{Dipenhydramine} & 255 & 523 \pm 100 \times 10^{-6} \\ \mbox{Quinidine} & 324 & 161 \pm 31 \times 10^{-6} \\ \mbox{Dantrolene} & 314 & 163 \pm 11 \times 10^{-6} \\ \mbox{Desloratadine} & 311 & 72 \pm 60 \times 10^{-6} \\ \mbox{Cimetidine} & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \mbox{Cimetidine} & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \mbox{Prazosin} & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ \mbox{Hydroxyzine} & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ \mbox{Caffeine} & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ \mbox{Donepezil} & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \mbox{Memantine} & 216 & 43.0 \pm 2.41 \times 10^{-6} \end{array} $		Pyrilamine	285	$1398 \pm 324 \times 10^{-6}$	
$\begin{array}{c} \mbox{hBMEC/c18 + HASTR/c135 astro-}\\ \mbox{cytes + HBPC/ci37 pericytes} & Dipenhydramine & 255 & 523 \pm 100 \times 10^{-6} \\ \mbox{Quinidine} & 324 & 161 \pm 31 \times 10^{-6} \\ \mbox{Dantrolene} & 314 & 163 \pm 11 \times 10^{-6} \\ \mbox{Desloratadine} & 311 & 72 \pm 60 \times 10^{-6} \\ \mbox{Atenolol} & 226 & 4.64 \pm 0.38 \times 10^{-6} \\ \mbox{Cimetidine} & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \mbox{Cimetidine} & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \mbox{Prazosin} & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ \mbox{Hydroxyzine} & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ \mbox{Caffeine} & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ \mbox{Donepezil} & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \mbox{Memantine} & 216 & 43.0 \pm 2.41 \times 10^{-6} \end{array}$		Memantine	179	$640 \pm 122 \times 10^{-6}$	
cytes + HBPC/cl3/ pericytes Quinidine 324 $161 \pm 31 \times 10^{-6}$ Dantrolene 314 $163 \pm 11 \times 10^{-6}$ Desloratadine 311 $72 \pm 60 \times 10^{-6}$ Atenolol 226 $4.64 \pm 0.38 \times 10^{-6}$ Cimetidine 252 $7.84 \pm 0.38 \times 10^{-6}$ Prazosin 420 $10.36 \pm 0.07 \times 10^{-6}$ hPSC-BMEC Hydroxyzine 448 $16.36 \pm 3.33 \times 10^{-6}$ [22] Caffeine 212 $119.4 \pm 34.6 \times 10^{-6}$ [22] Donepezil 433 $40.5 \pm 3.00 \times 10^{-6}$ Memantine 216 $43.0 \pm 2.41 \times 10^{-6}$	hBMEC/ci18 + HAS1R/ci 35 astro-	Dipenhydramine	255	$523 \pm 100 \times 10^{-6}$	
$\begin{tabular}{ c c c c c c } \hline Dantrolene & 314 & 163 \pm 11 \times 10^{-6} \\ \hline Desloratadine & 311 & 72 \pm 60 \times 10^{-6} \\ \hline Atenolol & 226 & 4.64 \pm 0.38 \times 10^{-6} \\ \hline Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \hline Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ \hline Prescript & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ \hline Caffeine & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ \hline Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \hline Memantine & 216 & 43.0 \pm 2.41 \times 10^{-6} \\ \hline \end{tabular}$	cytes + HBPC/ci3/ pericytes	Quinidine	324	$161 \pm 31 \times 10^{-6}$	
$\begin{tabular}{ c c c c c c } \hline Desloratadine & 311 & 72 \pm 60 \times 10^{-6} \\ \hline Atenolol & 226 & 4.64 \pm 0.38 \times 10^{-6} \\ \hline Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ \hline Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ \hline Prazosin & 420 & 10.36 \pm 3.33 \times 10^{-6} \\ \hline Hydroxyzine & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ \hline Caffeine & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ \hline Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \hline Memantine & 216 & 43.0 \pm 2.41 \times 10^{-6} \\ \hline \end{tabular}$		Dantrolene	314	$163 \pm 11 \times 10^{-6}$	
$ \begin{array}{c cccc} A tenolol & 226 & 4.64 \pm 0.38 \times 10^{-6} \\ Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ Prazosin & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ Hydroxyzine & 448 & 16.36 \pm 3.33 \times 10^{-6} \\ Caffeine & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ Memantine & 216 & 43.0 \pm 2.41 \times 10^{-6} \end{array} $		Desloratadine	311	$72 \pm 60 \times 10^{-6}$	
$\begin{tabular}{ c c c c c } Cimetidine & 252 & 7.84 \pm 0.38 \times 10^{-6} \\ Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ Prazosin & 448 & 16.36 \pm 3.33 \times 10^{-6} & [22] \\ Caffeine & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ \hline & Memantine & 216 & 43.0 \pm 2.41 \times 10^{-6} \\ \hline \end{tabular}$		Atenolol	226	$4.64 \pm 0.38 \times 10^{-6}$	
$\begin{tabular}{ c c c c c } & Prazosin & 420 & 10.36 \pm 0.07 \times 10^{-6} \\ & Hydroxyzine & 448 & 16.36 \pm 3.33 \times 10^{-6} & [22] \\ & Caffeine & 212 & 119.4 \pm 34.6 \times 10^{-6} \\ & Donepezil & 433 & 40.5 \pm 3.00 \times 10^{-6} \\ & Memantine & 216 & 43.0 \pm 2.41 \times 10^{-6} \\ \hline \end{tabular}$		Cimetidine	252	$7.84 \pm 0.38 \times 10^{-6}$	
hPSC-BMEC Hydroxyzine 448 16.36 ± 3.33 × 10 ⁻⁶ [22] Caffeine 212 119.4 ± 34.6 × 10 ⁻⁶ [22] Donepezil 433 40.5 ± 3.00 × 10 ⁻⁶ [22] Memantine 216 43.0 ± 2.41 × 10 ⁻⁶ [22]		Prazosin	420	$10.36 \pm 0.07 \times 10^{-6}$	
Caffeine212 $119.4 \pm 34.6 \times 10^{-6}$ Donepezil433 $40.5 \pm 3.00 \times 10^{-6}$ Memantine216 $43.0 \pm 2.41 \times 10^{-6}$	hPSC-BMEC	Hydroxyzine	448	$16.36 \pm 3.33 \times 10^{-6}$	[22]
Donepezil433 $40.5 \pm 3.00 \times 10^{-6}$ Memantine216 $43.0 \pm 2.41 \times 10^{-6}$		Caffeine	212	$119.4 \pm 34.6 \times 10^{-6}$	-
Memantine 216 43.0 ± 2.41 × 10 ⁻⁶		Donepezil	433	$40.5 \pm 3.00 \times 10^{-6}$	
		Memantine	216	$43.0 \pm 2.41 \times 10^{-6}$	

	Rivastigmine	400	$80.7 \pm 9.39 \times 10^{-6}$	
	IgG	150,000	$2.99 \pm 0.64 \ge 10^{-9}$	
	Atenolol	226	$10.5 \pm 3.1 \times 10^{-6}$	
iPS-EC1	Erythromycin	734	$11.6 \pm 3.0 \times 10^{-6}$	[25]
	Verapamil	455	$12.5 \pm 0.9 \times 10^{-6}$	
	Dantrolene	314	$22.1 \pm 2.3 \times 10^{-6}$	
	Phenytoin	252	$25.7 \pm 1.6 \times 10^{-6}$	
iPS-EC1 + astrocytes + pericytes + neurons	Propranolol	259	$25.1 \pm 4.9 \times 10^{-6}$	
	Atenolol	226	$4.7 \pm 1.0 \times 10^{-6}$	
	Erythromycin	734	$9.9 \pm 2.5 \times 10^{-6}$	
	Verapamil	455	$11.2 \pm 4.0 \times 10^{-6}$	
	Dantrolene	314	$15.2 \pm 3.1 \times 10^{-6}$	
	Phenytoin	252	$35.6 \pm 3.4 \times 10^{-6}$	
iPS-EC2	Propranolol	259	$22.6 \pm 5.5 \times 10^{-6}$	
	Atenolol	226	$30.4 \pm 0.9 \times 10^{-6}$	
	Erythromycin	734	$21.5 \pm 3.0 \times 10^{-6}$	
	Verapamil	455	$22.3 \pm 0.9 \times 10^{-6}$	
	Dantrolene	314	$41.3 \pm 5.8 \times 10^{-6}$	
	Phenytoin	252	$29.2 \pm 5.2 \times 10^{-6}$	
iPS-EC2 + astrocytes + pericytes + neurons	Propranolol	259	$31.8 \pm 3.5 \times 10^{-6}$	
	Atenolol	226	$34.6 \pm 8.1 \times 10^{-6}$	
	Erythromycin	734	$31.8 \pm 6.2 \times 10^{-6}$	
	Verapamil	455	$18.3 \pm 2.8 \times 10^{-6}$	
	Dantrolene	314	$45.6 \pm 3.7 \times 10^{-6}$	
	Phenytoin	252	$29.4 \pm 10.9 \times 10^{-6}$	
	Propranolol	259	$10.7 \pm 1.2 \times 10^{-6}$	
Chemotherapy				
CD24t ECo L actua autos	TMZ	194	$8.33 \pm 0.000 \times 10^{-6}$	
CD34*-ECs + astrocytes	Panobinostat	349	$5.50 \pm 0.000 \times 10^{-6}$	[33]
	TMZ	194	$7.17 \pm 0.000 \times 10^{-6}$	
CD34*-EC + DIPG-007	Panobinostat	349	$7.83 \pm 0.001 \times 10^{-6}$	
	TMZ	194	$7.67 \pm 0.000 \times 10^{-6}$	
CD34+EC + DIPG-013	Panobinostat	349	$4.83 \pm 0.000 \times 10^{-6}$	
	TMZ	194	$8.33 \pm 0.000 \times 10^{-6}$	
CD34 ⁺ -EC + DIPG-014	Panobinostat	349	$4.00 \pm 0.000 \times 10^{-6}$	
Antibodies				
TY10 + hAst astrocytes + hBPCT per-	Anti-TfR (MEM-189), IgG1	95,000	4.83 × 10 ⁻⁷	[0.4]
icytes	Anti-hen egg lysozyme, IgG1	93,000	2.67×10^{-7}	[34]

^a Cell line later identified to be a human urinary bladder carcinoma cell line, presenting many EC phenotypic characteristics [30]. Performed under ^b static or ^c perfused conditions. For studies reporting permeability coefficients in cm/min these were converted to cm/sec to enable easy comparison. Data is expressed mean ± SD for the reported number of experiments. µVas, microvascular; BMEC, brain microvascular endothelial cell; cAMP, cyclic adenosine monophosphate; DIPG, diffuse intrinsic pontine glioma; EC, endothelial cell; EVOM, epithelial voltohmmeter; FITC, fluorescein isothiocyanate; HA/hAst/HASTR, human astrocyte; HBEC/HBMEC/hCMEC, human brain/cerebral (microvascular) endothelial cell; HBPC/hBPCT, human brain pericyte; HUVEC, human umbilical vein endothelial cell; iBMEC, induced brain microvascular endothelial cell; iPSC, induced pluripotent stem cell; Na-Fl, sodium fluorescein; TMZ, temozolomide.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).