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Simple Summary: The atypical chemokine receptor ACKR2 plays an important role in the tumour
microenvironment. It has long been considered as a scavenger of inflammatory chemokines ex-
clusively from the CC family. In this study, we identified the CXC chemokine CXCL10 as a new
strong agonist ligand for ACKR2. CXCL10 is known to drive the infiltration of immune cells into
the tumour bed and was previously reported to bind to CXCR3 only. We demonstrated that ACKR2
acts as a scavenger reducing the availability of CXCL10 for CXCR3. Our study sheds new light on
the complexity of the chemokine network and the potential role of CXCL10 regulation by ACKR2 in
tumour immunology.

Abstract: Atypical chemokine receptors (ACKRs) are important regulators of chemokine functions.
Among them, the atypical chemokine receptor ACKR2 (also known as D6) has long been considered
as a scavenger of inflammatory chemokines exclusively from the CC family. In this study, by using
highly sensitive β-arrestin recruitment assays based on NanoBiT and NanoBRET technologies, we
identified the inflammatory CXC chemokine CXCL10 as a new strong agonist ligand for ACKR2.
CXCL10 is known to play an important role in the infiltration of immune cells into the tumour
bed and was previously reported to bind to CXCR3 only. We demonstrated that ACKR2 is able to
internalize and reduce the availability of CXCL10 in the extracellular space. Moreover, we found
that, in contrast to CC chemokines, CXCL10 activity towards ACKR2 was drastically reduced by
the dipeptidyl peptidase 4 (DPP4 or CD26) N-terminal processing, pointing to a different receptor
binding pocket occupancy by CC and CXC chemokines. Overall, our study sheds new light on
the complexity of the chemokine network and the potential role of CXCL10 regulation by ACKR2
in many physiological and pathological processes, including tumour immunology. Our data also
testify that systematic reassessment of chemokine-receptor pairing is critically needed as important
interactions may remain unexplored.

Cancers 2021, 13, 1054. https://doi.org/10.3390/cancers13051054 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4768-6743
https://orcid.org/0000-0002-9763-0943
https://orcid.org/0000-0003-0602-9229
https://orcid.org/0000-0001-8456-4206
https://orcid.org/0000-0003-0157-2257
https://orcid.org/0000-0002-5659-8377
https://doi.org/10.3390/cancers13051054
https://doi.org/10.3390/cancers13051054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13051054
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/5/1054?type=check_update&version=2


Cancers 2021, 13, 1054 2 of 13

Keywords: D6; ACKR2; CXCL10; IP-10; scavenger; ACKR3; CXCR3; CXCL12; CXCL2; CD26; DPP4;
NanoBiT; NanoBRET

1. Introduction

Chemokines are small (8–14 kDa) soluble cytokines that guide directional cell migra-
tion and orchestrate many important processes, including leukocyte recruitment during
immunosurveillance. They are also involved in numerous inflammatory diseases and the
development and spread of many cancers. Based on the presence of specific cysteine motifs
in their N termini, chemokines are divided into four classes: CC, CXC, XC and CX3C. Their
receptors belong to the G protein-coupled receptor (GPCR) family and are accordingly
classified as CCR, CXCR, XCR and CX3CR, depending on the chemokine class they bind.
Over the past years, a subfamily of four chemokine receptors has emerged as important
regulators of chemokine functions. These receptors are termed atypical chemokine recep-
tors (ACKR1-4) due to their inability to trigger a G protein-dependent signalling or directly
induce cell migration in response to chemokine binding [1,2]. Nevertheless, ACKRs do
play an important role within the chemokine-receptor network by shaping the gradient
of chemokines, thereby regulating their effect on cells expressing their respective classical
chemokine receptors. Most ACKRs have the ability to constitutively cycle between the cell
membrane and the intracellular compartments, internalizing and directing for degradation
the chemokines that they bind [1,3–5]. Although this activity was previously considered to
mainly rely on β-arrestins, recent studies showed that alternative mechanisms can drive
chemokine scavenging by ACKRs [6–11].

ACKR2 (formerly D6 or CCBP2) has been long reported to bind inflammatory chem-
okines exclusively from the CC family. ACKR2 main ligands include CCL2-8, CCL11-13,
CCL17 and CCL22, which are agonists of the classical receptors CCR1-5 [12–15]. By scav-
enging this large spectrum of inflammatory chemokines, ACKR2 drives the resolution
phase of inflammation and prevents exacerbated immune responses [16–21]. ACKR2 is
expressed on lymphatic endothelial cells, epithelial cells, trophoblasts in placenta and
some subsets of leukocytes, including alveolar macrophages and innate-like B cells [22–24].
Owing to its anti-inflammatory effect, ACKR2-deficient mice show an increased number
of circulating inflammatory monocytes [25] and neutrophils [26,27], as well as defects
in lymphatic vessel density and function [28]. ACKR2 was also shown as an important
regulator of chemokines in inflammatory and autoimmune diseases, notably in psoria-
sis [18,29–31]. A scavenging-independent activity of ACKR2 has also been reported in
apoptotic neutrophils, where ACKR2 was proposed to present chemokines to macrophages
and promote inflammation resolution by shifting their phenotype [32,33].

Importantly, ACKR2 plays diverse and complex roles in tumour biology from ini-
tiation to metastasis [27,34,35]. ACKR2-deficient mice were shown to be more prone to
tumour development but display increased tumour natural killer (NK) cell infiltration and
circulating neutrophils, while opposing effects were reported regarding ACKR2 involve-
ment in tumour dissemination [27,34,36]. Besides CC inflammatory chemokines, several
CXC chemokines play important roles in inflammatory responses and are also found as
part of tumour-associated inflammatory signatures [37,38]. In particular, the interferon
gamma-induced chemokine CXCL10, also known as IP-10, reported to sustain tumour
growth via autocrine loops [39] and to drive T lymphocytes and NK cells through activation
of CXCR3 [37,40,41], is often upregulated in the same manner or simultaneously with CC
inflammatory chemokines [42].

In this study, by applying highly sensitive assays monitoring β-arrestin recruitment,
we identified CXCL10, previously known to exclusively bind to CXCR3, as a high-affinity
agonist for ACKR2. This finding expands the panel of ACKR2 ligands to the CXC
chemokine family and at the same time highlights the need for a systematic reassess-
ment of chemokine-receptor pairing, as important interactions may remain unexplored.
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2. Materials and Methods
2.1. Cells and Proteins

HEK-ACKR2 cell line stably expressing human or mouse ACKR2 were established
by transfection of HEK293T cells (ATCC, Manassas, VA, USA) with pIRES-puro vector
(Addgene, Watertown, MA, USA ) encoding the human or mouse ACKR2 and subsequent
puromycin selection (5 µg/mL). Receptor surface expression was verified by flow cytometry
using hACKR2-specific mAb (clone 196124, R&D Systems, Minneapolis, MI, USA) or
polyclonal mACKR2-specific antibody (ab1656, Abcam, Cambridge, UK). The absence of
CXCR3 at the cell surface was confirmed using mAb clone 1C6 and the corresponding
isotype control (BioLegend, San Diego, CA, USA). The B16.F10 and U87.MG cell lines were
purchased from ATCC. Unlabelled chemokines were purchased from PeproTech. CXCL10
was labelled with Cy5 using the Amersham QuickStain Protein Labeling Kit (GE Healthcare
Life Sciences, Marlborough, MA, USA). Alexa Fluor 647-labelled CCL2 (CCL2-AF647) was
purchased from Almac (Craigavon, UK).

2.2. Chemokine Processing by Dipeptidyl Peptidase 4

CCL5, CCL2, CXCL10, CXCL11 and CXCL12 chemokines (9 µM) were incubated with
recombinant dipeptidyl peptidase 4 (CD26) (200 U) in Tris/HCl 50 mM pH 7.5 + 1 mM
EDTA for 1 h at 37 ◦C in the presence or absence of the sitagliptin (10 µM) (Sigma Aldrich,
St. Louis, MO, USA). The efficiency of processing was verified by MALDI-TOF analysis
using a RapifleX, Bruker Daltonics instrument (Billerica, MA, USA) in positive ion mode
and in reflectron mode.

2.3. Chemokine-Induced β-Arrestin Recruitment

Chemokine-induced β-arrestin recruitment to receptors was monitored by NanoLuc
complementation assay (NanoBiT) [43–45] or by NanoBRET using mNeonGreen as accep-
tor molecule.

NanoBiT: HEK293T or U87.MG cells were co-transfected with pNBe vectors encoding
chemokine receptors C-terminally fused to SmBiT and human β-arrestin-1/2 N-terminally
fused to LgBiT. Twenty-four hours after transfection cells were harvested, incubated 25 min
at 37 ◦C with Nano-Glo Live Cell substrate (1:200) and upon addition of chemokines
at the indicated concentrations, β-arrestin recruitment was evaluated with a Mithras
LB940 luminometer (Berthold Technologies, Bad Wildbad, Germany). Each point corre-
sponds to average values acquired for 20 min, represented as percentage of maximum full
agonist response.

NanoBRET: HEK293T cells were co-transfected with pNeonGreen and pNLF vectors
encoding ACKR2 C-terminally fused to mNeonGreen and β-arrestin-1 N-terminally fused
to Nanoluciferase. Twenty-four hours after transfection cells were harvested and upon
simultaneous addition of Nano-Glo Live Cell substrate (1:200) and chemokines, BRET
signal was measured with a Mithras LB940 luminometer (Berthold Technologies) using a
460/70 BP filter for Nanoluciferase and a 515/40 BP filter for mNeonGreen signal.

2.4. Chemokine Binding

HEK293T and HEK-ACKR2 cells were incubated with CXCL10-Cy5 at indicated
concentrations for 45 min at 37 ◦C, then washed twice with FACS buffer (PBS, 1% BSA,
0.1% NaN3). Dead cells were excluded using Zombie Green viability dye (BioLegend).
ACKR2-negative HEK293T cells were used to evaluate non-specific binding of CXCL10-
Cy5. For binding competition with unlabelled chemokines (50 nM or 10 nM), the signal
obtained for CXCL10-Cy5 (100 ng/mL) or CCL2-AF647 (30 ng/mL) in the absence of
unlabelled chemokines was used to define 100% binding. Ligand binding was quantified
by mean fluorescence intensity on a BD FACS Fortessa cytometer (BD Biosciences, Franklin
Lakes, NJ, USA).
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2.5. Chemokine-Induced Receptor Mobilisation to the Plasma Membrane

Ligand-induced receptor mobilisation to the plasma membrane was monitored by
NanoBRET. A total of 5 × 106 HEK293T cells were seeded in 10 cm dishes and co-transfected
with plasmids encoding ACKR2 C-terminally tagged with Nanoluciferase and mNeon-
Green C-terminally tagged with the plasma membrane targeting polybasic sequence and
prenylation signal sequence from K-RAS splice variant b [46]. Twenty-four hours after
transfection, cells were distributed into black 96-well plates (1 × 105 cells per well) and
treated with chemokines (100 nM). After 45 min incubation at 37 ◦C, coelenterazine H
(10 µM) was added, and donor emission (460 nm) and acceptor emission (535 nm) were
immediately measured on a GloMax plate reader (Promega, Madison, WI, USA).

2.6. Chemokine-Induced Receptor-Arrestin Delivery to Endosomes

Ligand-induced receptor-arrestin delivery to early endosomes was monitored by
NanoBRET. In brief, 5 × 106 HEK293T cells were seeded in 10 cm dishes and co-transfected
with plasmids encoding ACKR2, β-arrestin-2 N-terminally tagged with Nanoluciferase
and FYVE domain of endofin interacting with phosphatidylinositol 3-phosphate (PI3P)
in early endosomes [46,47], N-terminally tagged with mNeonGreen. Twenty-four hours
after transfection, cells were distributed into black 96-well plates (1 × 105 cells per well)
and treated with full-length or processed chemokines. After 2 h incubation at 37 ◦C,
coelenterazine H (10 µM) was added, and donor emission (460 nm) and acceptor emission
(535 nm) were immediately measured on a GloMax plate reader (Promega).

2.7. Chemokine Scavenging

Chemokine depletion from the extracellular space was quantified by ELISA. HEK293T
and HEK-ACKR2 cells were incubated 8 h at 37 ◦C with chemokines at 0.3 and 30 nM.
Chemokine scavenging by ACKR2 was evaluated by quantifying the concentration of
chemokines remaining in the supernatant using commercially available ELISA kits (CXCL10
R&D Systems, CCL5 BioLegend and CXCL11 Peprotech, Rocky Hill, NJ, USA) and was
expressed as the percentage of input chemokine concentrations.

2.8. Chemokine Internalization

Chemokine internalization using labelled CXCL10 or CCL2 was visualized by imaging
flow cytometry as previously described [7]. HEK.293T or HEK-ACKR2 cells were incubated
15 min at 37 ◦C in the presence or absence of unlabelled chemokines (200 nM) after which
Cy5-labelled CXCL10 (100 nM) or AF647-labelled CCL2 (100 ng/mL) was added for 45 min
at 37 ◦C. Cells were washed twice with FACS buffer. Dead cells were excluded using
Zombie Green viability dye (BioLegend). Images of 1 × 104 in-focus living single cells were
acquired with an ImageStream MKII imaging flow cytometer (Amnis Luminex, Austin,
TX, USA) using 60× magnification. Samples were analysed using Ideas6.2 software. The
number of spots per cell was determined using a mask-based software wizard.

For confocal microscopy, 4 × 104 HEK-ACKR2 cells/well were seeded on poly-L-
lysine coated 8-well chamber slides (µ-Slide 8 well, Ibidi, Fitchburg, WI, USA). After 36 h,
cells were incubated 2 h at 37 ◦C with 100 nM Cy5-labelled chemokines (CXCL10, CXCL11
or CCL2) and co-incubated one additional hour with 750 nM LysoTracker™ Red DND-99
(ThermoFisher, Schwerte, Germany). Cells were then washed twice with PBS, fixed with
3.5 % (w/v) paraformaldehyde for 20 min at room temperature and washed again twice
with PBS. Nuclear staining was performed with Hoechst 33342 dye (1 µg/mL) for 20 min
at room temperature, and cells were washed 3 times with PBS. Images were acquired on
a Zeiss LSM880 confocal microscope using a 63× oil-immersion objective and Zen Black
2.3 SP1 software (Zeiss, Jena, Germany). Representative cells from 12 image acquisitions of
three independent experiments are shown.
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2.9. Inhibition of Chemokine Uptake by Anti-mACKR2 Antibodies

HEK-mACKR2 or B16-F10 cells were incubated 45 min at 37 ◦C with Cy5-labelled
mCXCL10 (100 nM) in the presence or absence of the polyclonal goat anti-mACKR2
antibody (50 µg/mL) (ab1656, Abcam) or goat IgG control antibody (ab37373, Abcam) and
the secondary donkey anti-goat-AF647 antibody (Jackson ImmunoResearch, West Grove,
PA, USA). Dead cells were excluded using Zombie Green viability dye (BioLegend). Ligand
uptake was quantified by mean fluorescence intensity on a BD FACS Fortessa cytometer
(BD Biosciences). Inhibition of mCXCL10 scavenging by anti-mACKR2 was expressed as
the percentage relative to conditions where the antibody was absent.

2.10. Data and Statistical Analysis

Concentration–response curves were fitted to the four-parameter Hill equation using
an iterative, least-squares method (GraphPad Prism version 8.0.1) to provide EC50 values
and standard errors of the mean. All curves were fitted to data points generated from the
mean of at least three independent experiments. All statistical tests, i.e., t-tests, ordinary
one-way ANOVA and post hoc analysis, were performed with GraphPad Prism 8.0.1.
p-values are indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results and Discussion

The pairing of ACKR2 with CC chemokines dates back to when many chemokines,
especially the CXC chemokines, had not yet been known or available [12,15,48]. Recent
identification of CCL20 and CCL22 as ligands for ACKR4 [49,50] demonstrates that some
pairings within the complex chemokine–receptor interaction network may have been
overlooked. Several reports point to increased CXC chemokine levels in ACKR2-deficient
mice [51,52], and an indirect crosstalk between the orphan CXCL14 and ACKR2 has recently
been described [53]. These observations prompted us to re-evaluate the ability of ACKR2
to scavenge chemokines also from the CXC family.

First, we assessed the activity of the 16 human CXC chemokines (100 nM) towards
ACKR2 by monitoring their ability to induce β-arrestin-1 recruitment using Nanoluciferase
complementation-based assay (NanoBiT). Our screening revealed that at least three CXC
chemokines, namely CXCL2, CXCL10 and CXCL12, are capable of inducing β-arrestin-1
recruitment to ACKR2. However, only CXCL10 reached statistical significance in this assay
(Figure 1A).

To evaluate the functional relevance of the interactions between these chemokines
and ACKR2, especially in light of a possible scavenging function, we next performed an
in-depth analysis of intracellular events and monitored the fate of the chemokines and
receptor following their interactions.

CXCL2 and CXCL12 consistently showed reduced potency and efficacy in β-arrestin
recruitment towards ACKR2 compared to CXCL10 or to the activity they display towards
their already known receptors [45,54–56] (Figure 1B,E,H,I). Given this limited activity,
they were not further investigated. CXCL10, however, showed a strong potency towards
ACKR2 (EC50 = 8.2 nM, pEC50 = 8.08 ± 0.14) and induced approximately half of the
maximal response compared to the full agonist CCL5 (Figure 1B). This partial agonist
behaviour of CXCL10 was reminiscent of the activity towards its long-established sig-
nalling receptor CXCR3 relative to the full agonist CXCL11 (Figure 1C,F,G) [57,58]. The
potency of CXCL10 towards ACKR2 appears approximately 3 times stronger than to-
wards CXCR3 (EC50= 24.9 nM, pEC50 = 7.60 ± 0.12), consistent with a potential scavenging
role of ACKR2. In NanoBRET, the potency of CXCL10 towards ACKR2 (EC50 = 5.1 nM,
pEC50 = 8.29 ± 0.11) was close to that of CCL2 and approximately 20-fold stronger than
towards CXCR3. The efficacy of CXCL10 in this assay reached approximately 70% of
the maximal signal measured with CCL5 (Figure 1E,F). Similar observations were made
for the recruitment of β-arrestin-2 (Figure 1H) and were further confirmed in a different
cellular background (Figure 1I). Moreover, the screening of CXCL10 on 23 chemokine
receptors showed that CXCR3 and ACKR2 are the only human receptors activated by



Cancers 2021, 13, 1054 6 of 13

CXCL10 (Figure 1D). Fluorescently labelled CXCL10 also strongly and specifically bound
to HEK293T cells expressing ACKR2 (IC50 = 5.4, pIC50 = 8.27 ± 0.09) (Figure 1J,K) and
was only displaced by ACKR2-related chemokines CCL5, CCL2 and by CXCL10 itself
(Figure 1K inset). Inversely, binding competition studies showed that CXCL10 was able
to fully displace fluorescently labelled CCL2 from the receptor with an IC50 of 2.1 nM
(pIC50 = 8.68 ± 0.03) (Figure 1L).
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Figure 1. ACKR2 activation by CXCL10. (A) β-arrestin-1 recruitment to ACKR2 in response to all known human CXC
chemokines (100 nM) monitored by NanoBiT-based assay. CCL2 and CCL5 were used as positive control chemokines. (B)
β-arrestin-1 recruitment to ACKR2 by the CXC chemokines CXCL2, CXCL10 and CXCL12 monitored by NanoBiT, showing
the concentration–response relationship. CXCL11 was used as negative control. (C) β-arrestin-1 recruitment to CXCR3
induced by its cognate ligands CXCL9, CXCL10 and CXCL11 monitored by NanoBiT. CXCL12 was used as negative
control. (D) β-arrestin-1 recruitment to all known chemokine receptors in response to CXCL10 (100 nM). (E,F) β-arrestin-1
recruitment to ACKR2 (E) and CXCR3 (F) monitored by NanoBRET. (G) Schematic representation of chemokine–receptor
interactions between ACKR2, CXCR3 and the CC receptors CCR1, CCR2, CCR3, CCR4 and CCR5, including the newly
identified pairing between CXCL10 and ACKR2. (H) β-arrestin-2 recruitment to ACKR2 by the CXC chemokines CXCL2,
CXCL10 and CXCL12 monitored by NanoBiT. (I) β-arrestin-1 recruitment to ACKR2 by the CXC chemokines CXCL2,
CXCL10 and CXCL12 monitored by NanoBiT in U87.MG cells. (J) Flow cytometry analysis of cells used in the binding
studies, left panel: ACKR2 surface expression in HEK-ACKR2 (green histogram) and the parental HEK293T cell line (grey-
filled histogram) evaluated using the ACKR2-specific mAb (clone 196124) or the corresponding isotype control (black
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histogram); right panel: CXCR3 surface expression in HEK-ACKR2 evaluated using the CXCR3-specific mAb (clone 1C6)
(blue histogram) and the corresponding isotype control (black histogram). Unstained cells are represented as grey filled
histogram. (inset) Positive control surface expression staining for CXCR3 in HEK293T cells transiently transfected with a
CXCR3-encoding vector, using CXCR3-specific mAb (clone 1C6) (blue histogram) and the corresponding isotype control
(black histogram). (K) Binding of Cy5-labelled CXCL10 to HEK-ACKR2 cells. (inset) Binding competition (100 ng/mL
CXCL10-Cy5) with unlabelled chemokines (50 nM). (L) Binding competition of unlabelled CXCL10 with Alexa Fluor
647-labelled CCL2 (30 ng/mL) on HEK-ACKR2 cells. (inset) Binding competition with unlabelled chemokines (10 nM).
EC50 and IC50 values for concentration–response curves (B–L) are indicated (nM). All NanoBiT and NanoBRET assays were
conducted in HEK293T cells except for (I) for which U87.MG cells were used. Data points represent mean ± SEM of three
independent experiments. * p < 0.05, ** p < 0.01, **** p < 0.0001 by one-way ANOVA with Dunnett (A,D) and Bonferroni
(K,L) post hoc tests.

The ability of ACKR2 to mediate CXCL10 scavenging and control its extracellu-
lar concentration was then analysed. CXCL10 stimulation resulted in rapid mobilisa-
tion of intracellular ACKR2 to the plasma membrane reminiscent of the activity of CC
chemokines [59,60] (Figure 2A). The CXCL10-induced receptor mobilisation was followed
by its delivery to the endosomes with an EC50 of 6.0 nM (pEC50 = 8.22 ± 0.06) (Figure 2B,C).
Imaging flow cytometry also revealed specific and efficient uptake of labelled CXCL10 by
ACKR2-expressing cells. A notably higher number of distinguishable intracellular vesicle-
like structures and mean fluorescent intensity were observed compared to HEK293T cells
or HEK-ACKR2 cells pre-treated with CCL5 (Figure 2D,F). Confocal microscopy further
confirmed CXCL10 uptake and in addition showed its distribution within acidic intracellu-
lar vesicles (Figure 2E). Moreover, the uptake of CXCL10 by ACKR2 was more efficient
compared to that by CXCR3, consistent with the stronger potency of CXCL10 towards
ACKR2 and the possible scavenging function (Figure 2G). As an additional selectivity
control, CXCL10—just like CCL5 and CCL2—was able to compete with the uptake of fluo-
rescently labelled CCL2 by ACKR2-expressing cells in imaging flow cytometry (Figure 2H).
Importantly, the ACKR2-driven intracellular accumulation of CXCL10 was also associated
with a reduction of its availability in the extracellular space as demonstrated by ELISA
quantification. The efficiency of ACKR2-driven CXCL10 scavenging was similar at high
(30 nM) and low (0.3 nM) chemokine concentrations (Figure 2I) and was comparable to the
depletion of CCL5, while no reduction was observed for CXCL11. The interaction between
CXCL10 and ACKR2 was also observed with the murine counterparts, as illustrated by
the uptake of labelled murine CXCL10 (mCXCL10) by HEK-mACKR2 cells or the mouse
melanoma cell line B16.F10, which was partially inhibited by mACKR2-specific polyclonal
antibody but not the isotype control (Figure 2J).

Similar to many other CC and CXC chemokines, CXCL10 was shown to be subject
to post-translational modification by proteolytic enzymes [61]. In particular, N-terminal
cleavage by the dipeptidyl peptidase 4 (DPP4 or CD26) was demonstrated to turn CXCL10
from CXCR3 agonist to antagonist [62]. Based on recent reports demonstrating that, in
contrast to CXCR3, ACKR3 is responsive to DPP4-inactivated CXCL11 [45], the impact of
the CXCL10 N-terminal processing on ACKR2 activation was evaluated and compared
to CXCR3. We observed that, in contrast to CC chemokines, truncation of CXCL10 drasti-
cally reduced its ability to induce β-arrestin-1 recruitment to ACKR2 (Figure 2K,L) and
subsequent receptor targeting to the early endosomes (Figure 2M), indicating that CXCL10
N-terminal residues are critical for its activity towards ACKR2 [60,63]. The uptake of
CD26-processed CXCL10 by ACKR2-positive cells was also highly reduced and, similar
to the full-length chemokine, competed out by non-truncated CXCL10 or ACKR2-related
CC chemokines (data not shown). These results, in addition to partial agonist behaviour
of CXCL10, point to distinct ACKR2 interaction and activation modes compared to CC
chemokines. This may be attributed to notable differences in the N terminus orientation
and occupation of the receptor binding pockets of CXC and CC chemokines [64].
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Figure 2. CXCL10 scavenging by ACKR2. (A) ACKR2 mobilisation to the plasma membrane in response to chemokines
(100 nM) monitored by NanoBRET-based assay. (B,C) β-arrestin-1/ACKR2 complex delivery to the early endosomes
in response to the CXC chemokines CXCL2, CXCL10 and CXCL12 (B) or the 16 human CXC chemokines (100 nM) (C)
monitored by NanoBRET-based assay. CCL2 and CCL5 were used as positive control chemokines. (D–F) Uptake of
fluorescently labelled CXCL10 by ACKR2-expressing cells visualized by imaging flow cytometry (D,F) and confocal
microscopy (E). (D) HEK, HEK-ACKR2 or HEK-ACKR2 cells pre-treated with CCL5 at saturating concentration (200 nM)
were stimulated for 45 min at 37 ◦C with 100 nM (Cy5)-labelled CXCL10 (CXCL10-Cy5, red channel). Five representative
cells for each condition are shown (10,000 events recorded). Scale bar: 7 µm. (F) Percentage of cells from (D) with a given
number of distinguishable vesicle-like structures (spots), as well as the geometrical mean fluorescence intensity (MFI)
for the red channel were determined (inset). Data shown are representative of three independent experiments and for
inset, mean ± SEM of three independent experiments. (E) Cellular localization of Cy5-labelled chemokine (red) following
HEK-ACKR2 stimulation (100 nM) for 2 h monitored by fluorescent confocal microscopy. Lysosomes and nucleic DNA
were stained using LysoTracker™ Red DND-99 (white) and Hoechst 33342 (blue), respectively. Pictures are representative
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of 12 acquired images from three independent experiments. Scale bar: 5 µm. Arrows highlight colocalization of Lysotracker
and chemokine-Cy5 signal. (G) Uptake of Cy5-labelled chemokine (100 nM) by HEK cells transfected or not with equal
amounts of ACKR2 or CXCR3 vectors analysed by imaging flow cytometry as described in (D). (H) Binding competition
between Alexa Fluor 647-labelled CCL2 (100 ng/mL) and unlabelled chemokines (100 nM) in HEK-ACKR2 analysed
by imaging flow cytometry. (I) ACKR2-mediated depletion of extracellular CXCL10 monitored by ELISA. Chemokines
in the supernatant of HEK293T cells expressing or not ACKR2 were quantified after 8 h stimulation, and expressed as
percentage of the input concentrations (30 nM and 0.3 nM). CCL5 and CXCL11 were used as positive and negative controls,
respectively. Data points represent mean ± SEM of three independent experiments. (J) Inhibition of mACKR2-mediated
mCXCL10 uptake by neutralizing antibodies. Cy5-labelled mouse CXCL10 (mCXCL10-Cy5) (100 nM) was incubated with
HEK-mACKR2 or B16.F10 in the presence of mACKR2-specific polyclonal antibody (Ab1656) or corresponding isotype
control (Ab37373) for 45 min at 37 ◦C and analysed by flow cytometry. (K–M) Impact of chemokine N-terminal processing
by dipeptidyl peptidase 4 (DPP4/CD26) on the activation of ACKR2 and related receptors CXCR3 and CCR5 and ACKR2
delivery to the endosomes. (K,L) β-arrestin-1 recruitment to ACKR2 by processed chemokines monitored by NanoBRET. (L)
Comparison of the impact of N-terminal processing on the ability of CXC and CC chemokines (100 nM) to induce β-arrestin-1
recruitment to ACKR2, CXCR3 and CCR5. (Inset) Comparison of ACKR2 activity induced by unprocessed CXCL10 or
CXCL10 treated with CD26 in the presence or absence of its specific inhibitor, sitagliptin (STG) (10 µM) or with STG alone,
demonstrating no interference between CD26 and the ACKR2-CXCL10 interaction. (M) β-arrestin-1/ACKR2 complex
delivery to the early endosomes in response to processed chemokines monitored by NanoBRET. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001 by one-way ANOVA with Dunnet (A,C) and Bonferroni (H) post hoc tests or repeated measures
one-way ANOVA with Bonferroni post hoc test (J) and two-tailed unpaired Student’s t-test (I).

4. Conclusions

In conclusion, our study shows that CXCL10 is a novel ACKR2 ligand. CXCL10
is one of the most important inflammatory CXC chemokines and is involved in many
physiological and pathological processes such as angiogenesis, chronic inflammation,
immune dysfunction, tumour development and dissemination [65,66], in which ACKR2
has also been shown to play critical roles [35]. Together with CCL5, CXCL10 is a key player
in driving NK cells and CD8+ T cells into the tumour bed [37,38,40,41]. This novel pairing
consequently adds an unforeseen level of complexity to ACKR2 functions and a new level
of CXCL10 regulation and could thus encourage re-examination of previous studies taking
into account CXCL10–ACKR2 interactions (Figure 1G) [27,51,52,65,67].

The ability to bind and respond to both CXC and CC chemokines has already been
reported for ACKR1 [68], ACKR3 [69] and ACKR4 [70], although this property has re-
cently been challenged for the latter. Here, we identified an agonist CXC ligand for ACKR2,
which until now has been recognised for binding inflammatory CC chemokines only. There-
fore, such cross-family spectrum of chemokine ligands, uncommon among the classical
chemokine receptors, seems to represent an additional functional property of ACKRs [2]
besides their inability to trigger G protein signalling. Overall, this study highlights that
a systematic reassessment of chemokine–receptor pairings for both long-established and
recently deorphanized receptors may be necessary, as important interactions may have
been overlooked.
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