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Simple Summary: Raman Spectroscopy (RS) is an optical technique able to determine biochemical
differences within a biological tissue, yet there are few reports of its application in fresh tissue.
This potential could be relevant to detect glioma infiltration and to guide surgery to achieve a total
resection. We deployed RS with machine learning algorithms in a surgical scenario to probe the
diagnostic accuracy ex-vivo in discriminating between normal-appearing and fresh neoplastic tissue
in patients undergoing glioma resection. Analyzing 3450 spectra from 63 samples, we identified 19
novel RS shifts. These 19 novel shifts of known biological relevance were included in the analytical
workflow, leading to 83% and 82% accuracy and precision, respectively, in discriminating between
normal-appearing and neoplastic tissue. This study further supported the translational development
of real-time tissue analysis with RS in oncological brain surgery and yielded novel findings in the
biochemical features of the brain tissue affected by glioma.

Abstract: Identifying tumor cells infiltrating normal-appearing brain tissue is critical to achieve a
total glioma resection. Raman spectroscopy (RS) is an optical technique with potential for real-time
glioma detection. Most RS reports are based on formalin-fixed or frozen samples, with only a few
studies deployed on fresh untreated tissue. We aimed to probe RS on untreated brain biopsies
exploring novel Raman bands useful in distinguishing glioma and normal brain tissue. Sixty-three
fresh tissue biopsies were analyzed within few minutes after resection. A total of 3450 spectra were
collected, with 1377 labelled as Healthy and 2073 as Tumor. Machine learning methods were used to
classify spectra compared to the histo-pathological standard. The algorithms extracted information
from 60 different Raman peaks identified as the most representative among 135 peaks screened. We
were able to distinguish between tumor and healthy brain tissue with accuracy and precision of 83%
and 82%, respectively. We identified 19 new Raman shifts with known biological significance. Raman
spectroscopy was effective and accurate in discriminating glioma tissue from healthy brain ex-vivo
in fresh samples. This study added new spectroscopic data that can contribute to further develop
Raman Spectroscopy as an intraoperative tool for in-vivo glioma detection.
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1. Introduction

Gliomas have an infiltrative growth pattern. A key challenge is to discriminate tumor
and healthy tissue during surgery, and to identify neoplastic cells infiltrating beyond
evident pathological borders [1]. Identifying the residual tumor burden is crucial as the
total resection represents a favorable prognostic factor [2,3]. Unlike extracranial oncological
surgery procedures, the intra-axial masses cannot be removed by applying large safety
margins based only on visible landmarks, due to the proximity to eloquent structures.
Damaging functional tissue could cause neurological deficits with a negative impact on
the subject [4]. The definition itself of tumor border is also demanding as glioma cells
are known to infiltrate normal-appearing white matter and be undetectable with current
diagnostic methods in-vivo [5]. Imaging and fluorescence-guidance are currently used to
delineate the boundaries of the resection. However, these methods have limited sensitivity,
specificity and spatial resolution in vivo [6].

Raman spectroscopy (RS), and other optical techniques such as Fourier Transform
Infrared Spectroscopy (FTIR) [7,8], emerged as a tool to study the biochemical differences
between tumor and healthy tissue. The rapid and non-destructive features of RS made
it an engaging method to detect tumor cells intraoperatively. A quick, unbiased brain
tumor detection technique during glioma resection is of paramount relevance to achieve
additional quantitative diagnostic intra-operative information.

Previous studies investigated the use of the RS to discriminate between human and
animal brain tissue [8–13] in vitro and in-vivo [8] and tumor and healthy tissue on sections
obtained from preprocessed tissue blocks [8]. However, tissue processing (de-waxing,
washing, and clearing with solvents) can affect tumors’ biochemical phenotype by altering
different cellular lipid constituents [14]. Changes following a chemical treatment can alter
the spectral signatures and reduce the spectral differences between normal and malignant
tissue [15,16]. Only a few studies are available with data from fresh tissue [5,17,18] or
in-vivo [11]. Most studies are performed on frozen or Formalin-Fixed Paraffin Preserved
(FFPP) samples with known artefacts [19]. The use of fresh tissue obtained during surgery
and analyzed right after excision with engineering tools [18] for spectra analysis was thus
advocated for improving Raman measurements and ease clinical translation.

We aimed to evaluate RS’s ability to distinguish unaffected tissue from glioma ex-vivo
on fresh tissue samples from biopsies of supratentorial glioma and to explore whether
additional Raman peaks could be detected onto untreated brain tissue.

2. Materials and Methods
2.1. Experimental Design

This study deployed single-point Raman spectroscopy on 63 biopsies from adult
subjects undergoing surgery for WHO grade II-IV gliomas. The number of spectra and his-
tological groups are reported in (Table 1). The ethics committee approved the study (Study
n. 595) performed according to the 1964 Declaration of Helsinki and later amendments.
Safe supra-marginal resection was pursued as previously described [20] with imaging and
neurophysiological guidance [6,21].
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Table 1. Numbers of specimens and histological diagnosis. n◦: numbers.

n◦ of Samples n◦ of Spectra

Glioma tissue 38 2073

Grade II
Astrocytoma, WHO grade II (IDH-mutant) 0 (0) -

Oligodendroglioma, WHO grade II (IDH-mutant) 4 (10.5) 220

Grade III
Astrocytoma, WHO grade III (IDH-mutant) 5 (13.2) 259

Oligodendroglioma, WHO grade III (IDH-mutant) 12 (31.6) 642

Grade IV
Glioblastoma, WHO grade IV (IDH wild-type) 14 (36.8) 773

Glioblastoma, WHO grade IV (IDH mutant) 3 (7.9) 179

Normal Tissue 25 1377

Total 63 3450

2.2. Sample Preparation and Analysis

The bulk of the tumor tissue was sent for pathological and molecular analysis, accord-
ing to the WHO classification [22]. The neurosurgeon collected different samples (tumor or
healthy tissue) with image-guidance (Figure 1).
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Figure 1. (a,b): Preoperative MRI (axial and sagittal view) showing tumor consistent with Anaplastic
Oligodendroglioma IDH-1 mutant, 1p/19q co-deleted grade III (WHO 2016). The white spots show
the intraoperative site of tissue biopsy registered with Neuronavigation system and labelled as
tumor. (c,d): Preoperative MRI (axial and sagittal view) showing the intraoperative location of tissue
collection that was labelled as healthy. The specimen was collected (white spot) and analyzed during
the surgical approach to a peri-insular ganglioglioma (Grade I, WHO 2016).
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Tissue was defined as healthy if outside the pathological margins, as depicted by
preoperative MR available during surgery on a neuronavigation platform (Curve, Brainlab,
Munich, Germany). In particular, to collect healthy tissue, the surgeon targeted subcortical
sites along the approach for deep-seated lesions, before encountering pathological areas, or
at the boundaries of supratotal resection, as depicted by the neuronavigation. Conversely,
tumor tissue was collected inside the lesion’s pathological margins, avoiding, when present,
necrotic areas, as defined by the neuronavigation.

A sample section deemed surplus to diagnostic requirements was provided immedi-
ately after surgical resection to Raman analyst, washed with isotonic NaCl solution and
placed under a CaF2 window for the analysis. At the end of Raman spectral extraction,
samples were sent to a board-certified pathologist for histological and molecular evaluation.
The board-certified pathologist was blinded to the RS findings and assessed the nature of
the provided sample as either healthy or neoplastic. Each sample was marked as “Tumor”
if diagnostic for the presence of glioma cells or “Healthy” if containing no tumor cells.

2.3. Raman Spectroscopic Acquisition

A benchtop RA800 Renishaw spectrometer system (Wotton-under-edge, Gloucester-
shire, UK) collected the Raman spectra. The system runs a Renishaw’s WiRE 4.0 software
and is equipped with a near-infrared (NIR) laser (785 nm) with a maximum power of
500 mW. The initial spectral region of interest was 90–1.800 cm−1. We used an exposure
time ranging from 0.5 to 2.5 s per spectrum. A range from 1 to 4 spectral accumulations for
each acquisition was obtained. The power of the laser was kept at 100% for all the mea-
surements. Spectra were obtained from randomly located points across the sample. The
line-focus laser spreads the laser intensity across a line to minimize potential photodamage
or fluorescence induction. An automatic performance quality check was performed on sili-
con and polystyrene internal standards for each measurement to reduce sample-to-sample
variation. During the spectral acquisitions, we used the most optimal temperature and
humidity conditions and the experimental parameters, such as exposure time, laser power
and numbers of accumulations were iteratively modified for each point or area of interest,
to optimize the signal and the spectra quality.

For each sample, we sought the maximum number of spectra with a higher signal-to-
noise ratio with a punctual acquisition mode. We accomplished the analysis of each sample
within 60 min from resection to minimize biological and chemical changing and to best
simulate an in-vivo analysis [23].

2.4. Data Processing

Pre-preprocessing to remove signal’s baseline drifts [24], cosmic rays and background
artefacts [25] was performed before model classification. The data preprocessing (Mat-
lab 2019b Mathworks, USA) followed these steps: (1) truncation of the spectral range to
400–1700 cm−1; (2) removal of saturated signal from the dataset using median filtering;
(3) selection of spectra with Signal-to-Noise (S2N) ratio ≥3.5 around the phenylalanine
1004 cm−1 peak (4) background signal subtraction via Vancouver Raman Algorithm (VRA)
method [26]; (5) outlier removal using interquartile range method and (6) signals normal-
ization via root-mean-square (RMS). The resulting number of spectra for the classification
were respectively 752 for healthy samples and 665 for tumors samples. (Figure 2) reported
the normalized mean spectra with standard deviation for each group.
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new Raman peaks identified.

The wavenumbers of all visible Raman peaks and slopes were identified on the mean
Raman plots and compared to those previously reported in the literature, if present, to
enhance the reliability of the current findings. We also recorded new prominent peaks at
wavenumbers that were not present in the previous study on healthy vs. tumor tissue. We
identified 135 Raman frequencies, and we extracted the intensity for each group as input
features for the classification algorithms. The algorithms further refined the selection by
identifying the minimum number of RS wavenumbers allowing to discriminate between
the two groups with satisfying performance thresholds.

Two algorithms developed using Scikit-learn (http://scikit-learn.org, accessed on
26 October 2020) were used to assess classification performance with Leave-one-patient-
out cross-validation: Random Forest (RF) and Gradient boosting trees (GB). A threshold
between classification performance and robustness was achieved via hyperparameter
tuning for each algorithm, along with a statistical feature selection (SciKitLearn FClassif—
ANOVA test—top 60 features). An initial hyper-parameters optimization was performed
for each classifier in a LOPO cross-validation. Each classifier was validated using a grid-
search and 5-fold cross-validation. Parameters for the RF were set: (6,8,10,12) for the
maximum tree depth, (50,100,150,200,250,300,350,400,450) for the maximum number of
trees. Grid-search parameters for GB were set: estimators (100,150,200), max depth (5,8,10).
As results of the optimization, optimal global parameters for classifiers were: RF numbers
of trees: 150, max depth 5; while for GB were: numbers of estimators: 200 and max depth 5,
learning rate at 0.1.

2.5. Statistical Analysis

Statistical analysis was performed among a subset of the top 60 Raman shifts provided
by the classification algorithm to define potential new Raman shift useful to evaluate
glioma tumoral tissue vs. healthy tissue. A Mann-Whitney test (two-tailed, α = 0.05) was
performed, after checking normality using the Shapiro–Wilk test. (software SPSS statistics
24.0; IBM SPSS Inc., Chicago, IL, USA).

3. Results

We collected 3450 spectra from 63 different specimens: 1377 labelled as healthy and
2073 labelled as tumor (Table 1).

http://scikit-learn.org
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The results are reported in three sections. The mean spectra of the two groups were
initially screened (i) to detect significant Raman peaks with possible biological relevance.
The two classification algorithms (GB and RF) employed the intensity of the peaks identified
at each shift as discrimination features. These algorithms were then (ii) tested for their
discriminative power between neoplastic and normal tissue according to these features.
Diagnostic accuracy, sensitivity, and specificity were computed. Finally, the algorithms
identified 60 Raman peaks with the best discrimination power between the two groups.
These 60 spectra were screened (iii) to analyze potential new peaks as compared to the
published literature [5,19,27–35].

3.1. Classification Features and Algorithms

The algorithm analyzed the 135 Raman Peaks identified at the step (i), and the cross-
validation loop identified 60 Peaks with the highest statistical significance and able to
provide the highest performance in the two groups distinction. (Table 2) reported Raman
Peaks with their biological assignments.

Table 2. Tentative assignment of the main Raman shifts according to previous studies [5,18,26–37].

Raman Shift (s−1) Proposed Assignments

431 * Cholesterol/cholesterol ester
450 Ring torsion of phenyl
457 Proteins and cholesterol
460 Undefined
474 Glycogen and polysaccharides
478 Polysaccharides
495 Undefined

498 * Nucleic acids/nucleotides
502 Undefined
517 Undefined

524 * S-S disulfide stretching in proteins
540 n(S-S) trans-gauche-trans(amino acid cysteine)

743 * Heme (blood)
754 Symmetric breathing of tryptophan

776 * Phosphatidylinositol
780 * Uracil based ring breathing mode
808 Undefined

817 * C-C stretching/collagen assignment
825 * Phosphodiester
826 Tyr, proline
837 Undefined
850 Glycogen (high-grade tumors)
853 Glycogen (high-grade tumors)

875 * Choline and phospholipids
880 Tryptophan, d(ring)

881 Hydroxyproline and tryptophan (collagen); sterol ring stretch of cholesterol;
asymmetric stretching of choline

883 $ (CH2) (protein assignment)
893/4 * Phosphodiester (nucleic acids)

903 Undefined
916 Undefined
927 Undefined
928 Amino acids proline & valine (protein band)

933 * Proline, hydroxyproline
934 C-C backbone (collagen assignment)

941 * Glycogen

950 single bond stretching vibrations for the amino acids proline and valine
and polysaccharides

954 Undefined
958 Stretching vibrations of PO4 in hydroxyapatite
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Table 2. Cont.

Raman Shift (s−1) Proposed Assignments

963 * Protein assignments
968 * Lipids

975 * and 977 Tricalcium phosphate Ca3(PO4) calcification seen in schwannoma and necrosis
1003 Ring breathing mode of phenylalanine of protein
1030 Phenylalanine (protein assignment) and collagen

1031 * Phenylalanine (protein assignment)
1035 * Collagen
1036 Undefined
1122 Glycogen
1337 Aliphatic amino acids, including tryptophan, nucleic acids. Glycogen in necrosis
1342 Aliphatic amino acids, including tryptophan, nucleic acids. Glycogen
1578 C-C stretch of protein, nucleic acids
1581 C-C stretch of protein, nucleic acids

1583 * C-C stretch of protein, phenylalanine, nucleic acids
1603 * Phenylalanine & tyrosine/Oxygenated haemoglobin
1603 Cytosine, tyrosine, phenylalanine
1614 Aromatic amino acids (protein); Tyrosine e proline
1616 C-C stretching mode of tyrosine & tryptophan
1657 Amide I (a-helix) (protein)
1659 Amide I (a-helix)
1660 Amide I band

Asterisk (*) marks new Raman peaks used for the first time for discrimination between glioma and healthy tissue
in fresh samples.

The GB method displayed better performance in distinguishing neoplastic from the
normal tissue, with an accuracy of 83%, precision of 82%, recall 82% and F1_score 82%, com-
puted based on tumor detection outcomes of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). Conversely, The RF method displayed accuracy of
80%, precision of 79%, recall 80% and F1_score 80%.

Receiver Operating Characteristic (ROC) graphs were used to select models for their
performance with respect to the False Positive Rate (FPR) and True positive Rate (TPR),
and to compute the Area Under the Curve (AUC) to characterize the performance of
the classification model (Figure 3). The ROC graphs showed that GB was the best to
discriminate normal from tumor samples (all grades and types of glioma), with AUC of
0.82 respect to 0.80 of RF.
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Table 3 showed a summary of the performance of the classification models.

Table 3. Results of classification models for normal vs. glioma tissue biopsies using Raman Spec-
troscopy.

Performance Metrics Random Forest Gradient Boosting

Accuracy 0.80 0.83
Precision 0.79 0.82

Recall 0.80 0.82
F1-score 0.80 0.82

3.2. Spectral Analysis

The spectral analysis from the Raman active functional groups of nucleic acids, pro-
teins and lipids allowed a thorough characterization of the neoplastic and normal brain
biopsies. The average Raman spectra showed differences in the molecular signature be-
tween neoplastic and normal specimens (Figure 2). These differences are consistent with
previous results from ex-vivo tissue samples [19,27,28,31–36].

The band 1003 cm−1 reflects the phenylalanine content of the sample as well as the
band at 1030 and 1031 cm−1. In both groups, we easily recognize very intense bands
around 1300, 1440 and a less intense peak around 1660 cm−1. These bands are related
to protein and lipid. Other bands are visible between 1000 and 1100 cm−1, such as band
at 1064 cm−1 (phospholipids and cholesterol stronger in normal than tumoral tissue),
at 1080–1090 cm−1 (nucleic acids) and at 1126–1133 cm−1 (phospholipids (side-chains)
and cholesterol). At lower wavenumbers the cluster of peaks between 419 cm−1 and
740 cm−1 showed contribution from cholesterol, cholesterol ester (427–430 cm−1, 457 cm−1,
545 cm−1) and choline (719 cm−1). Tryptophan contribution at 563 cm−1 is usually higher
in glioblastoma and oligodendroglioma [37]. The 720:701 cm−1 intensity ratio of the mean
spectra is increased in Tumor group (0.93 vs. 0.88) and probably reflecting the contribution
of glioblastoma biopsies of the samples [32]. Raman bands related to heme are visible
at 743 cm−1 while in 830, 850 cm−1 and 880 cm−1 are visible peaks respectively related
to DNA, glycogen and tyrosine that are usually higher in high-grade tumors than in
normal tissue.

The regions around 1300 cm−1 (p < 0.001), 1439–1441, and 1740 cm−1 (p < 0.001) are
reduced in Tumor group and are related to fatty acids, CH2/CH3 deformation of lipids side
chains, proteins, amino acids, cholesterol/cholesterol ester [30] usually present in normal
with matter and ester group (1740 cm−1). The band at 1337 cm−1 is less intense in the
Healthy specimens (p < 0.001) and is related to aliphatic amino acids, including tryptophan,
nucleic acids and glycogen found in necrosis. The bands at 1003 cm−1 (p < 0.001) and
1031 cm−1 (p < 0.001) significantly different in phenylalanine in the two groups that are
usually higher in glioma than normal tissue and astrocyte [30,38]. An increased DNA con-
tent related to band intensities at 498 cm−1 (p < 0.001), 830 cm−1 (p < 0.001) and 1087 cm−1

(p < 0.001) was also found in the Tumor group. A reduced lipid/cholesterol content on
bands at 419, 427–430, 615, 968 cm−1 (all p < 0.001) is seen in the Healthy group. Intensities
of bands related to proteins were significantly different (826, 880, 881, 883, 927, 934, 950, 963,
1035, 1583 1603–1616 cm−1 and 1660 cm−1, p < 0.001) between the two groups underling a
changed protein profile related to tumoral proliferation.

3.3. Novel Raman Shifts

Among the top 60 Raman shifts features provided by the classification algorithm of the
current study as highly significant in the distinction between normal and neoplastic tissues,
28 were previously described [5,8,11,17–19,33,39–47], corresponding at the following shifts:
457, 540, 754, 826, 850, 853, 880, 881, 883, 903, 927, 928, 934, 950, 958, 977, 1003, 1030,
1122, 1337, 1578, 1581, 1604, 1614, 1616, 1657, 1659, 1660 cm−1 (Table 2). We thus focused
on the new 19 Raman Shifts with documented biological significance. These 19 bands
were not used before in discriminating between glioma and healthy tissue. The intensity
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of Raman shift at each band resulted different between the two classes of samples, i.e.,
between tumor and normal tissues, underlining their biological difference [29,30]. The
analysis confirmed statistically significant differences (p < 0.001) between normal and
neoplastic tissue biopsies in the new 19 Raman shifts related to proteins (524, 933, 963,
1031, 1035, 1583, 1603 cm−1), nucleic acids (498, 780, 825, and 894 cm−1), lipids (431, 776,
875, 968 cm−1), collagen (817 cm−1), glycogen (941 cm−1), heme content (743 cm−1) and
calcification (975 cm−1) (Figure 4).
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Figure 4. Comparison of the band intensities of Healthy (blue) and Tumor (red) biopsies grouped for biological significance.
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indicated with a black bar. Mann–Whitney test was calculated for all bands showed (p < 0.001). (A) bands related to protein.
(B) bands related to lipids. (C) Bands related to nucleic acids.

4. Discussion

This study demonstrated that a benchtop Raman Spectroscopy machine could dis-
tinguish between normal and neoplastic tissue in fresh tissue samples ex-vivo with good
accuracy, sensitivity, and specificity when paired with supervised machine learning tech-
niques. These findings added new evidence to preliminary results provided by the few
available studies [5,18,42]. The study also identified 19 bands that had not been previously
described that were different between pathological and normal tissue. About the two
machine learning classification models, the GB had a better performance in classifying the
tissue samples.

The balance between the patient’s functional integrity and the extent of tumor resection
is fundamental: non-invasive tools providing rapid tissue assessment are thus advocated.
Surgery is one of the most important prognostic factors in treatment as evidences that
a more significant surgical safe resection leads to improved outcome are continuously
emerging [20]. These goals cannot always be achieved due to the infiltrating behavior
of gliomas. The challenge of contemporary neuro-oncological surgery is also to find the
proper balance between tumor resection and the patient’s functional integrity [20] and to
detect infiltrating neoplastic cells beyond pathological margins; an intra-operative tumor
detecting technology can thus be strategic to enhance surgery, especially at the limit of
resection where tumor infiltration can still be present but a level lower than the tumor core
and the detection threshold of available methods. The decision regarding a further resection
is to be critically balanced with an increased risk of new-onset neurological morbidity, that
is more likely just at this limit, where surgery is at closer proximity to eloquent structures.
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4.1. Raman Spectroscopy with Fresh Tissue Samples in an Ex-Vivo Scenario

The Raman system was next to the operating room, and the spectral measurements
were acquired within 60 min from multiple regions of the fresh tissue immediately after
surgical resection. The acquisition time was typically on the order of seconds for a single
spectrum. No samples processing or manipulation was performed before optical analysis.
In-vivo tissue discrimination between healthy and tumoral tissue needs data from fresh
samples that can make Raman analysis more precise and capable to characterize the tissue
even in the presence of biological contaminants and with a low number of total spectra
acquired, to keep analytical time at minimum and be compatible with a regular surgical
workflow. During surgery time is limited for spectral acquisition: an analytical algorithm
able to extract as much information as possible from Raman spectra with reliable accuracy
can thus improve the detection process. This study is among the few [5,18,42] available
where untreated and unfrozen tissue is analyzed to best approximate an intra-operative
scenario. The data from cryosection and FFPP tissue blocks can contain different biological
artefact [19,48]. The presence of freeze artefact in samples can low the discrimination power,
hampering an accurate analysis and changing the molecular structure of the biopsies [19].
Yet, frozen sections are currently more available and relatively rapid, but they can also be
hampered by the compulsory availability of neuropathologic expertise. If robust, the RS
herein reported has the potential to be automated and deployed directly by brain surgeons.

This study, consistently with previous results [49], demonstrated that Raman spec-
troscopy could detect changes in the chemical composition and molecular structure between
pathological and healthy fresh tissue. The spectral characteristics of tumoral and healthy
tissue properly matched with those established on the topic [49]. Machine learning algorithms
allowed to find 60 best representative Raman shifts among over 135 bands analyzed.

4.2. Characterization of Raman Shifts

Out of 60 bands, 28 had already been previously described as different between
healthy and tumor samples [5,8,11,17–19,33,39–47]. In particular, distribution in relative
intensity of these bands was related to well-known differences in the biology and structural
composition of tumoral and brain tissue such as DNA Amide I, protein and calcification that
can be seen in the necrotic tumor core. Among these 60 top characterizing Raman bands,
new shifts related to proteins (524, 933, 963, 1031, 1035, 1583, 1603 cm−1), nucleic acids (498,
780, 825 cm−1, and 894 cm−1), lipids (431, 776, 875, 968 cm−1), collagen (817 cm−1) and
calcification within the samples (975 cm−1) were identified and characterized as different
between healthy and glioma biopsies. Only once peaks at 498, 875, 934 cm−1 and 1031 cm−1

were previously reported [31], yet from the analysis of 6 frozen glioma samples and with
no comparison with healthy tissue. The biological importance of these bands in gliomas
samples is therefore strengthened by the findings of the current study. In the future,
authors could include these 19 Raman shifts that are all related to well-known biological
compounds with coherent biological differences between healthy and neoplastic tissue
to improve the accuracy of Raman classification methods in untreated tissue and in an
in-vivo scenario.

4.3. Diagnostic Performance of Machine Learning Classification Models

The RF and GB displayed an overall good performance and allowed to distinguish
tumor from the normal brain with an accuracy respectively of 80% and 83%. This perfor-
mance matched that reported in previous works [13,41], ranging from 85% to about 99%.
However, it resulted lower to studies done in a similar ex- and in-vivo setting with un-
treated tissues to discriminate between tumor and normal tissue [5,11,18]. The performance
is also lower than that obtained from datasets on frozen and FFFP section, where, however,
a longer preparation step can make a potential intra-operative application less likely and
alter the biochemical properties of the sample. Analyzing the distinct pre-analytical and
analytical phases of our workflow, we collected evidence leading to arguing that well-
controlled acquisition setting ex- and in-vivo and the tissue conservative status are an
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essential preprocessing step to grant optimal signal acquisition and, thus, final analytical
output. The differences identified by the employed algorithms between the normal and the
neoplastic tissues resulted consistent with previous findings, as for what machine learning
as a separate step is concerned. The latter argument contributes to increasing the likelihood
that this technique and workflow can be effectively reproduced.

4.4. Study Limitations

The time requested for analysis is higher than that previously described [5]. However,
a learning effect was observed during the study, with lower analytical time with later
samples. Data regarding diagnostic power in discriminating relevant molecular features
are lacking [50] and should also be addressed to probe the diagnostic accuracy in this
relevant issue. The limited number of cases also hamper a broader analysis of the data.
However, given the few clinical series currently reported, even such a small clinical cohort
can still represent a useful contribution to the field. It should also be remarked that
no specific marker exists in IDH-wild type gliomas that absolutely rule out a single-cell
infiltration; the definition of normal tissue should be deployed accordingly. Although
developed in a real surgical scenario, this study was not powered and designed to assess
how RS can impact the surgical practice itself and whether the RS can actually modify
the surgical behavior, such as yielding to broader resection, a better outcome with lower
morbidity and improved detection of neoplastic infiltration, for instance during recurrent
disease after previous multimodal treatment or with non-enhancing gliomas, that show no
intra-operative fluorescence [51].

We aimed at providing preliminary technical and clinical advances on dealing with
untreated tissue, to explore whether this translational study can lead to further develop-
ment of an intra-operative technology that could be considered safe, accurate and reliable
to be ultimately deployed in-vivo. Future in-vivo studies should address these issues,
evaluating the impact on surgical resection and outcome, upon findings provided by this
and similar studies [5].

5. Conclusions

RS reliably discriminated glioma tumor and normal tissue on fresh tissue. Nineteen
new Raman peaks useful to discriminate between glioma and healthy tissue were identified.
The analysis of these new bands can support further development of real-time tissue
analysis, increasing the accuracy and efficiency in a neurosurgical scenario. This study
added a robust contribution to the application of this technology to oncological brain
surgery. A refined investigation of the biochemical correspondences between the Raman
results and the molecular biology of the lesion could provide insights into gliomagenesis
and infiltrative behavior.
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