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Simple Summary: Cancer remains as the world second leading cause of death. The severe side
effects associated to high doses of chemotherapy and the development of drug resistance are major
drawbacks for a successful cancer treatment. Therefore, new formulations that promote localized
therapy at tumor sites are needed to improve the therapeutic outcomes and patient welfare. The use
of hydrogels is a very promising alternative, since they can be composed by smart materials able
to respond to external factors, changing their properties accordingly and promoting a localized
drug delivery. As a result, a more specific, efficient, and less toxic local cancer treatment can be
accomplished. In this context, the most important characteristics of hydrogels recent studies regarding
the application of pH-, light-, ionic strength-, and magnetic-responsive hydrogels in cancer treatment
are here presented.

Abstract: Cancer remains as the second leading cause of death, worldwide. Despite the enormous
important advances observed in the last decades, advanced stages of the disease remain incurable.
The severe side effects associated to systemic high doses of chemotherapy and the development
of drug resistance impairs a safe and efficiency anticancer therapy. Therefore, new formulations
are continuously under research and development to improve anticancer drugs therapeutic index
through localized delivery at tumor sites. Among a wide range of possibilities, hydrogels have
recently gained special attention due to their potential to allow in situ sustained and controlled
anticancer drug release. In particular, stimuli-responsive hydrogels which are able to change their
physical state from liquid to gel accordingly to external factors such as temperature, pH, light,
ionic strength, and magnetic field, among others. Some of these formulations presented promising
results for the localized control and treatment of cancer. The present work aims to discuss the main
properties and application of stimuli-responsive hydrogels in cancer treatment and summarize the
most important advances observed in the last decades focusing on the use of pH-, light-, ionic strength-
, and magnetic-responsive hydrogels.

Keywords: hydrogels; pH-responsive; photosensitive; ionic strength-responsive; magnetic-responsive;
drug delivery; cancer treatment; local treatment
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1. Introduction

In 2018 the World Health Organization (WHO) reported an estimated 9.6 million
cancer deaths, being the second leading cause of death worldwide. Lung, prostate, and col-
orectal are the most common types of cancer in men, while breast, colorectal and lung are
the most common among women [1]. Unfortunately, despite all the advances achieved
in the last decades in the pharmaceutical and biomedical fields, metastatic cancer is still
considered an incurable disease. One of the major drawbacks regarding cancer treatment
is related with the adverse effects associated with conventional chemotherapy [2–4]. Thus,
sustained release local therapy emerged as promising alternative to reduce the systemic ex-
posure and toxicity, thus increasing the therapeutic outcomes. In accordance to the National
Cancer Institute definition, local therapy is conceived as a treatment directed to a specific
organ or to a limited area of the body, embracing surgery, radiation therapy, cryotherapy,
laser therapy, and topical therapy [5]. In recent years, a novel form of local cancer therapy
using hydrogels have been proposed, owing to the favorable results achieved by these
formulations in several other biomedical applications.

The present review is focused on stimuli-responsive hydrogels (pH-, photo-, ionic strength-,
and magnetic-sensitive) proposed in the last 10 years as controlled release formulations for
cancer treatment.

2. Hydrogels for Biomedical Applications

Different definitions for hydrogels have been suggested through the years. Often,
they are described as a water-swollen and cross-linked polymeric network produced by
the reaction/conjugation of one or more monomers. However, more recently hydrogels
have been represented as three-dimensional networks which may absorb large amounts
of water (from 10–20% up to thousands of times their dry weight) due to the presence of
hydrophilic functional groups which fill the space among macromolecules and show high
affinity for biological fluids [6].

The term hydrogel was firstly used by Wichterle and Lim in 1960 when they described
a hydrogel based on poly-2-hydroxyethylmethacrylate (PHEMA), a synthetic biocompati-
ble material useful for contact lens applications. In fact, in 1962 PHEMA lenses were firstly
distributed in Western Europe, even though with limited success and acceptance. After a
license buying agreement by the National Patent Development Corporation (NPDC) and
a subsequent selling to Basuch and Lomb, that optimized the product, PHEMA lenses
received Food and Drug Administration (FDA) approval [7]. Until today, hydrogels are
routinely present in people using contact lenses, especially soft lenses based on silicon
hydrogels. Moreover, hydrogels have been extensively used in biomedical applications
regarding tissue engineering and wound healing [8,9]. Advanced dressings based on hydro-
gels proved to be more effective in wound healing since they maintain a moist environment
at the application site that avoid the spread of fluids to other healthy areas of the skin.
Nowadays, many of them are commercially available, such as DermaFilm®, Kaltostat®,
Condress®, and Sofargen® [10], being some of them filled with active ingredients such
as iodine or zinc ions providing antimicrobial and cleansing properties, respectively [7].
Additionally, hydrogel-based formulations have been approved and used in the clinical
practice for a variety of diseases. This includes Perseris® a risperidone hydrogel for acute
and chronic schizophrenia, Sublocad® for buprenorphine induced analgesia, and Azasite®

with lidocaine hydrochloric acid for the treatment of bacterial conjunctivitis [11].
Owing to the demonstrated success of hydrogels in a variety of biomedical applica-

tions, it was speculated whether they could be used as drug delivery platforms for cancer
treatment. Despite most of the research done in cancer treatment is dedicated to systemic
and oral administration, local administration of drugs could be highly beneficial in cases
of non-resectable or incomplete surgically removed tumors. In this context, the use of
hydrogels, and especially stimuli-responsive hydrogels, has been proposed for in situ
application at the tumor site/cavity, promoting a local sustained release of the drugs and
a reduction of systemic exposure and off-target effects [12]. Moreover, administration of
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depot systems reduces the needs for repeated anticancer therapy cycles and the associated
drawbacks to the patients and the economic impact in the health care systems [11].

Stimuli-responsive hydrogels are promising smart materials able to change conforma-
tion as a response to the surrounding environment variations like temperature, pH, light,
ionic strength, and magnetic field [13]. This type of hydrogel has gained special importance
due to the possibility to manipulate rheological behavior of the hydrogel according to
the different tumor microenvironment conditions. In fact, cancer cells display several
metabolic adaptations to ensure survival. Among them, glucose and nutrient uptake;
production of lactic acid under aerobic conditions, and acclimatization to hypoxic and
low-nutrient microenvironments. Moreover, an acidification of the extracellular milieu
(low pH) and intracellular alkalization of the cytoplasm (high pH) occurs in cancer cells [14].
Thus, it is possible to take advantage of these characteristics to develop tumor targeted
stimuli-responsive drug delivery systems.

Over the years several hydrogel-based formulations have been designed for cancer
diagnosis, prevention, and treatment, some of them enrolling clinical trials. Moreover,
some have been granted with FDA and/or European Medicines Agency (EMA) approval,
being translated into the clinical practice such as Lupron® depot or Eligard®, two poly
lactic-co-glycolic acid (PLGA)-based hydrogels for in situ delivery of leuprolide acetate
against advanced prostate cancer [11]. Another example is TraceIT®, a polyethylene
glycol (PEG) hydrogel microparticles containing covalently bound iodine, approved as
tissue marker. After being injected it allows exact tumor visualization using magnetic
resonance imaging (MRI), computed tomography (CT) and ultrasounds, thus providing
more accurate identification of cancer cells before surgical removal. Moreover, it is also
used to define more accurate dose planning in radiation therapy, avoiding unnecessary
radiation of cancer-free areas. The product remains dimensionally stable for 3 months
being fully absorbed after 6 months [15]. The feasibility and efficacy of TraceIT® as organ
spacer is under clinical evaluation in sparing vagina or prostate, in the treatment of rectal
cancer patients, and also as a spacer between pancreas and duodenum in pancreatic cancer
patients [16]. Another example is SpaceOAR®, an FDA approved PEG-based hydrogel
organ spacer used to prevent rectum injury during radiation therapy sessions in prostate
cancer patients [17].

3. Classification of Hydrogels

The majority of the developed hydrogels for biomedical applications are based on
polymers with medium to high molecular weight; however, in recent years, low molec-
ular weight self-assembling systems have been described and proposed. These systems
are generally based on low molecular weight gelators, with especial focus on peptides
that self-assemble into long, anisotropic structures, most commonly fibers. At a certain
concentration, these fibers crosslink forming the gel network. Depending on the gelators
properties they could be used to develop stimuli-responsive hydrogels [18,19]. Low molec-
ular weight self-assembling peptide-based materials were the focus of a recent paper
reviewing its properties and potential biomedical application [18]. In the present review
we will focus on stimuli-responsive polymer-based hydrogels intended for cancer treat-
ment. In Table 1 are presented some of examples of polymers used in the development
of hydrogels.

Hydrogels can be classified according to different parameters including: (i) composi-
tion (homo or copolymeric), (ii) network size (macrogels, microgels, nanogels), (iii) elec-
trical charge (non-ionic, cationic, anionic, amphoteric or zwitterionic), (iv) crosslinking
(physical or chemical), among others [20].
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Table 1. Chemical structure of some of the most commonly used polymers in hydrogels production. PEG—polyethylene
glycol, PEGDA—poly (ethylene glycol) diacrylate, PLGA—poly lactic-co-glycolic acid, PVA—poly(vinyl alcohol). The
oxygen (O) atoms are highlighted in red and the nitrogen (N) atoms in blue.

Polymer Chemical Structure

Acrylamide
Polymer base for a variety of derivatives including polyacrylamide,
bisacrylamide, N-Isopropylacrylamide, N-N′-dimethylacrylamide
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Regarding the type of crosslinking, hydrogels can be prepared via physical or chemical
crosslinking (Figure 1). When a physical crosslinking is used, there is no formation of
covalent bonds and the hydrogels present phase-reversibility. The main physical interac-
tions between polymer chains described in physically crosslinked hydrogels are based on
hydrogen bonding, ionic/electrostatic interactions, self-assembly of amphiphilic polymers
by hydrophobic interactions, crystallization, protein interactions, and metal coordina-
tion [21]. For example, polyacrylic acid and polymethacrylic acid forms complexes with
PEG through a hydrogen bonding. They are only formed when exists a protonation of
carboxylic acid groups, which would result in the formation of a pH-sensitive hydrogel [22].
Another example is alginate, a natural polymer that jellifies through ionic interactions with
divalent cations such as calcium (Ca2+) or magnesium (Mg2+) [21]. On the other hand,
amphiphilic polymers such as poloxamers suffer thermally induced phase transition form-
ing hydrogels due to hydrophobic interactions above lower critical solution temperature
(LCST) [23]. Polyvinyl alcohol (PVA)-based hydrogels are an example of crystallization
induced physical crosslinking as polymer crystallization and gelation occurs when the
solution repeatedly undergoes freeze-thawing cycles [24].
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(accessed on 15 January 2021).

The biggest drawback of physical crosslinking hydrogels relies on their possible lack
or reduced stability under physiological conditions. Therefore, chemical crosslinking is
being preferred for in vivo applications [22].

Chemically crosslinked hydrogels are more stable under physiological conditions
and exhibit excellent mechanical properties owing to the covalent bonds in-between the
polymer chains. Additionally, their degradation behavior can be tunable, even though they
are generally irreversible. A potential disadvantage compared to physically crosslinked
hydrogels is the frequently required use of organic solvents and catalysts that often raise
biocompatibility and environmental concerns [21].

Covalent bonds in chemically crosslinked hydrogels are generally promoted by click
chemistry including Schiff base formation, Michael addition or Diels–Alder reaction, pho-
topolymerization, free radical polymerization (FRP), reversible addition-fragmentation
chain transfer (RAFT) polymerization or enzyme catalyzed reactions [21].
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Due to the presence of certain chemical groups such as NH2-, COOH-, OH- in the
skeleton of hydrophilic polymers, the amine-carboxylic acid, isocyanate-OH/NH2 reaction
or Schiff base formation are commonly used to create a covalent linkage between polymers
to form the hydrogel network. Schiff base is commonly used for hydrogels formation and
generally obtained via the nucleophilic attack of amines on the electrophilic carbon atoms
of aldehydes or ketones. For example, glycol chitosan have been crosslinked with PEG
or poly(N-isopropylacrylamide)-co-poly(acrylic acid) forming promising hydrogels for
anticancer drug delivery [21]. In photopolymerization crosslinking, acrylate derivatives
(e.g., poly (ethylene glycol) diacrylate (PEGDA) and glycidylmethacrylate (GMA)) are
generally used as pre-polymers due to the presence of unsaturated groups. These groups
react with photo-initiators (UV or visible light) like Irgacure 2959, lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP) or Eosin-Y, among others. In the presence of a light
source, photo-initiators are cleaved by photons forming free radical molecules that react
with the vinyl bonds in the pre-polymer promoting the crosslink between the polymer
chains [25]. Enzyme catalyzed crosslinking can be used, for example, to create of PEG-
based hydrogels using a transglutaminase, which catalyzes the reaction between the
γ-carboxamide group of the PEG-functionalized with glutaminyl groups and the ε-amine
group of poly(lysine-co-phenylalanine) resulting in the formation of an amide bond [26].

To avoid the irreversibility while maintaining the higher mechanical strength of
chemically crosslinked hydrogels, dynamic covalent chemistry is being applied to generate
hydrogels via both physical and chemical crosslinking [21]. For example, boronate esters
prepared from boronic acids and 1,2- or 1,3-diols in aqueous solutions results in reversible
covalent bonds. Importantly, the strength and reversibility of the bond largely depends on
the pH of the solution and the pKa of the boronic acid used as the boronate ester formation
is favored at pH values above the pKa of the boronic acid. By changing the boronic acid
derivative and the 1,2- or 1,3-diols used, is possible to produce reversible pH-sensitive
hydrogels with tunable mechanical properties [21].

4. Stimuli-Responsive Hydrogels

Some hydrogels can be sensitive to environmental stimulus such as temperature,
pH, light, ionic force or pressure, suffering sol-to-gel transitions that can allow controlled
gelation and drug release at specific sites. On the other hand, non-sensitive hydrogels
swell due to water absorption without responding to environmental changes. Thermo-
responsive hydrogels are the most commonly used being the main subject of a bibliographic
revision performed by our group (under publication). Here we report some of the pH-,
light-, ionic strength-, magnetic-sensitive, as well as examples of dual responsive hydrogels
developed in recent years for cancer treatment.

4.1. pH-Sensitive Hydrogels

Cancer cells are characterized by the acidification of the extracellular milieu and
increased alkalization of the cytoplasm. Some studies suggest that alkaline intracellular
pH increases glycolysis, promotes cellular adaptation to hypoxia and maximizes cancer
cell proliferation [14]. Taking advantage of the pH alteration at the tumor environment,
new pH-sensitive hydrogels have been developed in order to release the cytotoxic drug
exclusively in the cancer cells area, reducing the occurrence of adverse side-effects in
healthy tissues.

To create pH-sensitive hydrogels, ionizable groups including amines, carboxylic acids,
imines, etc., can be introduced in their structure. These groups, depending on the pKa
values and the environmental pH, present the capability to donate or accept protons and
undergo alterations of their physical and chemical properties [27,28]. Cationic hydrogels
swell at low pH (pH < pKa) due to protonation of amino/imine groups and consequent
repulsion of the positively charged moieties on the polymer chains. On the contrary, an-
ionic hydrogels swell at higher pH (pH > pKa) due to ionization of the acidic groups and
chain repulsion (Figure 2) [29]. pH-sensitive conformational changes of polymer can occur
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via: (a) destabilization (via collapse or swelling), (b) dissociation, and (c) alteration of the
drug/vehicle partition coefficient. Conformational changes or solubility alterations will
affect the release of encapsulated drugs. The kinetics of release could be controlled by
manipulating the degree and ratio of the conformational changes [27,28]. For example,
cationic hydrogels release the drug when swell at low pH (Figure 2A), while anionic hydro-
gels release the drug at higher pH values (Figure 2B). For this reason, anionic hydrogels are
preferred for controlled intracellular drug delivery in tumor cells, while cationic hydrogels
are preferred for delivery at the extracellular matrix in tumor tissues [29,30].
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Figure 2. Schematic representation of pH-sensitive hydrogels swelling. Swelling of the hydrogel
occurs via ionization of the pendant groups with consequent increase hydrophilic nature of the
polymer chains and electrostatic chain repulsion. ECM—extracellular matrix, H+—Hydrogen ions,
OH−—Hydroxide ions. The red circles represent the drugs loaded in the hydrogels. Created with
BioRender.com (accessed on 15 January 2021).

pH-sensitive hydrogels can be also produced by formation of polyelectrolyte com-
plexes between anionic (e.g., alginate, dextran) and cationic (e.g., chitosan) polymers,
thus avoiding the use of chemical and possibly toxic crosslinkers [29,31,32]. The use of
acid-labile chemical bonds that are stable at physiological (neutral) pH and degrade or
hydrolyze at low pH values (e.g., tumor microenvironment) is also a good strategy to
produce this “smart” hydrogels, especially in the field of cancer treatment [27].

One of the most used polymers to produce pH-responsive hydrogels is chitosan. It is
a natural, non-toxic, biodegradable, and biocompatible polymer obtained from chitin.
However, the limited solubility in water and other organic solvents is its weakness. To over-
come this, different derivatives of chitosan presenting a good solubility in physiological
conditions such as N-trimethyl chitosan, N-carboxymethyl chitosan, or N-carboxyethyl
chitosan (CEC) have been developed [29,33]. For example, amine groups from CEC and
benzaldehyde groups from PEGDA create a dynamic covalent Schiff-base linkage forming
a doxorubicin-loaded hydrogel with self-healing performance [33]. Moreover, the hydro-
gel presented adequate physical, rheological, and biological properties for the targeted
delivery of doxorubicin in hepatic cancer. Of note, since the pKa value of D-glucosamine
residue of chitosan is about 6.2~7.0, the hydrogel promoted drug release at low pH val-
ues (92% of doxorubicin was released at pH 5.5 over 42% at pH 7.4 after 7 days), due to
the decomposition of the Schiff-base (14% mass loss at pH 7.4 and 40% at pH 5.5) and
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swelling/increase in pore size. More importantly, at low doses, the hydrogel loaded with
doxorubicin significantly inhibited the proliferation of HepG2 cells when compared to the
free drug [33]. A similar behavior was obtained with a CS/PVA hydrogel loaded with
5-fluoracil. The hydrogel retained the drug at pH 7.4, thus preventing possible drug release
to normal cells and the consequent side effects, promoting a continuous and controllable
drug release at pH 5 [34].

Many other natural polymers (e.g., alginate, cellulose, guar gum, carrageenan, dextran,
xanthan, among others) and synthetic polymers (e.g., polyamines like poly(acrylamide),
poly(N,N′-dimethyl aminoethyl methacrylate) or poly(ethylene imine), acrylic derivatives
like poly(acrylic acid), sulfonic acid derivatives like 2-acrylamido-2-methylpropylsulfonic
acid, sulfonamides like sulfamethazine, pyridine derivatives like poly(2-vinyl pyridine),
imidazole derivatives like poly(N-vinyl imidazole), PEG, PVP, PLA, among others) have
been proposed for production of pH-sensitive hydrogels [29,35].

Beyond injectable hydrogels, pH-responsive hydrogels are also an interesting tool for
oral delivery of anticancer drugs as the gastrointestinal tract is characterized by variations in
pH. Therefore, it is possible to tune formulations to promote the release of drugs in affected
regions of the digestive tract [35]. As example, different pH-responsive nanogels based on
poly(methacrylic acid-g-polyethylene glycol-co-hydrophobic monomer) were developed
and assessed as platforms for intestinal delivery of doxorubicin for colorectal cancer
treatment [36]. The different hydrophobic monomers used to adjust pH-responsiveness
were tert-butyl methacrylate (tBMA), n-butyl methacrylate (nBMA), n-butyl acrylate (nBA),
and methyl methacrylate (MMA), while polyethylene glycol was added to provide better
integrity of the hydrogel and confer P-gp efflux inhibition. Among the formulations the
one composed by poly(methacrylic acid-g-polyethylene glycol-co-methyl methacrylate)
presented the best performance, namely, doxorubicin loading and release at simulated
intestinal pH, and transport across intestinal epithelia (Caco-2 cell monolayers) [36].

pH-sensitive hydrogels can be also applied for gastrointestinal protection and reg-
ulate acute radiation syndrome, a consequence of tumor radiation therapy. A hydrogel
constituted by polycaprolactone grafted with poly(methacrylic acid-co-ethyl acrylate)
(PCL-g-MAC) was proposed for intestinal delivery of amifostine, and FDA approved
radioprotective agent [37]. MAC is an FDA approved excipient for enteric coating due to its
pH-responsiveness, while PCL was used to afford hydrophobicity to the system, improving
hydrogel stability and performance. The hydrogel protected amifostine from gastric degra-
dation (pH 1.2 release of 36.5% for 5.5 h), releasing the drug only at pH 7.4 (70.7% release at
0.6 h), as the pKa of the carboxyl groups is around 4.5, the hydrogel tends to dissociate and
swell for pH > 4.5. Moreover, in vivo studies suggested that the formulation promotes pro-
tection and enhances survival upon γ-radiation by inhibiting hematopoietic cell apoptosis
and accelerating cell proliferation, and also by reducing weight loss [37]. Some examples
of pH-sensitive hydrogels developed in the last decade proposed as drug delivery systems
for cancer treatment are summarized in Table 2.

4.2. Photosensitive Hydrogels

Photosensitive hydrogels suffer a chemical and/or physical alteration as a conse-
quence to light exposure (UV, visible or near infrared (NIR)) (Figure 3). An incident
light triggers modifications such as free-radical polymerization reaction, chemical link-
age cleavage or isomerization, volume changes via swelling or shrinkage, etc. [51,52].
By application of light at the desired site of action is possible to promote a spatial and
temporal controlled drug release avoiding systemic exposure. There are mainly three
strategies used in the development of light-responsive hydrogels as drug delivery sys-
tems: (i) photochemical cleavage of or crosslinking points (Figure 3A) polymer backbones
(Figure 3B), (ii) photo-induced isomerization of specific motifs that alter gel properties like
the crosslinking density, charging state, or hydrophilicity (Figure 3C), and (iii) incorpo-
ration of photothermal agents that generate heat through irradiation and induce phase
transition of thermo-responsive hydrogels (Figure 3D) [53]. Photoisomerization usually
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originates reversible hydrogels, while photocleavage is usually irreversible. Ruthenium,
coumarin nitrophenyl, or o-nitrobenzyl derivatives, are examples of photocleavable com-
pounds used in the development of hydrogels, while azobenzene and spiropyran promote
isomerization under light exposure [51,54]. On the other hand, photo-thermal agents
include porphyrins, cyanines, gold, silver, oxide, and carbon nanoparticles [51]. Regarding
photothermal induced hydrogels, NIR-responsive hydrogels are of great interest due to
their deep tissue penetration and harmlessness; however, overheating and consequent
tissue damage is one of the main concerns that must be properly addressed regarding its
biomedical application [51].

Table 2. Examples of pH-sensitive hydrogels for cancer therapy. n.a.—not applicable; β-CD—β-cyclodextrin; 5-FU—5-
fluorouracil; DOX—doxorubicin; FACS—fluorescence-activated cell sorting; PTX—paclitaxel.

Date Drug In vitro model In vivo model Hydrogel formulation Highlights References

2014 5-FU
HT-29 cells
(colorectal

adenocarcinoma)
n.a.

β-CD-graft-gelatin
crosslinked with
oxidized dextran

Presence of β-CD increase
drug loading. Swelling and
drug release is low at pH 1.2

and high at pH 7.4, being
appropriate for drug release

at colon. Hydrogels were
biocompatible and increase

the efficacy of 5-FU.

[38]

2019 Bortezomib

MC3T3E1
(osteoblast) and

NIH-3T3
(fibroblast) cells

n.a. Alginate-conjugated
polydopamine

The release mechanism
followed non-Fickian

diffusion. FACS analysis
revealed cell apoptosis
defined by loss of cell

viability for colon
cancer cells.

[39]

2019 Prospidin

HeLa (cervical
adenocarcinoma)

and HeP-2 (human
hepatocellular liver

carcinoma) cells

Zajdel hepatoma
Mongrel white rats Dextran phosphate (DP)

At low pH, the swelling of
hydrogels is 4.6–12.3 times

lower than at pH 7.4.
Susceptible to degradation by
the simulated physiological
conditions. The amount of

drug release is dependent on
the pH of outer media and

decreases with the growth of
phosphoric group content in

DP hydrogels

[40]

2015 5-FU n.a. n.a.

N-N′-dimethylacrylamide
monomers polymerized in

presence of methacrylic acid
or 2-aminoethyl methacrylate

hydrochloride containing
ferro-nanoparticles

Drug release is always higher
in the presence of a magnetic
field and generally increases

with its intensity.

[41]

2017 DOX

HepG2 cells
(human

hepatocellular
liver carcinoma)

Sprague-Dawley rat N-carboxyethyl
chitosan + PEGDA

Exhibited in vitro
pH-dependent gel

degradation and doxorubicin
release. No hydrogel

diffusion after
subcutaneous injection.

[33]

2019 PTX

HepG2 (human
hepatocellular liver

carcinoma), H22
(murine hepatoma)

H22 subcutaneous
xenograft BALB/c

mice
Self-assembling octapeptides

In vitro controlled release of
PTX at pH 5.5 for 6 days.

In vivo hydrogel retention at
the tumor site. Increased

antitumor efficacy compared
to free PTX (reduced tumor
weight and volume), and

reduced toxicity
(low weight loss).

[42]

2017 DOX MDA-MB-231 cells
(breast cancer) n.a. DNA hairpin conjugated

with polyacrylamide

pH-induced separation of the
nucleic acid duplex units

causing DOX release at pH
5.0. Increase DOX cellular

uptake and efficacy.

[43]
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Table 2. Cont.

Date Drug In vitro model In vivo model Hydrogel formulation Highlights References

2019 DOX
HCT116 cells

(colorectal
adenocarcinoma)

Kunming Mice
Chitosan-grafted-

dihydrocaffeic
acid/oxidized pullulan

87% DOX release over 60 h at
pH 5.5 over 52% at pH 7.4.

In vitro enhancement of DOX
therapeutic efficacy. In vivo

adhesion in the injection site.

[44]

2019 5-FU and Rutin
MDA-MB-231 and

MCF-7 cells
(breast cancer)

n.a.
Zein, acrylic acid, N,

N-methylene bisacrylamide,
and ammonium persulphate

Improved release at pH 7.4
over pH 1.2. Improved

in vitro pharmacological
activity by apoptosis

induction by oxidative stress.

[45]

2020 Triaryl-(Z)-
olefin n.a.

Ehrlich
carcinoma cell
subcutaneous

xenograft Swiss
albino mice

Cholesterol and span 60
niosomes in chitosan and

glyceryl
monooleate-based hydrogels

Controlled release of drug
and improved

tumor regression
[46]

2020 DOX HeLa cells (cervical
adenocarcinoma) n.a. Zein nanoparticle

crosslinked pectin

Improved DOX cellular
internalization

and cytotoxicity
[47]

2020 PTX

A549 (lung cancer)
and HepG2 (human
hepatocellular liver

carcinoma) cells

n.a. Long-chain hexadecyl amine
modified nanocellulose

Improved release at pH < 6.8.
Improved PTX

internalization by cells and
therapeutic efficacy.

[48]

2020 DOX

HepG2 cells
(human

hepatocellular
liver carcinoma)

HepG2 xenograft
BALB/c nude
mouse model

4armPEG-benzaldehyde and
N-carboxyethyl chitosan

Degradation occurs at pH 5.6
which contributes for

controlled DOX release.
In vivo biocompatibility,

degradation over 5 days, and
improved tumor inhibition

[49]

2019 DOX HeLa cells (cervical
adenocarcinoma) n.a.

Carboxyethyl modified
chitosan and aldehyde

modified hyaluronic acid

Improved drug release at pH
< 6.8. Biocompatibility and

biodegradability. In vitro
pharmacological efficacy

[50]
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Figure 3. Schematic representation of photosensitive hydrogel. After exposure to light, the formula-
tion suffers a chemical and/or physical alteration including (A,B) photoclevage, (C) photoisomera-
tion, and (D) photo-thermal transition. In the case of photo-thermal transition, the increase in the
temperature promoted by the activation of photo-thermal agents could lead to a sol-to-gel or a gel-to-
sol transition, accordingly the nature of the thermo-responsive polymer. The red circles represent the
drugs loaded in the hydrogels. Created with BioRender.com (accessed on 15 January 2021).

As an example of photo-thermal hydrogels, black phosphorus nanosheets incorpo-
rated into an agarose hydrogel loaded with doxorubicin demonstrated to be a promising
platform for cancer treatment [55]. NIR irradiation promote heat production by phos-
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phorus nanosheets and gel-to-sol transition of the agarose hydrogel by hydrolysis that
triggers temporal and spatial doxorubicin release. The hydrogel showed to be biocompati-
ble in vitro in MDA-MB-231 breast cancer cells, A549 lung carcinoma cells, HeLa cervical
cancer cells, and B16 melanoma cells. In vivo experiments demonstrated that this system
is capable of accurately controlling the release of drugs and eradicate the tumor in contrast
to animals treated with free dox or the non-irradiated hydrogel. Agarose is approved by
FDA and black phosphorus degrades into nontoxic phosphate and phosphonate that could
be easily excreted through urine, which favors the clinical translation of the system [55].
Sodium selenite (Se)-directed crosslinked hydrogels based on hyaluronic acid-dopamine,
loaded with indocyanine green (ICG) as photo-thermal agent, were developed for local
therapy of breast cancer [56]. After NIR irradiation, ICG promote an increase in the tem-
perature superior to 7 ◦C, responsible for both in vitro and in vivo photo-thermal activity
against MDA-MB-231 breast cancer cells and in tumor-bearing BALB/c nude mice models,
respectively. Additionally, the system enjoyed from the combinational effect of ICG and
pro-oxidant effect of Se, resulting in a significant tumor inhibition without significant toxic
effects [56].

The use of photosensitizer compounds incorporated into hydrogels for anticancer
photodynamic therapy is also being proposed. For example, phthalocyanine zinc (ZnPc)
was used both as photo-initiator and photosensitizer in the formulation of a hybrid hydro-
gel containing PEGDA, PEG 400 and phosphotungstic acid [57]. When irradiated with NIR
laser light, ZnPC become excited forming a singlet oxygen (1O2), that promotes a strong
decrease on HeLa cells. Moreover, the hydrogel presents a good biocompatibility and
offers the possibility to be loaded with anticancer drugs for a combined and synergic ther-
apy [57]. More recently, similar results have been obtained with a PEGDA-based hydrogel
containing methylene blue sensitized mesoporous titanium (IV) oxide (TiO2) nanocrystals
prepared in situ via NIR photopolymerization [58]. TiO2 was used as photo-initiator and
photosensitizer while methylene blue works as photosensitive additive to improve the
effects of TiO2 [58].

Combinatory effects of photo-thermal activity and photodynamic therapy has also
been investigated. For example, a biocompatible agarose-based hydrogel that incorpo-
rates sodium humate (SH) as photothermal agent, chlorin e6 (Ce6) as photosensitizer,
and manganese oxide (MnO2) for the catalytic decomposition of H2O2 and modulation of
hypoxia at the tumor microenvironment, associated to treatment resistance [59]. Under NIR
irradiation, SH promote an increase in the temperature that besides the photothermal ac-
tivity, promote degradation of the agarose gel forming H2O2. This will be decomposed
into O2 which will convert into 1O2 by the released Ce6. In vivo studies in 4T1 BALB/c
mice bearing demonstrated a strong anticancer activity of the system with a significant
tumor regression (TGI of 93.8%), without causing toxicity to the animals. Accordingly,
this hydrogel should be considered as a promising platform for tumor microenvironment
modulation and cancer therapy [59].

4.3. Ionic Strength and Magnetic-Responsive Hydrogels

Besides temperature, pH and light, which are the most commonly used stimuli for
development of sensitive hydrogels, there are other parameters such as ionic strength
or magnetic field that can also modulate the physical and chemical attributes of stimuli-
responsive hydrogels.

Magnetic-sensitive hydrogels are generally composed by hydrogels incorporated with
iron oxide nanoparticles possessing paramagnetic properties (Figure 4). These vibrate
under exposure to a magnetic field and can dramatically increase local temperature pro-
moting a therapeutic efficacy by thermal-ablation mechanisms. Moreover, these systems
are generally associated with thermo-sensitive hydrogels in which temperature increase
triggers drug release, thus promoting a synergic efficacy of thermal and chemotherapeu-
tic cytotoxicity. As NIR, this strategy enjoys of spatial and temporal activity with low
invasiveness and deep tissue penetration [35].
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As an example, ferromagnetic vortex-domain iron oxide nanorings (FVIOs) were in-
corporated into chitosan-PEG-based hydrogel loaded with doxorubicin. Both in vitro and
in vivo studies demonstrated a synergic therapeutic efficacy of chemotherapeutic mecha-
nism of doxorubicin and thermal activity of FVIOs upon application of a magnetic field.
After tumor surgical removal and formulation administration was possible to observe al-
most complete inhibition of tumor growth 21 days post-surgery, showing the efficacy of the
system in reducing tumor recurrence [60]. Further, another example is a magnetic-sensitive
hydrogel composed by PEGylated Fe3O4 nanoparticles and α-cyclodextrin stabilized by
a PEGylated phospholipid encapsulated with paclitaxel and doxorubicin [61]. The rhe-
ological properties of the hydrogel allow to easily inject the hydrogel at the surgical site
after tumoral resection, which facilitates local delivery of its dual cargo due to magne-
tocaloric gel-to-sol transition under application of a magnetic field. In vivo experiments in
4T1-tumor bearing Balb/c mice demonstrated an improvement in the survival rate and
reduction in tumor recurrence of animals treated with the proposed hydrogel [61].

Ionic strength-sensitive hydrogels refer to hydrogels that suffer conformational changes
in response to cations such as K+, Na+, and Ca2+ (Figure 5). They are generally pro-
duced with ionizable and zwitterionic polymers such as alginate, deacetylated gellan
gum, carboxymethyl dextran, poly(acrylic acid), poly(itaconic acid), sulfobetaine and
carboxybetaine derivatives, polypeptides, among others [11,62]. Up to now, few ionic
strength-responsive hydrogels as platforms for cancer treatment have been proposed.
As an example, poly (L-glutamic acid-co-L-lysine)-based hydrogels loaded with doxoru-
bicin have shown an ionic strength sensitivity by an increase in the swelling ratio of the
hydrogel proportional to the increase of the ionic strength of the surrounding medium [63].
At high ionic strength, Cl− and Na+ shield the NH3+ and the COO− polypeptidic groups
preventing electrostatic interactions and promoting hydrogel swelling. The presented
formulation also presented pH and enzymatic sensitiveness [63].

4.4. Dual-Responsive Hydrogels

Dual-responsive hydrogels, namely thermo- and pH sensitive hydrogels have at-
tracted high attention in the biomedical field due to their wide range of possible applica-
tions and functionalities. In the case of cancer, it is of great interest a system able to be
easily injected that suffer a sol-to-gel transition in situ in response to body temperature and
promote drug release at specific tumoral pH. For instance, a dual thermo- and pH-sensitive
injectable hydrogel based on chitosan with poly(N-isopropylacrylamide-co-itaconic acid)
was developed for delivery of doxorubicin for breast cancer treatment [64]. Due to the
protonation of the amino groups of chitosan at acidic pH, doxorubicin was released more
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rapidly at the pH 5.5 than at pH 7.4. The in vitro cytotoxicity studies demonstrated cyto-
compatibility of the aforementioned hydrogels and the enhancement of the doxorubicin
activity against MCF-7 breast cancer cells [64]. Another formulation with similar proper-
ties was proposed based on a nano-hydrogel of lysine-modified poly(vinylcaprolactam)
loading doxorubicin [65]. Lysine was conjugated with poly(vinylcaprolactam) via re-
versible addition-fragmentation chain transfer (RAFT) polymerization while doxorubicin
was conjugated through Schiff-base reaction, responsible for the pH sensitiveness property.
The maximum release of doxorubicin for 72 h was observed at the simulated tumor microen-
vironment, namely 40 ◦C and pH of 5 [65]. A crosslinker-free thermo- and pH-responsive
hydrogel based on poly(ethylene glycol) methyl ether methacrylate and acrylic acid was
proposed for oral delivery of 5-fluoracil in colorectal cancer treatment [66]. The swelling
behavior of the proposed hydrogels shown to be highly dependent on the pH and temper-
ature, with higher swelling at low temperatures, thus retaining the drug at 37 ◦C, being the
release profile mainly dependent on the pH. Contrary to what happens at pH 1.2 and 4,
the hydrogel swells due to the electrostatic repulsion between the ionized carboxyl groups
at pH > 6 and release the drug (<20% at pH 1.2 and ~50% at pH 7.4 for 37 ◦C). This avoids
drug release at the gastric environment and promotes drug availability in the intestinal
lumen. Moreover, the developed hydrogel shown to be biocompatible and promote a
controlled release of 5-fluouracil presenting pharmacological activity against HepG2 tumor
cells [66].
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More recently, it was proposed a system for co-delivery of granzyme B (GrB) and
docetaxel (DOC) loaded in pH-sensitive mini micelles incorporated in a thermo-sensitive
hydrogel [67]. Micelles were composed by poly (γ-glutamic acid)-poly(L-histidine) (PGA-
PLH) and the hydrogel composed by poly (ethylene glycol)-poly(γ-ethyl-L-glutamate)
diblock copolymer (mPEG-b-PELG). After release from the hydrogel by proteinase degra-
dation, micelles shown to be able to penetrate in the tumor and release the cargo at pH 5.5.
Moreover, it was demonstrated that both drugs were able to maintain activity after lyso-
somal escape and promote a synergic antitumor efficacy as improve the tumor inhibition
capacity in B16 tumor-bearing female C57BL/6 mice model [67].
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Even most of the developed dual-responsive hydrogels are pH and thermo-sensitive,
other types of dual responsiveness have been proposed. As an example, a novel formulation
of a photo and thermo-responsive multicompartment hydrogel for cancer treatment [68].
The formulation is based on the triblock copolymer poly(N-isopropylacrylamide)-b-poly(4-
acryloylmorpholine)-b-poly(2-((((2-nitrobenzyl)oxy)carbonyl)amino)ethyl methacrylate)
(PNBOC-b-PNAM-b-PNIPAM), which forms a PNBOC-cored micelles and consequently
hydrogels after being exposed to high concentrations and temperatures. Because of both
hydrophilic and hydrophobic domains, it was loaded with gemcitabine and doxorubicin.
After administration, the hydrogel suffers a sol-to-gel transition retaining both drugs at the
administration site. A significant drug release is obtained when UV irradiation is applied
at the desired site of action due to sol-to-gel transition as a consequence of crosslinking of
micellar cores and hydrophobic-to-hydrophilic transition [68].

5. Conclusions

The design of new strategies to obtain new and effective local cancer treatments,
to improve the therapeutic outcome and to reduce the systemic toxicity associated with the
conventional drugs, are of utmost importance. Hydrogels bring the possibility to create
an in situ sustained and controlled delivery system of anticancer drugs at the tumoral site.
In particular, stimuli-responsive hydrogels open a wide range of new options to specifically
target the tumor site. Drug release at tumor site can be modulated by taking advantage
of the specific physiologic characteristics in the tumor microenvironment, namely the
differential extracellular and intracellular pH values. Moreover, the application of light,
magnetic field, or even alterations in the ionic strength, can regulate the rate and location
of drug release. Despite not being widely explored, these are promising approaches
to the future of local cancer therapy, especially in the case of non-surgically resectable
tumors. It is expected that in a near future new smart materials and new formulations
designed and validated with this propose will hopefully enroll in clinical trials and reach
the clinical practice.
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