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Simple Summary: Colorectal cancer remains a leading cause of cancer-related mortality worldwide.
However, high-risk populations with a genetic predisposition for colorectal cancer could benefit
greatly from novel and efficacious immunopreventive strategies that afford long-lasting protection.
The achaete-scute family bHLH transcription factor 2 (Ascl2) has been identified as a promising
target for immunoprevention of colorectal cancer, based on its induction during the formation and
progression of colorectal tumors and its minimal expression observed in healthy tissue. The goal
of the present study was to determine the efficacy of a protein-based vaccine targeting Ascl2 in
combination with an anti-PD-1 treatment in a spontaneous colorectal cancer mouse model. This
novel vaccine strategy promotes potent tumor-specific immunity, and prevents the formation of colon
adenomas in mice. The results demonstrate that Ascl2 is a promising target for immunoprevention
for individuals at elevated risk of developing colorectal cancer.

Abstract: Novel immunopreventive strategies are emerging that show great promise for conferring
long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine
platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating
peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as
a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family
bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation
by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and
led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To
assess preventive efficacy, the vaccine was administered to mice either alone or in combination
with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor
formation, the combination strategy significantly reduced the development of colon microadenomas
and adenomas, as compared to vehicle-treated controls. This response was accompanied by an
increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the
KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention
for individuals at high risk of developing colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality in the
US and Europe [1]. Although the benefits of early detection are well documented, only
63% of the US population adhere to current screening guidelines [2,3]. Even among those
who do comply, as many as 25% of colon adenomas are missed during routine endoscopic
surveillance. These disturbing statistics, when combined with a recent rise in the incidence
of CRC among young adults [4], dictate the need for new intervention strategies to reduce
the morbidity and mortality associated with this disease.

Several high-risk populations with a genetic predisposition for CRC have been identi-
fied who would benefit greatly from an early intervention that affords durable, long-lasting
protection. The lifetime risk of developing CRC is 50–80% for individuals who inherit a
germline mutation in the mismatch repair genes (Lynch Syndrome) and 100% for individ-
uals born with a mutation in the APC gene (Familial Adenomatous Polyposis (FAP)) [5].
Even individuals with a first-degree relative with CRC face a 2–3 fold increased risk of
a similar diagnosis, as compared to the general population [5]. The development of ef-
ficacious preventive interventions for these high-risk populations has been hindered by
the discovery that many of the effective chemopreventive agents also cause serious side
effects [6,7]. However, immunoprevention shows great promise for high-risk populations,
including those at increased risk for CRC [8,9]. Results from a phase I/II trial of an im-
munopreventive vaccine against MUC1 (NCT-007773097) indicate immunogenicity in 44%
of vaccinated individuals and no significant toxicity [10]. Although these exciting results
underscore the potential of cancer preventive vaccines, alternative targets may provide
greater immunogenicity and/or protection.

The achaete-scute family bHLH transcription factor 2 (Ascl2) is a promising target for
immunoprevention of CRC for several reasons. First, Ascl2 participates in Wnt signaling, a
pathway activated in the majority (>80%) of sporadic and familial colorectal cancers [11].
As a WNT-responsive transcription factor, Ascl2 acts as a master regulator of intestinal
stem cell identity [12]. Second, Ascl2 is induced during the formation and progression
of colorectal tumors, with minimal expression observed in non-neoplastic tissue [13–16].
Third, preventive vaccination of Apc+/Min-FCCC mice with a recombinant Ascl2 peptide plus
AS15 adjuvant caused a 3–4 fold reduction in colorectal microadenomas in the absence
of a CD8 T cell response [16]. Although promising, these data suggest that additional
protection might be gained from an alternative vaccine strategy.

An optimal cancer vaccine should simultaneously stimulate cytotoxic T cell-mediated
immunity, induce T helper cells, prime a multi-antigenic immune response for different
HLA restriction and promote immunological memory. A novel cancer vaccine platform,
named KISIMATM [17], addresses the above listed requirements for a robust and prolonged
immune response. KISIMATM vaccine is a recombinant chimeric protein composed of
three elements. First, a cell-penetrating peptide (CPP) enhances vaccine delivery and
allows epitope presentation on both major histocompatibility complex (MHC) class I and
II molecules [18,19]. Second, an antigenic domain is rationally designed with selected
antigen portions containing MHC class I and class II epitopes from different tumor-specific
antigens across a range of HLA restrictions. A TLR2/4 agonist is the third component,
conferring self-adjuvant activity to the vaccine.

The KISIMATM platform allows CPP-mediated antigen delivery to the antigen pre-
senting cells (mainly dendritic cells), while simultaneously activating the given dendritic
cell via a TLR peptide agonist. This results in the activation of potent CD8 and CD4 T cell
immune responses in preclinical models [17]. The consequent high infiltration of cytotoxic
CD8 T cells within the tumor mass promotes the efficacious control of tumor development
in different mouse models [17].

The Apc+/Min-FCCC mouse model is ideal for immunoprevention studies, in particular
testing novel vaccines against Ascl2 [16,20]. This immunocompetent animal carries a
heterozygous mutation in the Apc gene that renders it susceptible to spontaneous colon
tumorigenesis. Tumors form the following molecular and histological processes similar
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to those observed in humans; loss of the second copy of Apc in colonic epithelial cells
results in increased Wnt signaling, activation of β-catenin-mediated TCF signaling, and
the formation of microadenomas and multiple colonic adenomas. As in humans, colorectal
adenomas in the Apc+/Min-FCCC model overexpress the murine form of Ascl2, murine achaete
scute homolog 2 (Mash2) [16].

The goal of the present study was to determine the efficacy of a novel Ascl2 targeted
KISIMA vaccine in stimulating an immune response and inhibiting the formation of colon
adenomas in Apc+/Min-FCCC mice.

2. Materials and Methods
2.1. Animals

Female C57BL/6J mice were purchased from Charles River Laboratories (L’Arbresles,
France) and used between 6 and 12 weeks of age at the time of experiments at AMAL
Therapeutics. Mouse studies were reviewed and approved by the institutional and cantonal
veterinary authorities in accordance with Swiss Federal law on animal protection.

Male C57BL/6 Apc+/Min-FCCC mice were obtained from a colony at Fox Chase Cancer
Center (FCCC) that had been maintained for at least 66 generations prior to initiation of the
study [20]. These animals carry a heterozygous nonsense mutation in codon 850 of the Apc
tumor suppressor gene. All experiments were approved by the Institutional Animal Care
and Use Committee at FCCC on 24 January 2018. Additional information about animal
housing and maintenance is available in the Text S1.

2.2. Colonoscopy

A total of 126 Apc+/Min-FCCC mice were enrolled on study 4–5 days prior to receiving the
first injection at 40 ± 5 days (mean ± standard deviation; range 31–49 days) of age. Animals
weighing >15 g (n = 69) were examined by colonoscopy. Following bowel preparation,
colonoscopic examinations were performed using a veterinary endoscope (1.5 mm outer
diameter) (Karl Storz Veterinary) with a 0◦ viewing angle as described previously [21].
Baseline tumor status was recorded for each animal. All animals undergoing colonoscopy
were categorized as ‘tumor-free’ (no tumors observed) (n = 64), or ‘tumor-bearing’ (at least
one tumor identified) (n = 5). Animals weighing ≤ 15 g (n = 57) were not subjected to
colonoscopy and categorized as ‘not determined’.

Twenty animals (15 tumor-free, 1 tumor-bearing, and 4 not determined) were enrolled
onto the immunogenicity study; the remaining animals (49 tumor-free, 4 tumor-bearing,
and 53 not determined) were enrolled onto the efficacy study.

2.3. Vaccines

Vaccine construct was designed by AMAL Therapeutics and produced in E. coli
by Genscript. During the purification process, endotoxins were removed from vaccines
through extensive washes with Triton-X114, followed by subsequent affinity chromatogra-
phy. Endotoxin content was quantified in each vaccine batch using a LAL chromogenic
assay. Only the batches with an endotoxin level below 10 EU/mg protein (according to
guidelines) were used for further in vivo experiments.

2.4. Animal Treatment

Mice were stratified by litter and baseline tumor status, and assigned to one of two
treatment arms for the immunogenicity study (Control or Vaccine) or one of four treat-
ment arms (Control, Vaccine, Anti-PD-1, or Vaccine plus Anti-PD-1 (combination)) for
the efficacy study using block randomization. Mice included in the analyses (n = 17 for
the immunogenicity study and n = 92 for the efficacy study) were comparable across
all treatment arms with respect to age, weight, and tumor status at the time of the first
treatment (Tables S1 and S2). Biological outliers (defined in “Statistical Analysis” below),
including mice that did not complete all scheduled therapies, were excluded from analyses
(n = 3 for immunogenicity study and n = 14 for the efficacy).
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Vaccine was administered a total of six times, with 2–4 weeks between injections. Mice
in the Vaccine and Combination arms received subcutaneous injections of 100 µL of 20 µM
KISIMA-Mash2 vaccine in buffer (50 mM Tris-HCl, 150 mM NaCl, 1 M L-Arginine, 10%
Glycerol, pH 8). Mice in the control and anti-PD-1 arms received subcutaneous injections
of 100 µL of PBS (immunogenicity study) or vehicle buffer (efficacy study).

In the efficacy study, three cycles of anti-PD-1 were administered over the 17-week
treatment schedule. Each cycle consisted of twice-weekly injections. The first cycle was
administered 3 days after the second vaccine injection, and was continued for 3.5 weeks.
The next two cycles were administered 3 days after the fourth and fifth vaccine injections,
and continued for 2.5 weeks each. Mice in the anti-PD-1 and combination arms received
intraperitoneal injections of 100 µL of 1 mg/mL anti-Mouse PD-1 (BioXCell #BE0146, lots
665417S1 and 695318A1, Lebanon, NH, USA) in InVivoPure pH 7.0 Dilution Buffer (BioX-
Cell #IP0070, lot 658117D1). Mice in the Control and Vaccine arms received intraperitoneal
injections (100 µL) of dilution buffer.

Serum was collected four times throughout the study: prior to the first treatment,
one week after the second and fourth vaccine injections, and at the end of the study
(Figure 1A). Whole blood was collected by retro-orbital bleed in a non-heparinized capillary
blood-collecting tube (Fisherbrand #02-668-15, Waltham, MA, USA). Serum was separated
from whole blood in a BD Microtainer SST (Becton Dickinson #365967, Franklin Lakes,
NJ, USA), according to the manufacturer’s instructions, and stored at −80 ◦C until the
time of analysis.

Figure 1. KISIMA-Mash2 vaccine promotes T cell and humoral responses. C57BL/6 mice were treated with 6 administrations
of KISIMA-Mash2 vaccine (Day 0, 14, 28, 58, 84 and 127). Thirteen days after the last vaccination, T cell immune response
was assessed by ELISpot after stimulation of splenocytes with KISIMA-Mash2 vaccine overnight (A). Humoral response
was determined in serum by detecting anti-Mash2 IgG by ELISA (B). *, p < 0.05; **, p < 0.01 (unpaired T test).

Animal health and weight were monitored at least twice per week for the duration
of each study. Mice were euthanized by CO2 inhalation upon completion of the study, or
when exhibiting signs of illness including a hunched body posture, poor grooming, and/or
>20% loss of body mass.

Following euthanasia, spleens were excised, weighed, placed in DMEM containing
100 I.U./mL penicillin and 100 µg/mL streptomycin, and forced through a 70 µM filter. The
resulting cell suspension was used for ELISpot analyses in the efficacy study. Organs (liver,
kidneys and lungs) were examined for gross alterations. The entire small intestine and colon
were excised, opened lengthwise, and washed with PBS. The number of tumors identified
upon gross examination, as well as their location and size (length and width as measured
with calipers), was recorded. Tumor volume was estimated using an approximation of an

ellipsoid (volume =
length∗width2

2 ). The entire colon was placed in 10% buffered formalin
overnight for fixation.
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2.5. ELISA Assay for Humoral Response

Antibody titers against Mash2 were measured by enzyme-linked immunosorbent
assay (ELISA). Plates were coated with Mash2 (5 µg/mL) in PBS, overnight at 4 ◦C. After
washing with PBS-0.05% Tween 20 and blocking with PBS-0.05% Tween 20 containing 1%
bovine serum albumin, serial dilutions of sera were added to the plates and incubated at
37 ◦C for 2 h. After washing, the plates were incubated with peroxidase-conjugated goat
anti-mouse IgG (Bethyl Laboratories #A90-131P, Montgomery, TX, USA).

2.6. ELISpot Assay

ELISpot assays were performed using the Murine IFN-γ ELISpot Set (Diaclone
#862.031 S) according to manufacturer instructions. Splenocytes were isolated with
Lympholyte-Mammal (Cedarlane, Burlington, NC, USA) and plated in a concentration
gradient from 2.5 × 105–1.0 × 106 cells. Cells were stimulated with vaccine construct or
peptide pools, and the assay was completed according to the manufacturer’s instructions.
The plate was read using an AID vSPOT Spectrum (Volt Tecnologia #VSR078IFL, Oceanside,
CA, USA).

2.7. Histopathology

Formalin-fixed colons were cut at ~2 mm intervals, embedded in paraffin, sectioned,
and stained with hematoxylin and eosin (H&E). H&E slides were examined by a pathol-
ogist who was blinded to treatment group assignment. Tumors were classified as ade-
nomas or microadenomas as described previously [22]. The total number of adenomas
included microadenomas.

2.8. Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) sections (5 µm) were deparaffinized with
xylol and hydrated through graded concentrations of alcohol. Sections were then sub-
jected to heat-induced epitope retrieval with 0.01 M citrate buffer (pH 6.0). Endogenous
peroxidases were quenched by immersion in 3% hydrogen peroxide. Sections were in-
cubated with rabbit anti-CD3 antibodies (Dako clone A0452, 1:150 dilution) overnight at
4 ◦C in a humidified slide chamber. Immunodetection was performed using the Dako
Envision+ polymer system and visualized with chromogen 3,3’-diaminobenzidine. CD3
positivity (CD3+) was defined as staining highlighting the membrane of a lymphocyte
with visible nuclear hematoxylin staining. Overview images of dysplasia and the interven-
ing stroma of each CD3 stained slide were obtained using a Leica LMD6500 microscope.
Using QuPath v0.2.2 [23], the dysplastic epithelial cells were outlined together with the
intervening stroma and an area (pixel2) calculated. The conversion to mm2 was made
using the intrinsic LMD6500 scale calibrated with a stage micrometer. Dysplastic burden
was defined as the total area (mm2) of dysplastic epithelial cells and intervening stroma
per animal [24,25]. Intraepithelial CD3+ lymphocytes were defined as CD3+ cells located
in-between the dysplastic epithelial cells of adenomas or microadenomas. Lymphocytes
shed into the lumen were excluded from evaluation. Stromal CD3+ cells were defined as
CD3+ cells located in the stroma immediately adjacent to a dysplastic gland [26]. For each
animal, the extent of lymphocyte infiltration was expressed as the number of intraepithelial
or stromal lymphocytes, as well as the sum of both elements (total lymphocytes), per lesion
or per area (mm2) of dysplastic burden.

2.9. Statistical Analysis

Biological outliers were defined as mice that did not receive all scheduled therapies
(immunogenicity studies n = 3; efficacity study n = 11) or developed a total number of
adenomas > 2 standard deviations from the mean number of adenomas developed in a
given treatment group (efficacy study only; 1 Buffer, 1 Vaccine, and 1 Combination-treated).
These animals were excluded from all final analyses.
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Statistical analyses were performed using Prism software (GraphPad, San Diego, CA,
USA) and considered statistically significant if p < 0.05.

3. Results
3.1. KISIMA-Mash2 Vaccine Promotes T Cell and Humoral Responses

A KISIMA vaccine containing the Mash2 protein antigen was designed, and first
assessed for its immunogenicity in C57BL/6 mice, which received 6 injections of either
vaccine or buffer (control), according to a vaccination schedule established previously [17]
and employed in the KISIMA-01 clinical trial (NCT04046445). After six administrations
of the KISIMA-Mash2 vaccine, T cell immune response was quantified in the spleen and
serum anti-Mash2 IgG titer was determined. A significantly higher T cell immune response
against KISIMA-Mash2 vaccine (quantified by IFN-γ ELISpot, Figure 1A) was observed
in the spleens of vaccinated mice compared to those of control (buffer-treated) mice. This
T cell immune response was associated with a significantly higher antibody titer against
Mash2 in vaccinated animals (Figure 1B).

3.2. KISIMA-Mash2 Vaccine Is Safe and Promotes an Antibody Response in Apc+/Min-FCCC Mice

To determine if the KISIMA-Mash2 vaccine is safe and able to promote an immune
response in vivo, a small pilot experiment was conducted with male Apc+/Min-FCCC mice
(n = 17, 5–8 weeks of age), which received 6 injections of either vaccine (n = 9) or PBS
(control) (n = 8) over the course of 17 weeks (Figure 2A). No difference was observed in
the average body weight, appearance, or behavior among mice in all treatment groups
(Figure 2B, Figure S1, and data not shown). Strikingly, a strong antibody response against
Mash2 was observed in vaccinated Apc+/Min-FCCC mice (Figure 2C), whereas no antibody
response was detected in control Apc+/Min-FCCC C mice. A trend towards a reduction
in the number of gross colon tumors per animal was also observed in vaccinated vs.
control animals [27].

Figure 2. KISIMA-Mash2 vaccine is safe and promotes a humoral response in Apc+/Min-FCCCmice. (A) Study design.
Apc+/Min-FCCC mice underwent colonoscopy (cross) prior to enrollment on study. Serum was collected (triangles) at
3 different time-points. Vaccine or vehicle control (arrows) was administered six times. All animals were necropsied one
week after the last vaccine injection. (B) Average body weight of animals obtained weekly for the duration of the study.
(C) Humoral response determined in serum at Week 17 by detecting anti-Mash2 IgG by ELISA.
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3.3. Combination of KISIMA-Mash2 Vaccine and Anti-PD-1 Treatment Is Safe and Promotes
T Cell and Antibody Response in Apc+/Min-FCCC Mice

Since the KISIMA-Mash2 vaccine promoted some immunogenicity in Apc+/Min-FCCC

mice, a larger study was conducted to determine the ability of the vaccine to prevent
colon tumor formation. This study was performed in the presence or absence of the
checkpoint inhibitor anti-mouse PD-1 antibody, to potentially enhance the efficacy of the
KISIMA-Mash2 vaccine. Male Apc+/Min-FCCC mice received vaccine alone (n = 23), anti-PD-1
alone (n = 24), vaccine in combination with anti-PD-1 (n = 21), or vehicle (control) (n = 27)
over the course of 17 weeks (Figure 3A). Again, body weight measurements, as well as
the appearance and behavior of the animals, revealed no difference among mice in all
treatment groups (Figure 3B, Figure S1, and data not shown), indicating the vaccine was
well-tolerated when given alone and in combination with anti-PD-1. Apc+/Min-FCCC mice
vaccinated six times with KISIMA-Mash2 vaccine showed a significant splenic Mash2-
specific T cell response, especially with the peptide pool containing the C-terminal portion
of Mash2, (i.e., peptide pool 3; Figure 3C), for which the number of predicted class I and
class II epitopes was the highest (Table S3). Interestingly, the T cell immune response was
similar in the vaccinated vs. combination groups (Figure 3C), indicating that anti-PD-1
treatment did not improve the immunogenicity of the KISIMA-Mash2 vaccine in the spleen.
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Figure 3. Combination of KISIMA-Mash2 vaccine and anti-PD-1 treatment is safe and promotes T cell immunity in
Apc+/Min-FCCC mice. (A) Study design. Animals underwent colonoscopy (cross) prior to enrollment on study. Serum was
collected (triangles) at baseline and at three additional intervals throughout the study. Vaccine or vehicle control (arrows)
was administered six times, and anti-PD1 or buffer control (stars) was administered in three cycles of three-weekly injections.
All animals were necropsied one week after the last vaccine injection. (B) Average body weight of animals obtained weekly
for the duration of the study. (C) T cell immune response assessed by ELISpot on ex vivo splenocytes after overnight
stimulation with overlapping peptide pools derived from Mash2 antigen. Bar represents the mean of each group for each
peptide pool stimulation. ** p < 0.01; *** p < 0.001; **** p < 0.0001 (2-way ANOVA followed by Tukey’s multiple comparison)
(D) Humoral response determined in serum at Week 3, Week 9, and Week 17 by detecting anti-KISIMA-Mash2 IgG by
ELISA. Line represents the mean for each group. p < 0.05 between Vaccinated vs. Control or Anti-PD-1 groups and p < 0.001
between Combo vs. Control or Anti-PD-1 groups at Week 17 (Two-way ANOVA followed by Tukey’s multiple comparison).

Remarkably, high antibody response against Mash2 was observed in Apc+/Min-FCCC

mice vaccinated with KISIMA-Mash2 alone (Figure 3D) with a peak of antibody response
reached after 4 vaccinations. No further benefit was gained from the addition of anti-PD-1.
No specific antibody response was detected in Apc+/Min-FCCC mice treated with vehicle or
anti-PD-1 alone.
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3.4. Combination of KISIMA-Mash2 Vaccine and Anti-PD-1 Treatment Reduces the Formation of
Colon Tumors in Apc+/Min-FCCC Mice and Is Associated with Increased T-Cell Infiltration into the
Intraepithelial Compartment of Colon Adenomas

To determine if the treatment regimen effectively reduced tumor formation, colons
from treated vs. control animals were histologically analyzed for the presence of adenomas,
including microadenomas. Animals that were tumor-free at the beginning of the study
(Table S2) developed 2.6-fold fewer total colon adenomas following treatment with vaccine
and anti-PD-1 combination therapy vs. buffer (p = 0.02, Figure 4A). Most striking was a
6.5-fold reduction in the number of microadenomas (p = 0.03, Figure 4B) in mice receiving
combination therapy vs. buffer. These data indicate that the combination of vaccine and
anti-PD-1 reduced the formation of colon tumors, including early precursor lesions, in
these animals.

Figure 4. Efficacy of KISIMA-Mash2 vaccine and anti-PD-1 combination treatment on tumor development in Apc+/Min-FCCC

mice. (A) Number of colon adenomas per mouse in animals that were tumor-free at treatment initiation (after removal
of outliers). (B) Number of colon microadenomas per mouse in animals that were tumor-free at treatment initiation after
removal of outliers. *, p > 0.05. All other statistical comparisons were not significant.

To confirm that the immunogenic effect of the vaccine observed in the spleen of
vaccinated mice was associated with an increase in T-cell infiltration into tumors, the
number of CD3+ cells in colon adenomas (Figure 5) was examined by immunohistochem-
istry. The stromal compartment of dysplastic colon tissues exhibited a similar trend for
increased CD3+ lymphocyte density in combination-treated vs. control animals (746 ± 110
vs. 733 ± 139 cells/mm2 dysplastic tissue; p = 0.413, Table S4). Microadenomas were also
examined (Table S5) and exhibited a trend toward increased numbers of intraepithelial
CD3+ cells/lesion in combination-treated (1 ± 0.7 cells/microadenoma) vs. control animals
(0.5 ± 0.3 cells/microadenoma; p = 0.537). However, the low incidence and small size of
these lesions limited the power of the analysis.
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Figure 5. Analysis of CD3+ cells infiltration in Apc+/Min-FCCC mice. Representative colon adenomas, stained with hema-
toxylin and eosin (H&E, left panel) and anti-CD3 antibody (right panel), from mice treated with buffer (Buffer), anti-PD1
alone (anti-PD1), KISIMA-Mash2 vaccine alone (Vaccine), or the KISIMA-Mash2 vaccine and anti-PD-1 (Combination). Boxes
contain a high power view (200×) of the 40× areas positive for CD3 staining. Representative intraepithelial lymphocytes
are highlighted with arrows on the 200× images.
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In contrast, within the intraepithelial compartment of colon adenomas, the density
of CD3+ lymphocytes was 1.9-fold higher in the group receiving the vaccine and anti-
PD-1 combination therapy (179 ± 23 cells/mm2 dysplastic tissue), as compared to the
control group (96 ± 22 cells/mm2 dysplastic tissue) (p = 0.028; Figure 5; Figure 6, Table S4).
Interestingly, the density of CD3+ lymphocytes in the combination group was also signifi-
cantly higher than that of the groups receiving anti-PD-1 alone (p < 0.001) or Vaccine alone
(p < 0.005), demonstrating that single therapy was not sufficient to promote the infiltration
of CD3+ cells into the tumor.

Figure 6. Combination of KISIMA-Mash2 vaccine and anti-PD-1 treatment results in higher T cell
infiltration in Apc+/Min-FCCC mice. Anti-CD3 staining of adenomas from mice treated with buffer
(Buffer), anti-PD1 alone ‘anti-PD1), KISIMA-Mash2 vaccine alone (Vaccine), or the KISIMA-Mash2
vaccine and anti-PD-1 combination (Combination). Box plots indicate the number of intraepithelial
CD3+ lymphocytes per area (mm2) of dysplasia in each animal. Kruskal-Wallis test comparing all
4 groups simultaneously p = 0.002. p values from two-sided Wilcoxon tests are shown on the graph.

Together, these data indicate that combination therapy with KISIMA-Mash2 vaccine
and anti-PD-1 checkpoint blockade increased T-cell infiltration into the intraepithelial
compartment of colon adenomas.

Together, these results demonstrate that KISIMA-Mash2 vaccine, when combined
with an immune checkpoint blockade (anti-PD-1 treatment), induces Mash2-specific T cells,
which are able to infiltrate the colon and reduce the formation of colon tumors.

4. Discussion

The results of the present study indicate that the novel KISIMA-Mash2 vaccine elicits
a strong cellular and humoral immune response in mouse models of CRC. When ad-
ministered in combination with the immune checkpoint inhibitor anti-PD-1, the vaccine
decreased the formation of spontaneous colon adenomas in Apc+/Min-FCCC mice free of
endoscopically-detectable tumors at baseline. Notably, the combination therapy caused a
dramatic (6.5-fold) reduction in the formation of early colon microadenomas. The ability of
this vaccine to target putative precursor lesions of CRC indicates the intervention exhibits
preventive efficacy very early in the tumorigenesis process.
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The present study emphasizes, for the first time, the ability of KISIMA-Mash2 cancer
vaccine to induce both antibodies and T cell immune response against a self-antigen, pre-
sumably due to the predicted MHC class I- and class II-presented epitopes in Mash2 with
potential to stimulate both CD8+ and CD4+ T cells, respectively. In the past, cancer vaccines
expected to promote a specific cytotoxic T cell response to fight tumor cells, have often
failed. However, new strategies, such as RNA vaccines [28], viral vectors [29–31], oncolytic
virus [32,33], heterologous prime-boost strategies [34–36], or recombinant proteins includ-
ing the KISIMA vaccine platform [17], have been developed recently. These approaches
optimize the induction of potent CD4 and CD8 T cell immune responses, underlining the
importance of both components in the fight against cancer. More rarely, cancer vaccines
have been proposed to induce antibodies directed against tumor antigen expressed on
the surface of cancer cells [37]. Mage-A3 protein vaccine was shown previously to induce
clear CD4+ T cell responses that correlate with antibody production but, unfortunately,
no convincing evidence of cytotoxic T-cell responses was observed in this trial [38]. In
addition, a recent study found that a cytolytic population of CD4+ T cells contributes
significantly to anti-tumor immune activity in bladder cancer patients, and their infiltration
into metastatic bladder tumors could predict clinical response to anti-PD-L1 therapy [39].
Although a humoral response against the transcription factor Ascl2 was not expected, our
results demonstrate the capacity of our vaccine platform to promote a strong humoral
response, which is of great interest for developing vaccines against tumor surface anti-
gens, such as Epcam [40] or CEACAM5 [41]. Similarly, the KISIMA vaccine platform
may also be a powerful platform for prophylactic vaccines against viral diseases, such as
COVID-19 or RSV-related diseases. The strong immune response against the Ascl2/Mash2
self-antigen was associated with strong anti-tumor activity, resulting in a significant re-
duction in colon microadenomas and adenomas. Ascl2, which is a master regulator of
cellular stemness in Lgr5+ cells, is dramatically overexpressed during spontaneous colon
tumorigenesis in Apc+/Min-FCCC mice [16] and in humans (>7-fold in adenomas; >10-fold
in carcinomas) [12–14]. Expression of Ascl2 is induced by and perpetuates Wnt signaling,
a critical event in the formation and progression of most (>80%) CRCs [11,12]. Impor-
tantly, no adverse effects were observed when Ascl2 was targeted in this or a previous
study despite the important role Ascl2 expression plays in the maintenance of normal
Lgr5+ intestinal stem cells [16]. Normal intestinal epithelium may evade immune response
due to low expression of Ascl2 (even in intestinal stem cells) as compared to neoplastic
intestinal cells [12,15,16,42]. Interestingly, ablation of Lgr5+ stem cells is well-tolerated
by healthy mice, resulting in no change in the development of colonic crypts or villi in
the small intestine [43,44]. Therefore, even if the vaccine elicits a mild immune response
against normal Lgr5+ intestinal stem cells, we would not anticipate a disruption of normal
gut homeostasis.

Injection of Apc+/Min-FCCC mice with a combination of KISIMA-Mash2 vaccine and anti-
PD-1 induced the infiltration of CD3+ T lymphocytes into colon adenomas, indicating the
treatment regimen successfully mobilized immune cells into the tumor microenvironment.
Interestingly, a higher density of tumor-infiltrating lymphocytes (TILs) is associated with
improved clinical outcomes in CRC [45]. Furthermore, the density of TILs in colorectal car-
cinomas is a better predictor of cancer recurrence than the conventional histopathological
parameters [46,47]. Therefore, in addition to reducing the formation of colon microadeno-
mas and adenomas, the combination therapy (KISIMA vaccine + anti-PD-1) may slow the
rate of progression of any lesions that arise.

Importantly, the addition of anti-PD-1 treatment did not effectively boost the periph-
eral immune response in vaccinated mice (Figure 3C,D); however, only combination-treated
animals exhibited a reduced number of colon microadenomas and adenomas (Figure 4A,B).
In contrast, no effect was observed when the mice were only treated with anti-PD1 antibody,
which is in agreement with a published report in a very similar model (C57Bl/6J ApcMin/+

mice bearing the same APC mutation), where anti-PD-1 antibody therapy alone had no
significant effect on polyp burden [48]. This suggests that the addition of anti-PD-1 can
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improve vaccine efficacy. This is in line with the emerging notion that cancer vaccines and
immune checkpoint inhibitors may function synergistically to induce more effective antitu-
mor immune responses. Although the immune checkpoint inhibitor response rate is high
in specific mismatch repair-deficiency (MMR-D)/microsatellite instability-high (MSI-H)
phenotypes, this carries unique characteristics of an increased tumor mutational burden
and tumor-infiltrating lymphocytes [49]. For the vast majority of colon cancers with low
T cell infiltration, use of an immune checkpoint inhibitor in combination with tumor vacci-
nation represents a promising strategy to strikingly enhance T cell infiltration/function
and improve clinical response [50–52].

The safety profile and efficacy of the KISIMA-Mash2 vaccine in the Apc+/Min-FCCC

mouse supports the use of the KISIMA platform, as well as the human Ascl2 antigen as
a molecular target, for preventive intervention in populations at elevated risk for CRC.
Individuals with a strong family history of CRC are at high risk (2–3-fold) of developing
sporadic CRC, and thus represent an ideal population for immunopreventive interven-
tions [5]. As in the Apc+/Min-FCCC model, most sporadic CRCs arise following the loss of
APC, resulting in the formation of microadenomas, adenomas, and ultimately carcinomas
with elevated Ascl2 expression [11,13,14,16,20,53]. Thus, this vaccine may provide a way
to intervene early in these individuals before the first colon tumors arise.

Although independent analyses are needed, a KISIMA-Ascl2 vaccine may provide
protection to individuals with Lynch syndrome who face a >50% lifetime risk of developing
CRC and are in urgent need of safe, effective, and durable preventive therapies [5]. We
hypothesize the KISIMA-Ascl2 vaccine should be highly effective in these individuals,
as (1) progression of most colon polyps in subjects with Lynch Syndrome occurs via the
APC pathway [54] as in Apc+/Min-FCCC mice; (2) early colon lesions in this population
exhibit a high mutational burden, which may render these tumors hypersensitive to
immunotherapy [22]; and (3) vaccine can be administered to these high-risk individuals
prior to tumor development. Additional preclinical studies in mouse models of Lynch
syndrome, such as Msh2flox/flox mouse model [55,56], will be required to determine the
feasibility of using a vaccine against Ascl2 to prevent colon tumorigenesis in the setting of
mismatch repair deficiency.

While PD-1/PD-L1 blockade has been shown to induce life-saving anti-tumor re-
sponses in patients suffering from a wide variety of cancers, its use to enhance vaccination
efficacy in healthy individuals is clearly a more provocative concept. Nonetheless, the
benefit of using this combination vaccine strategy in those subjects at highest risk for colon
malignancy may outweigh the potential risk. Data from this study clearly demonstrate the
ability of the combination therapy to provide impressive protection against the formation
of sporadic colon tumors in mice. Further study is needed to define the optimal dose and
schedule of PD-1/PD-L1 blockade required to elicit a robust cancer vaccine response. The
potential use of fewer doses of blocking antibody to confer more effective cancer prevention
would further reduce the potential for adverse autoimmune effects in high-risk patient
populations, such as individuals with Lynch Syndrome.

5. Conclusions

In conclusion, the results of this study demonstrate that the KISIMA platform elicits a
strong and specific immune response, and Ascl2 is a promising target for immunopreven-
tion for individuals at elevated risk of developing CRC.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/845/s1, Figure S1. Body weights of mice during an assessment of the KISIMA-Mash2 vaccine
with or without anti-PD-1 treatment, Table S1. Characteristics of mice enrolled on immunogenicity
study at time of first treatment, Table S2. Characteristics of mice enrolled on efficacy study at time of
first treatment, Table S3. MHC class I and class II predicted epitopes in the peptide pools, Table S4.
Intraepithelial and stromal CD3+ lymphocytes as a ratio of cells per dysplastic area and cells per
lesion, Table S5. Intraepithelial and stromal CD3+ cells per microadenoma, Text S1.

https://www.mdpi.com/2072-6694/13/4/845/s1
https://www.mdpi.com/2072-6694/13/4/845/s1


Cancers 2021, 13, 845 14 of 17

Author Contributions: Conceptualization, M.L.C., M.D. and E.B.; methodology, A.A.L., S.C., R.T.M.,
K.B.C. and K.N.H.; validation, E.B., M.L.C. and A.A.L.; formal analysis, E.B., A.A.L., S.C., H.S.C.,
R.T.M., K.B.C., L.A.V.; investigation, A.A.L., K.S.C. and E.B.; data curation, A.A.L., K.B.C., H.S.C.,
and S.C.; writing—original draft preparation, E.B. and A.A.L.; writing—review and editing, M.L.C.,
M.D. and K.S.C.; supervision, E.B. and M.L.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded in part by National Cancer Institute, National Institutes of Health
[Grant Numbers P30 CA006927 and T32 CA009035] and by the Timothy and Aurora Hughes Colon
Cancer Research Fund.

Institutional Review Board Statement: Mouse studies have been reviewed and approved by the
institutional and cantonal veterinary authorities in accordance with Swiss Federal law on animal
protection. All experiments performed at FCCC were approved by the Institutional Animal Care
and Use Committee at FCCC. This research was approved by the institutional and cantonal ethic
committee on 3 November 2016 (ethic code: GE118/17).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical. The
data presented in this study are available on request from the corresponding author.

Acknowledgments: The following core facilities at Fox Chase Cancer Center contributed to this
study: Cell Culture, Genotyping and Real-Time PCR, Histopathology, Biostatistics and Bioinformatics
Facility, Laboratory Animal, and the Small Animal Imaging Component of the Biological Imaging
Facility. The authors would like to thank Erika Riva for her technical assistance and Matthias J.
Schnell of the Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA for
the use of his ELISpot reader.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
2. Wools, A.; Dapper, E.; De Leeuw, J. Colorectal cancer screening participation: A systematic review. Eur. J. Public Health 2015, 26,

158–168. [CrossRef]
3. Wolf, A.M.D.; Fontham, E.T.; Church, T.R.; Flowers, C.R.; Guerra, C.E.; LaMonte, S.J.; Etzioni, R.; McKenna, M.T.; Oeffinger, K.C.;

Shih, Y.-C.T.; et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society.
CA Cancer J. Clin. 2018, 68, 250–281. [CrossRef] [PubMed]

4. Siegel, R.L.; Fedewa, S.A.; Anderson, W.F.; Miller, K.D.; Ma, J.; Rosenberg, P.S.; Jemal, A. Colorectal cancer incidence patterns in
the United States, 1974–2013. J. Natl. Cancer Inst. 2017, 109. [CrossRef] [PubMed]

5. Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology 2010, 138,
2044–2058. [CrossRef] [PubMed]

6. Solomon, S.D.; McMurray, J.J.; Pfeffer, M.A.; Wittes, J.; Fowler, R.; Finn, P.; Anderson, W.F.; Zauber, A.; Hawk, E.; Bertagnolli, M.
Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma Prevention. N. Engl. J. Med. 2005, 352,
1071–1080. [CrossRef]

7. Coyle, C.; Cafferty, F.H.; Langley, R.E. Aspirin and colorectal cancer prevention and treatment: Is it for everyone? Curr. Color
Cancer Rep. 2016, 12, 27–34. [CrossRef]

8. Finn, O.J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 2018, 18, 183–194. [CrossRef]
9. Palladini, A.; Landuzzi, L.; Lollini, P.-L.; Nanni, P. Cancer immunoprevention: From mice to early clinical trials. BMC Immunol.

2018, 19, 1–6. [CrossRef]
10. Kimura, T.; McKolanis, J.R.; Dzubinski, L.A.; Islam, K.; Potter, D.M.; Salazar, A.M.; Schoen, R.E.; Finn, O.J. MUC1 Vaccine for

individuals with advanced adenoma of the colon: A cancer immunoprevention feasibility study. Cancer Prev. Res. 2013, 6,
18–26. [CrossRef]

11. Markowitz, S.D.; Bertagnolli, M.M. Molecular basis of colorectal cancer. N. Engl. J. Med. 2009, 361, 2449–2460. [CrossRef] [PubMed]
12. Schuijers, J.; Junker, J.P.; Mokry, M.; Hatzis, P.; Koo, B.-K.; Sasselli, V.; Van Der Flier, L.G.; Cuppen, E.; Van Oudenaarden, A.;

Clevers, H. Ascl2 Acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 2015, 16,
158–170. [CrossRef] [PubMed]

13. Jubb, A.M.; Chalasani, S.; Frantz, G.D.; Smits, R.; Grabsch, H.I.; Kavi, V.; Maughan, N.J.; Hillan, K.J.; Quirke, P.; Koeppen, H.
Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 2006, 25,
3445–3457. [CrossRef]

http://doi.org/10.3322/caac.21492
http://doi.org/10.1093/eurpub/ckv148
http://doi.org/10.3322/caac.21457
http://www.ncbi.nlm.nih.gov/pubmed/29846947
http://doi.org/10.1093/jnci/djw322
http://www.ncbi.nlm.nih.gov/pubmed/28376186
http://doi.org/10.1053/j.gastro.2010.01.054
http://www.ncbi.nlm.nih.gov/pubmed/20420945
http://doi.org/10.1056/NEJMoa050405
http://doi.org/10.1007/s11888-016-0306-9
http://doi.org/10.1038/nri.2017.140
http://doi.org/10.1186/s12865-018-0253-0
http://doi.org/10.1158/1940-6207.CAPR-12-0275
http://doi.org/10.1056/NEJMra0804588
http://www.ncbi.nlm.nih.gov/pubmed/20018966
http://doi.org/10.1016/j.stem.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/25620640
http://doi.org/10.1038/sj.onc.1209382


Cancers 2021, 13, 845 15 of 17

14. Broussard, E.K.; Kim, R.; Wiley, J.C.; Marquez, J.P.; Annis, J.E.; Pritchard, D.; Disis, M.L. Identification of Putative immunologic
targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions. Cancer Prev. Res.
2013, 6, 666–674. [CrossRef]

15. Jang, B.G.; Kim, H.S.; Kim, K.J.; Rhee, Y.-Y.; Kim, W.H.; Kang, G.H. Distribution of intestinal stem cell markers in colorectal
precancerous lesions. Histopathology 2015, 68, 567–577. [CrossRef] [PubMed]

16. Rioux, C.R.; Clapper, M.L.; Cooper, H.S.; Michaud, J.; Amant, N.S.; Koohsari, H.; Workman, L.; Kaunga, E.; Hensley, H.;
Pilorget, A.; et al. Self-antigen MASH2 combined with the AS15 immunostimulant induces tumor protection in colorectal cancer
mouse models. PLoS ONE 2019, 14, e0210261. [CrossRef]

17. Belnoue, E.; Mayol, J.-F.; Carboni, S.; Besson, W.D.B.; Dupuychaffray, E.; Nelde, A.; Stevanovic, S.; Santiago-Raber, M.-L.;
Walker, P.R.; Derouazi, M. Targeting self- and neoepitopes with a modular self-adjuvanting cancer vaccine. JCI Insight 2019,
4, 5. [CrossRef]

18. Derouazi, M.S.; Di Berardino-Besson, W.; Belnoue, E.; Hoepner, S.; Walther, R.; Benkhoucha, M.; Teta, P.; Dufour, Y.J.; Maroun, C.Y.;
Salazar, A.M.; et al. Novel cell-penetrating peptide-based vaccine induces robust CD4+ and CD8+ T cell–mediated antitumor
immunity. Cancer Res. 2015, 75, 3020–3031. [CrossRef] [PubMed]

19. Belnoue, E.; Di Berardino-Besson, W.; Gaertner, H.; Carboni, S.; Dunand-Sauthier, I.; Cerini, F.; Suso-Inderberg, E.-M.; Wälchli, S.;
König, S.; Salazar, A.M.; et al. Enhancing Antitumor immune responses by optimized combinations of cell-penetrating peptide-
based vaccines and adjuvants. Mol. Ther. 2016, 24, 1675–1685. [CrossRef]

20. Cooper, H.S.; Chang, W.-C.L.; Coudry, R.; Gary, M.A.; Everley, L.; Spittle, C.S.; Wang, H.; Litwin, S.; Clapper, M.L. Generation
of a unique strain of multiple intestinal neoplasia (Apc+/Min-FCCC) mice with significantly increased numbers of colorectal
adenomas. Mol. Carcinog. 2005, 44, 31–41. [CrossRef] [PubMed]

21. Hensley, H.H.; Merkel, C.E.; Chang, W.-C.L.; Devarajan, K.; Cooper, H.S.; Clapper, M.L. Endoscopic imaging and size
estimation of colorectal adenomas in the multiple intestinal neoplasia mouse. Gastrointest. Endosc. 2009, 69, 742–749.
[CrossRef] [PubMed]

22. Chang, K.; Taggart, M.W.; Reyes-Uribe, L.; Borras, E.; Riquelme, E.; Barnett, R.M.; Leoni, G.; Lucas, F.A.S.; Catanese, M.T.;
Mori, F.; et al. Immune profiling of premalignant lesions in patients with lynch syndrome. JAMA Oncol. 2018, 4, 1085–1092.
[CrossRef] [PubMed]

23. Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.;
Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7,
1–7. [CrossRef]

24. Riddell, R.H.; Goldman, H.; Ransohoff, D.F.; Appelman, H.D.; Fenoglio, C.M.; Haggitt, R.C.; Hren, C.; Correa, P.; Hamilton, S.R.;
Morson, B.C.; et al. Dysplasia in inflammatory bowel disease: Standardized classification with provisional clinical applications.
Hum. Pathol. 1983, 14, 931–968. [CrossRef]

25. Odze, R.D.; Goldblum, J.R.; Crawford, J.M.; Renshaw, A. Surgical pathology of the gi tract, liver, biliary tree, and pancreas.
Adv. Anat. Pathol. 2005, 12, 35. [CrossRef]

26. Hendry, S.; Salgado, R.; Gevaert, T.; Russell, P.A.; John, T.; Thapa, B.; Christie, M.; van de Vijver, K.; Estrada, M.;
Gonzalez-Ericsson, P.I.; et al. Assessing Tumor-infiltrating lymphocytes in solid tumors: A practical review for patholo-
gists and proposal for a standardized method from the international immuno-oncology biomarkers working group: Part 2:
TILs in melanoma, gastrointestinal tract carcinomas, non–small cell lung carcinoma and mesothelioma, endometrial and
ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors.
Adv. Anat. Pathol. 2017, 24, 311–335. [CrossRef] [PubMed]

27. Belnoue, E.; Leystra, A.A.; Clapper, M.L.; Derouazi, M. KISIMA-Mash2 Vaccine Reduces the Number of Gross Colon Tumors in Male
Apc+/Min-FCCC Mice; Material Not Intended for Publication; AMAL Therapeutics: Geneva, Switzerland; Fox Chase Cancer
Center: Philadelphia, PA, USA, 2021.

28. Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.;
Kuhn, A.N.; Omokoko, T.; et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020, 585,
107–112. [CrossRef]

29. Kallert, S.M.; Darbre, S.; Bonilla, W.V.; Kreutzfeldt, M.; Page, N.; Müller, P.; Kreuzaler, M.; Lu, M.; Favre, S.; Kreppel, F.; et al.
Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy. Nat. Commun.
2017, 8, 15327. [CrossRef]

30. Zemp, F.; Rajwani, J.; Mahoney, D.J. Rhabdoviruses as vaccine platforms for infectious disease and cancer. Biotechnol. Genet.
Eng. Rev. 2018, 34, 122–138. [CrossRef]

31. Snook, A.E.; Baybutt, T.R.; Xiang, B.; Abraham, T.S.; Flickinger, J.C.; Hyslop, T.; Zhan, T.; Kraft, W.K.; Sato, T.; Waldman, S.A. Split
tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J. Immunother. Cancer
2019, 7, 104. [CrossRef] [PubMed]

32. Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107,
1373–1379. [CrossRef]

http://doi.org/10.1158/1940-6207.CAPR-12-0484
http://doi.org/10.1111/his.12787
http://www.ncbi.nlm.nih.gov/pubmed/26212207
http://doi.org/10.1371/journal.pone.0210261
http://doi.org/10.1172/jci.insight.127305
http://doi.org/10.1158/0008-5472.CAN-14-3017
http://www.ncbi.nlm.nih.gov/pubmed/26116496
http://doi.org/10.1038/mt.2016.134
http://doi.org/10.1002/mc.20114
http://www.ncbi.nlm.nih.gov/pubmed/15937958
http://doi.org/10.1016/j.gie.2008.09.054
http://www.ncbi.nlm.nih.gov/pubmed/19251020
http://doi.org/10.1001/jamaoncol.2018.1482
http://www.ncbi.nlm.nih.gov/pubmed/29710228
http://doi.org/10.1038/s41598-017-17204-5
http://doi.org/10.1016/S0046-8177(83)80175-0
http://doi.org/10.1097/01.pap.0000151320.80494.c5
http://doi.org/10.1097/pap.0000000000000161
http://www.ncbi.nlm.nih.gov/pubmed/28777143
http://doi.org/10.1038/s41586-020-2537-9
http://doi.org/10.1038/ncomms15327
http://doi.org/10.1080/02648725.2018.1474320
http://doi.org/10.1186/s40425-019-0576-2
http://www.ncbi.nlm.nih.gov/pubmed/31010434
http://doi.org/10.1111/cas.13027


Cancers 2021, 13, 845 16 of 17

33. Lichty, B.D.; Breitbach, C.J.; Stojdl, D.F.; Bell, J.C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 2014, 14,
559–567. [CrossRef] [PubMed]

34. Bissa, M.; Illiano, E.; Pacchioni, S.; Paolini, F.; Zanotto, C.; Morghen, C.D.G.; Massa, S.; Franconi, R.; Radaelli, A.; Venuti, A. A
prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine
against HPV-16-associated cancers. J. Transl. Med. 2015, 13, 80. [CrossRef]

35. Swadling, L.; Capone, S.; Antrobus, R.D.; Brown, A.; Richardson, R.; Newell, E.W.; Halliday, J.; Kelly, C.; Bowen, D.;
Fergusson, J.; et al. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and
sustains functional HCV-specific T cell memory. Sci. Transl. Med. 2014, 6, 261ra153. [CrossRef]

36. Aitken, A.S.; Roy, D.G.; Martin, N.T.; Sad, S.; Bell, J.C.; Bourgeois-Daigneault, M.-C. Brief communication; A heterolo-
gous oncolytic bacteria-virus prime-boost approach for anticancer vaccination in mice. J. Immunother. 2018, 41, 125–129.
[CrossRef] [PubMed]

37. Xia, L.; Schrump, D.S.; Gildersleeve, J.C. Whole-cell cancer vaccines induce large antibody responses to carbohydrates and
glycoproteins. Cell Chem. Biol. 2016, 23, 1515–1525. [CrossRef] [PubMed]

38. Atanackovic, D.; Altorki, N.K.; Stockert, E.; Williamson, B.; Jungbluth, A.A.; Ritter, E.; Santiago, D.; Ferrara, C.A.; Matsuo, M.;
Selvakumar, A.; et al. Vaccine-Induced CD4+T Cell Responses to MAGE-3 Protein in lung cancer patients. J. Immunol. 2004, 172,
3289–3296. [CrossRef] [PubMed]

39. Oh, D.Y.; Kwek, S.S.; Raju, S.S.; Li, T.; McCarthy, E.; Chow, E.; Aran, D.; Ilano, A.; Pai, C.-C.S.; Rancan, C.; et al. intratumoral
CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 2020, 181, 1612–1625. [CrossRef] [PubMed]

40. Eyvazi, S.; Farajnia, S.; Dastmalchi, S.; Kanipour, F.; Zarredar, H.; Bandehpour, M.; Bandehpour, M. antibody based EpCAM
targeted therapy of cancer, review and update. Curr. Cancer Drug Targets 2018, 18, 857–868. [CrossRef]

41. Zheng, C.; Feng, J.; Lu, D.; Wang, P.; Xing, S.; Coll, J.-L.; Yang, D.; Yan, X. A novel anti-CEACAM5 monoclonal antibody,
CC4, suppresses colorectal tumor growth and enhances NK Cells-mediated tumor immunity. PLoS ONE 2011, 6, e21146.
[CrossRef] [PubMed]

42. Zhou, Z.-H.; Rao, J.; Yang, J.; Wu, F.; Tan, J.; Xu, S.-L.; Ding, Y.; Zhan, N.; Hu, X.-G.; Cui, Y.-H.; et al. SEMA3F prevents
metastasis of colorectal cancer by PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. J. Pathol. 2015, 236,
467–478. [CrossRef]

43. Agudo, J.; Park, E.S.; Rose, S.A.; Alibo, E.; Sweeney, R.; Dhainaut, M.; Kobayashi, K.S.; Sachidanandam, R.; Baccarini, A.;
Merad, M.; et al. Quiescent tissue stem cells evade immune surveillance. Immunity 2018, 48, 271–285.e5. [CrossRef] [PubMed]

44. Metcalfe, C.; Kljavin, N.M.; Ybarra, R.; De Sauvage, F.J. Lgr5+ Stem cells are indispensable for radiation-induced intestinal
regeneration. Cell Stem Cell 2014, 14, 149–159. [CrossRef]

45. Kong, J.C.; Guerra, G.R.; Pham, T.; Mitchell, C.; Lynch, A.C.; Warrier, S.K.; Ramsay, R.G.; Heriot, A.G. Prognostic impact of tumor-
infiltrating lymphocytes in primary and metastatic colorectal cancer: A systematic review and meta-analysis. Dis. Colon Rectum
2019, 62, 498–508. [CrossRef]

46. Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.;
Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006,
313, 1960–1964. [CrossRef] [PubMed]

47. Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.-S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International
validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 391,
2128–2139. [CrossRef]

48. Xiao, Q.; Wu, J.; Wang, W.-J.; Chen, S.; Zheng, Y.; Yu, X.; Meeth, K.; Sahraei, M.; Bothwell, A.L.M.; Chen, L.; et al. DKK2 imparts
tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation. Nat. Med. 2018, 24,
262–270. [CrossRef] [PubMed]

49. Quiroga, D.; Lyerly, H.K.; Morse, M.A. Deficient mismatch repair and the role of immunotherapy in metastatic colorectal cancer.
Curr. Treat. Options Oncol. 2016, 17, 1–16. [CrossRef]

50. Yarchoan, M.; Huang, C.; Zhu, Q.; Ferguson, A.K.; Durham, J.N.; Anders, R.A.; Thompson, E.D.; Rozich, N.S.; Ii, D.L.T.;
Nauroth, J.M.; et al. A phase 2 study of GVAX colon vaccine with cyclophosphamide and pembrolizumab in patients with
mismatch repair proficient advanced colorectal cancer. Cancer Med. 2019, 9, 1485–1494. [CrossRef] [PubMed]

51. Pham, T.; Pereira, L.; Roth, S.; Galletta, L.; Link, E.; Akhurst, T.; Solomon, B.; Michael, M.; Darcy, P.; Sampurno, S.; et al.
First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody
in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: The MYPHISMO study protocol
(NCT03287427). Contemp. Clin. Trials Commun. 2019, 16, 100409. [CrossRef]

52. Moehler, M.; Delic, M.; Goepfert, K.; Aust, D.; Grabsch, H.I.; Halama, N.; Heinrich, B.; Julié, C.; Lordick, F.; Lutz, M.P.; et al.
Immunotherapy in gastrointestinal cancer: Recent results, current studies and future perspectives. Eur. J. Cancer 2016, 59,
160–170. [CrossRef]

53. Clapper, M.L.; Chang, W.-C.L.; Cooper, H.S. Dysplastic aberrant crypt foci: Biomarkers of early colorectal neoplasia and response
to preventive intervention. Cancer Prev. Res. 2020, 13, 229–240. [CrossRef] [PubMed]

http://doi.org/10.1038/nrc3770
http://www.ncbi.nlm.nih.gov/pubmed/24990523
http://doi.org/10.1186/s12967-015-0437-9
http://doi.org/10.1126/scitranslmed.3009185
http://doi.org/10.1097/CJI.0000000000000208
http://www.ncbi.nlm.nih.gov/pubmed/29293165
http://doi.org/10.1016/j.chembiol.2016.10.012
http://www.ncbi.nlm.nih.gov/pubmed/27889407
http://doi.org/10.4049/jimmunol.172.5.3289
http://www.ncbi.nlm.nih.gov/pubmed/14978137
http://doi.org/10.1016/j.cell.2020.05.017
http://www.ncbi.nlm.nih.gov/pubmed/32497499
http://doi.org/10.2174/1568009618666180102102311
http://doi.org/10.1371/journal.pone.0021146
http://www.ncbi.nlm.nih.gov/pubmed/21731662
http://doi.org/10.1002/path.4541
http://doi.org/10.1016/j.immuni.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29466757
http://doi.org/10.1016/j.stem.2013.11.008
http://doi.org/10.1097/DCR.0000000000001332
http://doi.org/10.1126/science.1129139
http://www.ncbi.nlm.nih.gov/pubmed/17008531
http://doi.org/10.1016/S0140-6736(18)30789-X
http://doi.org/10.1038/nm.4496
http://www.ncbi.nlm.nih.gov/pubmed/29431745
http://doi.org/10.1007/s11864-016-0414-4
http://doi.org/10.1002/cam4.2763
http://www.ncbi.nlm.nih.gov/pubmed/31876399
http://doi.org/10.1016/j.conctc.2019.100409
http://doi.org/10.1016/j.ejca.2016.02.020
http://doi.org/10.1158/1940-6207.CAPR-19-0316
http://www.ncbi.nlm.nih.gov/pubmed/32132117


Cancers 2021, 13, 845 17 of 17

54. Ahadova, A.; Gallon, R.; Gebert, J.; Ballhausen, A.; Endris, V.; Kirchner, M.; Stenzinger, A.; Burn, J.; Doeberitz, M.V.K.;
Bläker, H.; et al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer 2018, 143, 139–150.
[CrossRef] [PubMed]

55. Kucherlapati, M.H.; Lee, K.; Nguyen, A.A.; Clark, A.B.; Hou, H.; Rosulek, A.; Li, H.; Yang, K.; Fan, K.; Lipkin, M.; et al. An Msh2
conditional knockout mouse for studying intestinal cancer and testing anticancer agents. Gastroenterology 2010, 138, 993–1002.
[CrossRef] [PubMed]

56. Gelincik, O.; Ibrahim, H.; Ozkan, M.; Ahadova, A.; Sei, S.; Shoemaker, R.; Kloor, M.; Doeberitz, M.V.K.; Lipkin, S.M. Abstract
2732: Frameshift neoantigen vaccination prevent Lynch syndrome mouse model intestinal cancer. Prev. Early Detect. Intercept.
2019, 79, 2732. [CrossRef]

http://doi.org/10.1002/ijc.31300
http://www.ncbi.nlm.nih.gov/pubmed/29424427
http://doi.org/10.1053/j.gastro.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/19931261
http://doi.org/10.1158/1538-7445.am2019-2732

	Introduction 
	Materials and Methods 
	Animals 
	Colonoscopy 
	Vaccines 
	Animal Treatment 
	ELISA Assay for Humoral Response 
	ELISpot Assay 
	Histopathology 
	Immunohistochemistry 
	Statistical Analysis 

	Results 
	KISIMA-Mash2 Vaccine Promotes T Cell and Humoral Responses 
	KISIMA-Mash2 Vaccine Is Safe and Promotes an Antibody Response in Apc+/Min-FCCC Mice 
	Combination of KISIMA-Mash2 Vaccine and Anti-PD-1 Treatment Is Safe and Promotes T Cell and Antibody Response in Apc+/Min-FCCC Mice 
	Combination of KISIMA-Mash2 Vaccine and Anti-PD-1 Treatment Reduces the Formation of Colon Tumors in Apc+/Min-FCCC Mice and Is Associated with Increased T-Cell Infiltration into the Intraepithelial Compartment of Colon Adenomas 

	Discussion 
	Conclusions 
	References

