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Simple Summary: We proposed a high-throughput screening and low-cost worm-based (WB) mi-
crofluidic biosensor to monitor biochemical cues related to metastasis. Caenorhabditis elegans placed
in the WB biosensor chambers and exposed to samples conditioned with cancer cell clusters reflect
differences in the chemotactic preference of worms. We observed a higher distribution of worms
associated with samples of higher metastatic potential (p < 0.005). A chemotaxis index (CI) was de-
fined to standardize the quantitative assessment from the WB biosensor, where increased metastatic
potential was associated with higher CI levels (6.5 ± 1.37). We found that the secreted metabolite
glutamate was a chemorepellent, and lower glutamate levels were associated with samples derived
from more metastatic cancer cell clusters. In conclusion, WB biosensors could evaluate patient status
in real time, thereby facilitating early detection of metastases and routine management.

Abstract: Background: Metastasis is a complex process that affects patient treatment and survival.
To routinely monitor cancer plasticity and guide treatment strategies, it is highly desired to pro-
vide information about metastatic status in real-time. Here, we proposed a worm-based (WB)
microfluidic biosensor to rapidly monitor biochemical cues related to metastasis in a well-defined
environment. Compared to conventional biomarker-based methods, the WB biosensor allowed high
throughput screening under low cost, requiring only visual quantification of outputs; Methods:
Caenorhabditis elegans were placed in the WB biosensor and exposed to samples conditioned with
cancer cell clusters. The chemotactic preference of these worms was observed under discontinuous
imaging to minimize the impact on physiological activity; Results: A chemotaxis index (CI) was
defined to standardize the quantitative assessment from the WB biosensor, where moderate (3.24–6.5)
and high (>6.5) CI levels reflected increased metastasis risk and presence of metastasis, respectively.
We demonstrated that the secreted metabolite glutamate was a chemorepellent, and larger clusters
associated with increased metastatic potential also enhanced CI levels; Conclusions: Overall, this
study provided a proof of concept for the WB biosensors in assessing metastasis status, with the
potential to evaluate patient-derived cancer clusters for routine management.

Keywords: metastasis; disease monitoring; worm-based biosensor; preclinical models; label-free

1. Introduction

The process of cancer spreading to other organs is termed metastasis [1]. The onset of
metastasis is the leading cause of death in cancer patients [2]. In particular, breast cancer
is currently the most common cancer worldwide and the leading cause of cancer-related
mortality [2]. Blood-based tumor markers are a potential alternative for the non-invasive
detection of cancer. For example, serum carcinoembryonic antigen is often used to assess
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the prognosis of cervical patients [3]. MicroRNAs have also been identified as a potential
diagnostic and prognostic factor [4]. However, only a few studies have directly validated
the clinical significance of these biomarkers [5]. Other markers correlated with metastatic
risk have also been reported, but the incidence of false-positive and false-negative results
is high [6]. Therefore, it is pivotal to quickly identify new tools that can rapidly screen and
clinically validate cancer prognosis complementary to existing staging systems such as the
T (tumor) N (node) M (metastasis) staging system [7].

Caenorhabditis elegans live in temperate soil environments and are transparent, with a
length of about 1 mm [8,9]. C. elegans are hermaphrodites and can be easily handled in the
laboratory. Therefore, it is widely used as an animal model in behavioral dynamics [10],
neuronal imaging [11], and microsurgery applications [12–14]. The multisensory perception
of C. elegans allows the worms to detect various volatile or water-soluble substances in
food or other animals at low concentrations and avoid danger through a highly developed
chemosensory system [15]. Compared with standards obtained from healthy cell cultures,
C. elegans showed a chemotactic preference for specific volatile compounds in cells, urine,
and tissue samples of cancer patients [16]. The detection of volatile compounds was
attributed to olfactory neurons, as evidenced by nematode odor detection tests involving
odr-3 mutant worms [16,17].

There are currently no studies evaluating the chemotactic preference of C. elegans for
specific cancer subtypes. In vitro models are invaluable tools for high throughput screening
and cancer biomarkers detection for prognosis and routine monitoring. Here, we developed
a worm-based (WB) biosensor to monitor biochemical cues related to metastasis. The WB
biosensor could reflect differences in the chemotactic preference of worms for samples
obtained from cancer cell clusters of higher metastatic potential. The chemotaxis index (CI)
was derived to quantify readouts from the WB biosensor. Glutamate is a component of
glutamine metabolism in cancer cells associated with a malignant phenotype [18,19] and is
reported to be secreted by breast cancer cells at high concentrations [20]. We demonstrated
that the metabolite glutamate secreted from cancer cells served as a chemorepellent, and
lower glutamate levels were associated with samples derived from more metastatic cancer
cell clusters. When glutamate was degraded by glutamate dehydrogenase, the positive CI
level readout for samples derived from more metastatic cancer cell clusters was abolished.
Larger clusters associated with increased metastatic potential could also enhance CI levels.

To the best of our knowledge, this is the first pilot study that demonstrated the
application of WB biosensors in the detection of metastatic cancer phenotypes. The WB
biosensor can be potentially used to routinely screen patient-derived cultures from a liquid
biopsy or tumor biopsy for early detection of metastasis [21]. These results will pave the
way for biomarker discovery or the use of WB biosensors to monitor patient status in
real-time, thereby facilitating the early detection of metastases.

2. Materials and Methods
2.1. WB Biosensor Operations
2.1.1. Device Fabrication

Microfluidic chips were fabricated using standard soft-lithography techniques in
PDMS described elsewhere (SYLGARD™ 184 silicone elastomer kit) [21]. First, we used
the designed molds (length: 25 mm, width: 10 mm, height: 3 mm, loading area: 150 mm2)
to fabricate the WB biosensor (Figure 1A,B). Each device consisted of two layers and
had the following components: (1) interconnected channels with four sample inlets to
investigate the influence of the biochemical cues on the chemotactic preference of C. elegans;
(2) two gradient generators to establish a range of sample concentrations; (3) agar-coated
loading chambers for the migration of C. elegans (Figure 1A). Each connecting channel
was 2 mm × 2 mm (width × height). After the fabrication of individual biochip layers,
the sealed biochip was obtained by manual alignment and oxygen plasma bonding. The
respective fluidic inlets and outlets were punched into the layers before bonding. The WB
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biosensor channels could be primed within 1 min at a flow rate of 7.7 mL/min, leading to
the formation of droplets (~10 µL) at each outlet of the loading chamber.
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Figure 1. Schematics of the worm-based (WB) biosensor for the detection of metastatic disease. (A)
Overview of the assay design for the WB biosensor. Worms were placed into chambers connected
to inlets for sample loading. (B) The workflow of device fabrication and biosensor operations. (1)
PDMS was poured into the device mold and cured at 60 ◦C for 2 h. (2) Resultant device layers. (3)
Device layers were bonded by standard plasma treatment. (4) 1.5% agar solution was coated on
the channels. (5) C. elegans were harvested in a 1.5 mL tube. (6) C. elegans were added to the WB
biosensor. Imaging was done in situ with phase-contrast microscopy. (C) Experimental procedures
with the WB biosensor. PDMS = polydimethylsiloxane; T = time.

2.1.2. C. elegans Loading

The 1.5% agar-coated loading chambers (150 mm2) (Sigma, St. Louis, Germany) were
designed to hold the C. elegans before migration (Figure 1A). Adult C. elegans were collected
in 1.5 mL tubes. About 50 L4-stage animals were used per experiment after washing
twice with phosphate buffer saline (PBS) buffer (Gibco, Waltham, MA, USA) before the
experiment. The worms initiated migration within 5 min after loading, and the distribution
of worms was quantified 40 min after sample exposure. The quantification of worms was
done by imaging in situ with phase-contrast microscopy.

2.1.3. Sample Collection from Cancer Cell Cluster Cultures

Samples were obtained from cancer cell clusters after 48 h, maintained in microfluidic
chips that were fabricated using standard soft-lithography techniques in PDMS described
elsewhere [21]. The microfluidic device was composed of two layers: the barrier layer and
the microwell layers. A barrier layer was a PDMS layer produced from a 3D printed master
mold, which separated each microwells column into individual channels. The microwells
layer containing cell clusters was produced from mold by standard photolithography [21].
The two layers were bonded together by oxygen plasma bonding.



Cancers 2021, 13, 873 4 of 13

2.2. C. elegans Culture

C. elegans were obtained from the Hong Kong Poly-University and cultured in the
OP50 (a strain of Escherichia coli used to maintain C. elegans cultures) + nematode growth
media plate (Biofil, Guangzhou, China). The experiments were carried out at room tem-
perature for 40 min. The distribution of worms was quantified using phase-contrast
microscopy.

For viability assessment, motility was assessed by probing with an inoculating needle.
Worms were considered non-viable following no movement with probing stimuli.

2.3. Cell Culture

Breast cancer cell lines representing less metastatic (MCF-7) and more metastatic
(MDA-MB-231) subtypes, as well as healthy fibroblast cells (HTB-22, HTB-26, Primary
Tay-Sachs American Type Culture Collection), were used and maintained in a T25 flask
(Biofil, Guangzhou, China) at 37 ◦C in 5% CO2 in Dulbecco’s modified Eagle’s media
(DMEM) (Gibco, USA) supplemented with 10% FBS (Gibco, Waltham, MA, USA), 1%
penicillin-streptomycin (Gibco). Cells were enumerated and seeded separately in different
channels of the microfluidic device. The cell media were changed every 2–3 days, and cells
were harvested when their confluence reached 80%.

For the microwell assay, conditional media was cultured for 48 h from MCF-7 and
MDA-MB-231 cancer cells. The media was collected from cultures after 48 h and centrifuged
to remove cellular debris.

2.4. Screening of Samples with the WB Biosensor

The conditional media were diluted at various factors (10−1, 10−2, and 10−3) with PBS
buffer and added to the loading chamber. PBS buffer and samples from healthy cell cultures
were used as standard references. Migration is initiated about 5 min after introduction to
the loading chamber. The CI level was defined as stated in Equation (1):

CI = (percentage of C. elegans attracted to sample 1)/(percentage of C. elegans attracted to sample 2) (1)

The denatured samples from MCF-7 and MDA-MB-231 cancer cell clusters were
prepared by heating the samples in a 60 ◦C oven for 30 min. Denatured samples were
introduced to the WB biosensor at room temperature.

2.5. Glutamate Detection and Degradation Assays

Glutamate powder (Sigma, St. Louis, Germany) used in chemotaxis experiments was
weighed and diluted to a range of concentrations with PBS buffer. A glutamate detection
kit was used to evaluate the glutamate concentration levels in samples (Jian Cheng, A074,
Nanjing, China). Samples were added to a 96-well plate (Corning, Corning, NY, USA), and
OD values were analyzed by a microplate reader, as recommended by the manufacturer.
Glutamate levels of samples were obtained with Equation (2):

glutamate level = ((sample OD 2 − sample OD 1) − (blank OD2 − blank OD 1))/ ((standard OD 2
− standard OD 1) − (blank OD 2 − blank OD 1)) × standard concentration × dilution ratio

(2)

For glutamate degradation assays, the samples from MCF-7 and MDA-MB-231 cul-
tures were incubated with glutamate dehydrogenase, recommended by the manufacturer
(Jian Cheng, A074, Nanjing, China) in a ratio of 100:1 for 50 min. Samples were introduced
to the WB biosensor at room temperature.

2.6. Statistical Analysis

All experiments were performed in triplicates. The results were presented as the mean
± standard deviation (SD). Groups were compared using a t-test (ANOVA) to evaluate
associations between independent variables, and the p-values were obtained.
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3. Results
3.1. Worm-Based (WB) Microfluidic Biosensor for the Detection of Metastasis

To routinely screen samples and evaluate the onset of metastasis under high through-
put in a cost-effective manner, we developed a WB microfluidic biosensor, which consisted
of two layers and had the following components: (1) Interconnected channels with four
sample inlets to investigate the influence of the biochemical cues on the chemotactic prefer-
ence of C. elegans; (2) Two gradient generators to establish a range of sample concentrations;
(3) Agar-coated loading chambers for the migration of C. elegans (Figure 1A). The WB
biosensor was fabricated with polydimethylsiloxane (PDMS) and sealed with a base layer
by plasma treatment to allow loading and containment of samples (Figure 1B). The samples
from cancer cell clusters were introduced through the inlets by a pump infusion system.

C. elegans has been well-established to detect volatile compounds or proteins [13–15]
and was therefore utilized as our animal model. To initiate experiments, we first harvested
the adult worms and placed them in the WB biosensor loading area (Figure 1C). The
quantification of worms was done by imaging in situ with phase-contrast microscopy. The
worms initiated migration within 5 min after loading, and the distribution of worms was
quantified 40 min after sample exposure.

3.2. Characterization of Parameters for the WB Biosensor

Due to the advantages of microfluidic technology, the design of the WB biosensor
could be modified according to the number of samples screened. Here, we used a WB
biosensor consisting of six loading chambers for parallel screening (Figure 2A). Samples
were obtained from cancer cell microclusters maintained in a microwell-based array. The
use of the microwell array allowed three-dimensional clusters of consistent composition to
be generated [21]. Concentrated samples conditioned by cancer cell clusters (150 µL from
256 cell clusters) retained biochemical compounds that could serve as chemotactic cues
(Figure 2B). Samples from the cancer cell clusters were collected after 48 h. Each cluster
had approximately 50 cells (Figure 2B). The WB biosensor channels could be primed within
1 min at a flow rate of 7.7 mL/min, leading to the formation of droplets (~10 µL) at each
outlet of the loading chamber.

We first evaluated the cell seeding concentrations required to demonstrate clini-
cal correlations, using a range of cell seeding concentrations (1.5 × 104, 2.5 × 104, and
3.5 × 104 cells per channel). The cancer cell clusters were prepared at a seeding concentra-
tion of 3.5 × 104 per channel to achieve a range of diameter approximately 137.41 ± 29.69 µm,
mimicking the presence of small micrometastasis (~0.2 mm) [22]. The proportion of cluster
formation within this size range was also highest at the seeding concentration of 3.5 × 104

(Figure S1). The resulting cancer cell clusters were under a negligible amount of shear,
leading to high cellular viability (90.31 ± 5.9%) (Figure S2).

We aimed to validate the utility of the WB biosensor to distinguish cancer samples
from healthy controls by evaluating the chemotactic preference of C. elegans to samples
obtained from cancer cell clusters with lower metastatic potential, using MCF-7 cell lines
(Figure 2C). There were no significant differences in terms of the viability of the C. elegans
before and after experiments (40 min), as determined by their motility (>89%; Figure S3),
implying that the cancer samples were not toxic to the animals. We confirmed that the
distribution of C. elegans was higher in channels loaded with samples from cancer clusters,
compared to that from healthy fibroblast controls (3-fold, p-value < 0.05) (Figure 2C). These
observations were consistent with previous studies that suggested a chemotactic presence
of C. elegans for cancer samples compared to healthy samples [16].



Cancers 2021, 13, 873 6 of 13Cancers 2021, 13, x  6 of 14 
 

 

 
Figure 2. Characterization of the WB biosensor. (A) A representative image of the multiplexed WB 
biosensor for parallel screening. (B) Schematics of the device and workflow used to generate sam-
ples from cancer cell clusters within 48 h. (C) Box plot reflecting the chemotactic preference of 
worms with the WB biosensor for less metastatic cancer samples (MCF-7) and healthy controls (fi-
broblast). Worm counts were normalized to those obtained with PBS buffer standards. * states for p 
values < 0.05. 

3.3. Detection of Samples Associated with Higher Metastatic Potential Using the WB Biosensor 
Tumors exhibit intratumoral heterogeneity, promoting cancer progression, treatment 

failure, and disease recurrence [23]. Cancer cell plasticity is an important mechanism that 
generates a diversity of cancer cells, allowing cancer cells to alter their state and acquire 
plasticity in response to physiological stresses such as treatment selection and oncogenic 
stress [24]. There is a need to develop new tools for routine and low-cost evaluation of 
metastatic onset during treatment. 

We hypothesized that higher metastatic potential cancer cells provide different bio-
chemical cues that our WB biosensor could detect. To evaluate our hypothesis, we inves-
tigated the chemotactic preferences of C. elegans to samples from different cancer pheno-
types. Breast cancer cell lines MCF-7 and MDA-MB-231 represented the less metastatic 
and more metastatic cancer phenotypes, respectively [25]. 

To standardize the quantitative readouts from the WB biosensor, we derived a chem-
otaxis index (CI), as stated in Equation (1). 

We first evaluated the chemotactic preference of cancer samples against standards 
obtained from either PBS buffer or healthy cell cultures. The average CI levels obtained 
between PBS (as sample 1) and buffer healthy standards (as sample 2) was 1.04 ± 0.39, 
reflecting a negligible difference in worm distribution. We previously demonstrated that 
the distribution of C. elegans was higher in channels loaded with samples obtained from 
cancer cell clusters with lower metastatic potential (MCF-7), compared to that of controls 
(3-fold, p-value < 0.05) (Figure 2C). However, the resultant CI level for samples obtained 
from cancer cell clusters of less metastatic potential was still lower (3.24 ± 1.52) than that 
obtained from samples obtained from cancer cell clusters of higher metastatic potential 
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biosensor for parallel screening. (B) Schematics of the device and workflow used to generate samples
from cancer cell clusters within 48 h. (C) Box plot reflecting the chemotactic preference of worms with
the WB biosensor for less metastatic cancer samples (MCF-7) and healthy controls (fibroblast). Worm
counts were normalized to those obtained with PBS buffer standards. * states for p values < 0.05.

3.3. Detection of Samples Associated with Higher Metastatic Potential Using the WB Biosensor

Tumors exhibit intratumoral heterogeneity, promoting cancer progression, treatment
failure, and disease recurrence [23]. Cancer cell plasticity is an important mechanism that
generates a diversity of cancer cells, allowing cancer cells to alter their state and acquire
plasticity in response to physiological stresses such as treatment selection and oncogenic
stress [24]. There is a need to develop new tools for routine and low-cost evaluation of
metastatic onset during treatment.

We hypothesized that higher metastatic potential cancer cells provide different bio-
chemical cues that our WB biosensor could detect. To evaluate our hypothesis, we investi-
gated the chemotactic preferences of C. elegans to samples from different cancer phenotypes.
Breast cancer cell lines MCF-7 and MDA-MB-231 represented the less metastatic and more
metastatic cancer phenotypes, respectively [25].

To standardize the quantitative readouts from the WB biosensor, we derived a chemo-
taxis index (CI), as stated in Equation (1).

We first evaluated the chemotactic preference of cancer samples against standards
obtained from either PBS buffer or healthy cell cultures. The average CI levels obtained
between PBS (as sample 1) and buffer healthy standards (as sample 2) was 1.04 ± 0.39,
reflecting a negligible difference in worm distribution. We previously demonstrated that
the distribution of C. elegans was higher in channels loaded with samples obtained from
cancer cell clusters with lower metastatic potential (MCF-7), compared to that of controls
(3-fold, p-value < 0.05) (Figure 2C). However, the resultant CI level for samples obtained
from cancer cell clusters of less metastatic potential was still lower (3.24 ± 1.52) than that
obtained from samples obtained from cancer cell clusters of higher metastatic potential
(MDA-MB-231) (6.5 ± 1.37; p < 0.005), in comparison to PBS buffer control (Figure 2C).
The CI levels were obtained with samples of higher and lower metastatic potential, re-
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spectively (Figures 3A and 2C). The CI levels reflected an overall outcome derived from
various chemotactic agents present in the sample, including volatiles [16]. Specifically,
compared with samples obtained from cancer cell clusters with lower metastatic potential
(24.91 ± 7.51%), C. elegans had a significantly higher chemotactic preference for samples
obtained from cancer cell clusters of higher metastatic potential (64.72 ± 6.98%, 2.6-fold)
(Figure 3A). These observations confirmed that cancer cells of the higher metastatic poten-
tial provided different biochemical cues that our WB biosensor could detect.
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Figure 3. Detection of metastatic phenotypes with the WB biosensor. (A) Bar chart reflecting the
chemotactic preference of worms to samples from more metastatic cancer cells (MDA-MB-231)
compared to samples from less metastatic cancer cells (MCF-7). The dotted line corresponded to
the proportion of C. elegans with samples from healthy controls (fibroblast). (B) The proportion of
C. elegans when exposed to samples denatured by heat treatment. (C) The proportion of C. elegans
when exposed to samples obtained from larger clusters of higher metastatic potential. The dotted
line corresponded to the proportion of C. elegans with samples from PBS buffer standards. *** states
for p < 0.0001, ** states for p < 0.005.

Interestingly, the denaturation of samples by heat treatment did not abolish the
chemotactic preference of C. elegans to samples of higher metastatic potential. The heat
treatment was administered to determine if the properties of the chemotactic agent were
retained under high temperature. The persistence of chemotactic preference of C. elegans to
metastatic samples suggested that the chemotactic agent for metastasis was not volatile or
protein-based (Figure 3B).

Clinically, larger tumors are associated with multifocal diseases [26]. The presence of
multifocality is defined as two or more distinct and separate cancerous lesions in the breast,
which is also related to the size of the tumor. Compared with single-focal breast cancer,
multifocal breast cancer has a higher risk of vascular invasion and lymph node metasta-
sis [27–31]. Larger tumor size is also associated with worsening patient prognosis [32].
Therefore, to mimic the presence of larger tumors associated with a higher risk of metastatic
disease, we increased the cell seeding concentration (7 × 104 cells per channel) to produce
larger cell clusters (increase by 4-fold; 8383.96 ± 2373.2 µm2) (Figure S4). We successfully
demonstrated that the WB biosensor could reflect the preference of C. elegans for samples
from larger cancer cell clusters (3-fold, 69.11%; p-value: 0.00003) (Figure 3C). Therefore, the
WB biosensor could be used for various sample types of increased metastatic potential.
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3.4. Low Glutamate Levels Reflect the Presence of Metastasis

Glutamate is a component of glutamine metabolism in cancer cells associated with a
malignant phenotype [18,19] and is reported to be secreted by breast cancer cells at high
concentrations [20]. Therefore, we hypothesized that glutamate could be a chemotactic
agent for C. elegans to detect various cancer subtypes.

We first quantified the glutamate levels from samples of cancer cell clusters with
various metastatic potential. The glutamate levels from samples of cancer cell clusters with
less metastatic potential (1.69-fold; MCF-7:0.049 ± 0.0074 mg/mL) were higher than that of
cancer cell clusters with more metastatic potential (MDA-MB-231:0.029 ± 0.0015 mg/mL)
(Figure 4A). These results support previous studies demonstrating a higher metabolite
consumption and semiquantitative production of glutamate by 2D MCF-7 cell cultures [33].

Cancers 2021, 13, x  8 of 14 
 

 

successfully demonstrated that the WB biosensor could reflect the preference of C. elegans 
for samples from larger cancer cell clusters (3-fold, 69.11%; p-value: 0.00003) (Figure 3C). 
Therefore, the WB biosensor could be used for various sample types of increased meta-
static potential. 

3.4. Low Glutamate Levels Reflect the Presence of Metastasis 
Glutamate is a component of glutamine metabolism in cancer cells associated with a 

malignant phenotype [18,19] and is reported to be secreted by breast cancer cells at high 
concentrations [20]. Therefore, we hypothesized that glutamate could be a chemotactic 
agent for C. elegans to detect various cancer subtypes. 

We first quantified the glutamate levels from samples of cancer cell clusters with var-
ious metastatic potential. The glutamate levels from samples of cancer cell clusters with 
less metastatic potential (1.69-fold; MCF-7:0.049 ± 0.0074 mg/mL) were higher than that of 
cancer cell clusters with more metastatic potential (MDA-MB-231:0.029 ± 0.0015 mg/mL) 
(Figure 4A). These results support previous studies demonstrating a higher metabolite 
consumption and semiquantitative production of glutamate by 2D MCF-7 cell cultures 
[33]. 

 
Figure 4. Glutamate acts as a chemorepellent to reflect the presence of metastatic phenotypes. (A) 
Glutamate levels in samples from cancer cells of the more metastatic phenotype (MDA-MB-231) and 
cancer cells of the less metastatic phenotype (MCF-7). (B) Quantitative evaluation of outcomes from 
the WB biosensor by establishing a chemotaxis index (CI). A range of glutamate concentrations (0.02 
mg/mL, 0.04 mg/mL, 0.06 mg/mL, 0.08 mg/mL, and 0.1 mg/mL) was evaluated. (C) The proportion 
of C. elegans under exposure to samples from cancer cells of the more metastatic phenotype (MDA-
MB-231) and cancer cells of the less metastatic phenotype (MCF-7) before and after glutamate deg-
radation. The dotted line corresponded to the averaged value obtained with PBS buffer standards. 
(D) Evaluation of the detection limit for the WB biosensor. The black dotted line reflected the thresh-
old determined by the rate of false-positives (8.71 ± 0.033%). The red dotted line reflected the thresh-
old determined by the averaged value obtained with undiluted MCF-7 samples (25.73 ± 0.054%). *** 
states for p < 0.0005, **states for p < 0.005 * states for p < 0.05. 

We further evaluated the CI level readouts with the WB biosensor using a range of 
glutamate concentration levels that included concentrations detected from MCF-7 and 

Figure 4. Glutamate acts as a chemorepellent to reflect the presence of metastatic phenotypes. (A)
Glutamate levels in samples from cancer cells of the more metastatic phenotype (MDA-MB-231)
and cancer cells of the less metastatic phenotype (MCF-7). (B) Quantitative evaluation of outcomes
from the WB biosensor by establishing a chemotaxis index (CI). A range of glutamate concentrations
(0.02 mg/mL, 0.04 mg/mL, 0.06 mg/mL, 0.08 mg/mL, and 0.1 mg/mL) was evaluated. (C) The
proportion of C. elegans under exposure to samples from cancer cells of the more metastatic phenotype
(MDA-MB-231) and cancer cells of the less metastatic phenotype (MCF-7) before and after glutamate
degradation. The dotted line corresponded to the averaged value obtained with PBS buffer standards.
(D) Evaluation of the detection limit for the WB biosensor. The black dotted line reflected the threshold
determined by the rate of false-positives (8.71 ± 0.033%). The red dotted line reflected the thresh-
old determined by the averaged value obtained with undiluted MCF-7 samples (25.73 ± 0.054%).
*** states for p < 0.0005, ** states for p < 0.005 * states for p < 0.05.

We further evaluated the CI level readouts with the WB biosensor using a range of glu-
tamate concentration levels that included concentrations detected from MCF-7 and MDA-
MB-231 clusters (0.02 mg/mL, 0.04 mg/mL, 0.06 mg/mL, 0.08 mg/mL, and 0.1 mg/mL)
(Figure 4A). CI level readouts were modified for parallel comparison of all concentrations,
with the CI level obtained from PBS buffer standards defined as 1. We demonstrated
that the glutamate concentration of 0.02 mg/mL generated the most significant CI level
(3.6 ± 0.03), which was within the range of glutamate levels detected from cancer cell clus-
ters with more metastatic potential (MDA-MB-231). Higher concentrations of glutamate
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(≥0.04 mg/mL) led to lower CI levels. Specifically, the lowest CI level was reported with
the highest glutamate concentration tested (0.1 mg/mL; CI level: 1.1 ± 0.04) (Figure 4B).

We demonstrated that glutamate degradation by glutamate dehydrogenase could
reduce CI level readouts with the WB biosensor to levels corresponding to samples from
cancer cell clusters of higher metastatic potential, thus confirming the role of glutamate as a
chemorepellent (Figure 4C). Moreover, other chemoattractants such as volatile compounds
could still be present in cancer samples [16,34], which retained the chemotactic prefer-
ence of C. elegans towards cancer samples over healthy controls, despite the degradation
of glutamate.

We evaluated the detection limit of the WB biosensor with samples from both metastatic
and less-metastatic cancer cell clusters under various dilutions (10−1, 10−2 and 10−3). The
threshold was determined by the false positive rate (8.71 ± 3.33%) obtained from the
proportion of C. elegans distributed to chambers loaded with samples from control groups.
Chemotactic preference of C. elegans towards samples from metastatic cancer cell clus-
ters was abolished at dilutions higher than 10−1 (Figure 4D). The dilution factor of 10−2

corresponded to an approximate glutamate concentration of 0.003 mg/mL.

4. Discussion

Metastasis is a complex process in which primary tumor cells migrate and establish
secondary tumors by invading specific tissues or disseminating blood and lymphatic
systems [35]. Early detection of metastatic disease is of great significance for reducing
mortality and improving overall survival to facilitate timely treatment and intervention.
Existing metastatic detection methods usually require long-processing time, expensive
equipment, and trained personnel for analysis and operations (Figure 5, Table S1). Current
methods for detecting metastatic disease in the clinical setting include those that require
the use of specific biomarkers in circulation (e.g., serum), secretions (e.g., urine), or tissue
biopsies, such as cancer antigen 15–3 and carcinoembryonic antigen (Figure 5) [36,37].
Histopathology involves the microscopic examination of cells by a trained pathologist and
requires an extended processing time [38]. Other techniques include imaging procedures
such as magnetic resonance imaging (MRI), X-rays, radiography, computed tomography
scan (CT scan), and nuclear imaging, e.g., positron emission tomography (PET) and single-
photon emission computer tomography (SPECT) [39,40]. However, some cancers are almost
invisible or hard to detect on a CT scan, such as prostate cancer, uterine cancer, and certain
liver cancers. On MRI, bone and brain metastases are detected easier, and various cancer
phenotypes can be distinguished based on localization. However, these imaging procedures
are costly and have certain limitations, such as detecting lymph node micrometastases [41,
42]. PET is another one of the most common approaches for clinical imaging techniques [43].
PET can detect recurrent disease and lymph node involvement at an early stage [44].
However, these imaging techniques require careful interpretation due to the possibility of
observing age-related benign pathologies and the flare phenomenon associated with an
increased uptake of radiotracer caused by hormone therapy [45]. Interpretations can also
be affected by patient conditions such as blood glucose levels or psychotropic drugs [46].

Other methods focusing on detecting biomarkers demonstrate high specificity but low
sensitivity due to the heterogeneous nature of cancer. Here, we showed that samples from
cancer cell clusters of higher metastatic potential could be distinguished from samples
of a lower metastatic potential using the WB biosensor. We envisioned that this label-
free strategy for rapid screening at low cost and high throughput would allow timely
identification of patients with potential metastases, complementing diagnostic techniques
to direct samples of higher risk for further evaluation.

C. elegans have been widely reported to be chemotactic for specific odorants [16]. Here,
we reported that C. elegans could also detect non-odorants, such as glutamate. Lower
glutamate levels reflected the presence of samples from cancer cell clusters of higher
metastatic potential. Further studies could be carried out to discover other potential
chemotactic agents as biomarkers of metastasis. The cost-effective, portable, label-free, and
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ease of operations for the WB biosensor allows potential utility in a wide range of cancer
subtypes for clinical significance and application prospects. For example, circulating tumor
cells (CTCs) associated with overall patient survival and prognosis [50] could be extracted
and concentrated from the liquid biopsy of patients using established techniques [51–53]
for screening with the WB biosensor (Figure 6). Clinical samples would be compared
against buffer standards to establish CI levels. Using the CI index, a readout of CI level
from 3.24–6.5 would reflect a heightened risk of metastasis, while a CI level > 6.5 would
reflect the presence of metastasis. Patient samples could also be compared against MCF-7
standards instead of PBS standards, where a CI index > 1 would reflect positivity and
suggest further evaluation. We envisioned that the WB biosensor could complement
routine screening of patients during treatment to evaluate the risk of metastatic onset,
allowing timely referral for treatment intervention.
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Figure 6. The proposed workflow of the WB biosensor for clinical utility. Step 1: collection of blood
from patients. Step 2: preprocessing of samples to remove red blood cells through lysis. Step 3:
short-term culture of nucleated cells under suitable conditions to generate CTC clusters [54]. Step 4:
collection of samples from patient-derived cultures for rapid screening with the WB biosensor. Step 5:
analysis of the chemotactic index (CI). A positive index (CI > 1) reflects the need for further evaluation,
while a negative index reflects no metastasis risk. RBC = red blood cells; CTC = circulating tumor cell.
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5. Conclusions

Here, we demonstrated the early detection of metastasis using a WB biosensor. A
chemotaxis index (CI) was defined to reflect increased metastasis risk or presence of
metastasis. We suggested that the presence of secreted metabolite glutamate acted as
a chemorepellent and demonstrated that higher metastatic potential samples produced
lower glutamate levels. Furthermore, glutamate degradation effectively abolished positive
CI-level readouts obtained with samples from cancer cell clusters of higher metastatic
potential. Larger clusters associated with increased metastatic potential also enhanced CI
levels. Overall, the WB biosensor will open up new opportunities in metastatic cancer
status assessment in real-time and enhance personalized treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/873/s1, Figure S1: Cluster formation percentage in different cell concentrations, Figure S2:
Cancer cell viability before and after culture, Figure S3: Viability of C. elegans before and after
experimentation, Figure S4: Cluster area of cultures at various cell seeding concentrations. Table S1:
Cancer detection technologies.
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T Tumor
N Node
M Metastasis
WB Worm-based
C. elegans Caenorhabditis elegans
CI Chemotaxis index
PDMS Polydimethylsiloxane
PET Positron emission tomography
SPECT Single-photon emission computer tomography
CTCs Circulating tumor cells
MRI Magnetic resonance imaging
CT scan Computed tomography scan
T Time
RBC Red blood cells
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