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Simple Summary: The lack of early diagnosis and the absence of suitable biomarkers coupled with
resistance to available therapeutic options render pancreatic cancer one of the deadliest cancer types.
Therefore, new therapeutic approaches are needed to be developed, taking into account the genetic
and molecular profile of pancreatic tumors. Here, we critically review past and current efforts that
have resulted in the development of potent and specific antitumor compounds that, if employed in
the appropriate combination therapy, may change this recalcitrant cancer type into a manageable one.

Abstract: Cytotoxic chemotherapy remains the only treatment option for most pancreatic ductal
adenocarcinoma patients. Currently, the median overall survival of patients with advanced disease
rarely exceeds 1 year. The complex network of pancreatic cancer composed of immune cells, en-
dothelial cells, and cancer-associated fibroblasts confers intratumoral and intertumoral heterogeneity
with distinct proliferative and metastatic propensity. This heterogeneity can explain why tumors do
not behave uniformly and are able to escape therapy. The advance in technology of whole-genome
sequencing has now provided the possibility of identifying every somatic mutation, copy-number
change, and structural variant in a given cancer, giving rise to personalized targeted therapies. In
this review, we provide an overview of the current and emerging treatment strategies in pancreatic
cancer. By highlighting new paradigms in pancreatic ductal adenocarcinoma treatment, we hope to
stimulate new thoughts for clinical trials aimed at improving patient outcomes.

Keywords: pancreatic ductal adenocarcinoma; therapies; DNA repair; tumor microenvironment;
epigenetic alterations; key mutations; autophagy; immunotherapy

1. Introduction

Pancreatic ductal adenocarcinoma (thereafter PCa) remains one of the deadliest malig-
nancies with a 5-year overall survival (OS) of only 9% in 2020 [1]. The reason for this lies
on the fact that, due to the late diagnosis, about 80% of patients arriving to the clinic have
already locally advanced and unresectable PCa as a result of local invasion of adjacent
structures. Based on the tumor stage at the time of diagnosis, PCa can be treated with
surgery, chemotherapy, radiation therapy, and targeted therapy with different recommen-
dations [2–4]. At a resectable PCa setting, surgery can have a curative (when all the tumor
can be removed) purpose. According to recent clinical practice guidelines of the American
Society of Clinical Oncology, modified FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan
and oxaliplatin, thereafter mFOLFIRINOX) must be the preferred adjuvant therapy for
patients with pancreatic adenocarcinoma who have undergone an R0 or R1 resection and
have not received prior neoadjuvant chemotherapy [5]. The term “modified” refers to
the reduction of irinotecan from 180 to 150 mg/m2 and the exclusion of the 5-FU bolus
due to the emergence of adverse effects of FOLFIRINOX. Moreover, in the adjuvant/post-
operative setting, conventionally fractionated radiation is recommended for patients with
high-risk features such as positive lymph nodes and margins. For patients with locally
advanced and metastatic disease (unresectable PCa), systemic chemotherapy, generally
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mFOLFIRINOX or gemcitabine/nab-paclitaxel combination, followed by radiation therapy
is recommended, and depending on the presence of alterations, including specific genetic
mutations, mismatch repair deficiency, or high microsatellite instability, may receive ad-
ditional targeted therapies. However, in such advanced stage and due to the aggressive
cell biology of PCa with continuing therapy resistance, the available treatment options
are not sufficient for curative outcomes. While chemotherapy clearly improves the OS of
PCa patients at the preoperative and postoperative setting, radiotherapy is subjected to
controversy due to conflicting clinical trial results and its association with a narrow thera-
peutic index. The impact of radiotherapy in the management of PCa has been extensively
reviewed elsewhere [6].

Aside from the general aging of our society, obesity and type-2 diabetes play a role
in the etiology of PCa. In this case, a chronic low-grade inflammation may be a potential
mechanism linking obesity to increased PCa incidence and progression [7–9]. Moreover,
lifestyle habits, including alcohol abuse and tobacco use appear to contribute to PCa devel-
opment [10]. Lastly, there are some genetic syndromes characterized by specific mutations
such as BRCA1, BRCA2 (Breast and ovarian cancer syndrome), ATM (Ataxia telangiectasia),
STK11 (Peutz-Jeghers syndrome), PRSS1 (hereditary pancreatitis), MLH1, and MSH2/6
(Lynch syndrome) that are associated with PCa for a subgroup of patients, representing
additional risk factors [11]. A deeper understanding of the pathology of PCa may explain
therapeutic resistance, survival differences, and responses to specific therapies. The genetic
landscape of PCa is characterized by somatic mutations in one or more of the four major
genes: KRAS, CDKN2A, TP53, and SMAD4 [12]. Besides these mutations, the development
of PCa depends on the tumor microenvironment (TME). Targeting single deregulated path-
ways is often ineffective owing to redundant signaling and complex crosstalk. Moreover,
the high degree of inter-tumoral genetic heterogeneity of PCa suggests that it is unlikely
that a single targeted therapy will work [13,14]. Therefore, a combination of druggable key
signaling hubs needs to be identified and targeted. In this review, we critically summarize
the latest targeted combination therapies for advanced/metastatic PCa and discuss new
viewpoints for therapeutic approaches currently under preclinical evaluation.

2. Methods

To search for clinical trials, we used the https://www.clinicaltrials.gov (accessed on
20 December 2020) database. We selected for randomized clinical trial studies for PCa
patients with reported results (339 studies). From these, we excluded overlapping studies,
studies not aimed for combination therapies, and studies for resectable PCa. Moreover,
the terminated trials without results are mentioned in the context only if the reason for
termination was lack of efficacy and/or toxicity. In addition, when appropriate, we refer
to some ongoing clinical trials specially for new targeted therapies, i.e., chimeric antigen
receptor T cells (CAR-T) due to the lack of finalized trials.

3. Targeting DNA Repairing Deficiency and Microsatellite Instability

Genomic instability is a key feature of almost all human cancers [15]. Such modifi-
cations benefit the clonal growth of cancer cells, including improvements in gene copy
numbers, rearrangements, and mutations. Nevertheless, these same defects often produce
cancer cell vulnerabilities that could be used for anticancer therapies. A substantial popu-
lation of PCa patients harbors germline or somatic mutations in genes that are involved
in the DNA damage repair (DDR) pathway, such as BRCA1/2 and ATM [16], suggesting
that these patients may benefit from personalized targeted therapies. Moreover, PCa cells
may be selectively sensitive to DDR inhibitors because KRAS mutations, which are present
in 95% of PCa cases, are associated with increased replication stress due to depletion of
nucleotide pools [17] and the slowing of replication fork activity [18].

https://www.clinicaltrials.gov
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3.1. PARP Inhibitors

Poly (ADP-ribose) polymerase (PARP) enzymes detect and bind to single-strand
DNA breaks (SSB), leading to the recruitment of hundreds of proteins to repair the SSBs.
However, if SSBs are not repaired, they cause stall of replications forks and eventually
progress to double-strand breaks, which are highly cytotoxic to cells. Thus, cancer cells
with mutations that prevent homologous recombination repair, such as BRCA1/2 loss-of-
function mutations, are often synthetically lethal with PARP inhibitors due to significantly
lower DDR [19]. A phase II clinical trial with olaparib, a small molecule PARP inhibitor, in
a small cohort of BRCA1/2 mutated advanced PCa patients with gemcitabine resistance,
evidenced a tumor response rate of 50.0% (4/8 patients), while 25% showed stable disease
≥8 weeks with a median overall survival (OS) of 9.8 months [20]. Similarly, a phase III
clinical trial with olaparib that included 154 metastatic PCa patients with a germline BRCA1
or BRCA2 mutation resulted in a median progression-free survival (PFS) of 7.4 months in
the olaparib group vs. 3.8 months of the placebo group [21]. Thus, the documented efficacy
of PARP inhibitors in PCa patients with germline BRCA1 or BRCA2 mutation underscores
the importance of germline testing for all patients with PCa.

In addition to PARP inhibitors alone, several trials are currently underway to evaluate
PARP inhibitor combinations with other classes of therapies causing DNA damage in PCa
patients. However, in >80% of patients, PARP inhibitors, when combined with chemother-
apy, including olaparib plus gemcitabine and olaparib plus irinotecan or cisplatin, showed
substantial toxicity [22,23]. Clinical trials designed to assess the effectiveness of certain
PARP inhibitor combinations of chemotherapy and/or dose-reduced chemotherapy will
help decide whether or not such combinations will play a role in providing therapeutic
efficacy in PCa patients.

3.2. ATM Inhibition

In contrast to PARP inhibitors, the use of other DDR inhibitors is currently restricted
to early clinical studies. Ataxia Telangiectasia Mutated (ATM) is a serine/threonine kinase
involved in DDR signaling and it is one of the most commonly mutated DDR genes,
with a number of somatic or germline mutations identified in PCa [24,25]. A mouse
model of ATM deficient PCa evidenced an increased number of pancreatic intraepithelial
precursor lesions, fibrosis, and a greater degree of epithelial to mesenchymal transition
compared to the control mice, suggesting a role in PCa progression [26]. ATM inhibitors
such as AZD0156 in combination with olaparib, irinotecan, or fluorouracil in patients with
advanced solid tumors are currently in phase I clinical trials (NCT02588105). Cancer cells
may compensate the loss of ATM by upregulating ATR, indicating that ATR inhibitors may
display efficacy in ATM-deficient tumors, including PCa. However, ATM-deficient PCa
cell lines undergo cell death only when incubated with olaparib plus AZD6738, an ATR
inhibitor, but neither agent alone [27]. Thus, patients with ATM deficient PCa may benefit
from combination therapies targeting PARP and ATR.

Intriguingly, recent preclinical data showed that the addition of DNA-PK inhibitors
with PARP and ATR inhibitors provide synergistic antitumor effects in both ATM-deficient
and ATM-proficient cells [28]. If this approach turns out to be feasible in the clinic, it will
considerably extend the target population that can benefit from such combination therapies.

3.3. ATR Inhibition

ATR is one of the primary targets of DDR inhibitors since both SSBs and double-strand
DNA breaks (DSBs) are the main regulatory features of ATR [29]. There are currently five ongo-
ing clinical trials assessing ATR targeting compounds: AZD6738 (NCT02630199, NCT03669601),
M6620 (NCT03718091), M4344 (NCT02278250), and BAY1895344 (NCT03188965). In PDAC
cell lines, AZD6738 inhibited gemcitabine-induced Chk1 activation, prevented cell cycle
arrest, and strongly induced replication stress. Interestingly, the combination of AZD6738
and gemcitabine induced tumor regression in a subgroup of tumors in the KRASG12D;
p53R172H; Pdx-cre (KPC) mouse model in vivo [30]. Similar to human PCa, KPC mouse
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tumors are known to be refractory to therapy, suggesting that the combination of ATR with
chemotherapy may be effective in a subset of human PCa patients. M6620 is the first ATR
inhibitor tested for monotherapy and combined with various chemotherapies, including
topotecan, carboplatin, gemcitabine, and cisplatin [31–33]. M6620 monotherapy was well
tolerated without observation of dose limiting toxicities and the combination with carbo-
platin showed clinical activity in patients with advanced solid tumors [33]. Nevertheless,
chemotherapy combinations were associated with higher rates of bone marrow toxicity
which required M6620 dose reduction. Thus, when used in combination with systemic DNA
damaging chemotherapy, it is necessary to optimize the dose/frequency of ATR inhibitors
to allow normal tissue recovery. More ongoing phase I clinical trials aim at determining the
safety and maximum tolerated dose of ATR inhibitors in combination with chemotherapy
in patients with advanced solid tumors. Of these, NCT02630199 and NCT03669601 are
testing AZD6738 in combination with paclitaxel and gemcitabine, respectively, while the
NCT02278250 aims at testing M4344 in combination with carboplatin.

3.4. DNA-PK Inhibition

The DNA-dependent protein kinase (DNA-PK) is involved in the non-homologous end
joining (NHEJ) pathway [34]. This class of drugs is particularly important in combination
with ionizing radiation (IR) because NHEJ is the prevailing repair mechanism for IR-
induced DNA double-strand breaks [35]. Indeed, DNA-PK genetic deficiencies sensitize
cells to IR and other DSB-inducing agents [36]. M3814 (peposertib), a highly potent
and selective inhibitor of DNA-PK, sensitized pancreatic cancer cells to IR in vitro and
provided complete tumor regression upon treatment with IR in vivo [37]. In the clinical
setting, M3814 has been tested in a phase I clinical trial (NCT02316197) in which it was
well-tolerated when given orally as a single agent in doses up to 400 mg BID [38]. Based
on the promising preclinical and clinical trials, M3814 has progressed into a phase I/II
clinical testing in combination with hypofractionated radiation therapy for the treatment
of unresectable locally advanced PCa (NCT04172532). This study, which is currently
recruiting participants, is expected to be concluded in 2024.

3.5. CHK1/2 Inhibition

Cell cycle progression is monitored by mechanisms that control the transition from
quiescence (G0) to proliferation, ensuring genetic transcript fidelity. Checkpoint kinase 1
(CHK1) and CHK2 are serine/threonine protein kinases that are part of the recognition of
DNA damage. CHK1 is an important signal transducer and the trigger of G2 checkpoint
activation, while CHK2 is involved in the repair of DNA, cell cycle, and apoptosis in DDR.
CHEK2 gene mutations have been identified in a wide variety of cancers, including PCa [39].
A CHK1/2 inhibitor, AZD7762, alone or in combination with gemcitabine significantly
sensitized PCa cells (MiaPaCa-2) to radiation. Interestingly, the radiosensitization was
associated with abrogation of the G2 checkpoint, inhibition of Rad51 focus formation, inhi-
bition of homologous recombination repair, and persistent gamma-H2AX expression [40].
However, AZD7762 in combination with gemcitabine provided only a partial objective
response in gemcitabine-naïve patients (NCT00413686). Moreover, AZD7762 was found to
be cardiotoxic, which occurred at doses as low as 30 mg and had to be stopped [41,42].

A phase I/II trial with rabusertib (LY2603618), a highly selective CHK1 inhibitor, as-
sessed whether combination with gemcitabine could prolong OS compared to gemcitabine
alone in 99 patients with unresectable PCa (NCT00839332). The results from this study
evidenced that the combination of rabusertib with gemcitabine did not confer a greater
survival advantage compared to gemcitabine alone [43]. Recently, another preclinical study
showed that prexasertib (LY2606368), a drug currently in phase I clinical trials, increases
the sensitivity of PCa cells to gemcitabine and S-1 (an orally available fluoropyrimidine
derivative) [44]. Prexasertib is currently being evaluated in combination with olaparib
(NCT03057145) or multiple other targeted drugs (NCT02124148) in advanced solid tumors.



Cancers 2021, 13, 799 5 of 29

Overall, the lack of obvious clinical efficacy and the reported increased cardiotoxi-
city warrant further studies to clearly assess whether CHK1 inhibitors can be used for
PCa therapy.

3.6. Wee1

The Wee1 protein kinase phosphorylates CDK1Tyr15, resulting in G2/M checkpoint
activation [45]. Thus, Wee1 inhibition prevents initiation of G2 checkpoints, causing trans-
formed cells with damaged DNA to go through mitosis and cell death. There are multiple
completed or ongoing clinical trials with Wee1 inhibitors in many tumor types that have
been extensively reviewed by Ghelli Luserna di Rorà et al. [46]. One of these clinical trials
examined AZD1775, a Wee1 kinase inhibitor, as monotherapy or in combination with
chemotherapy (gemcitabine, cisplatin, or carboplatin) in patients with refractory solid
tumors (NCT00648648). Of 176 patients that were given combination therapy, 94 (53%)
had stable disease and 17 (10%) achieved a partial response. Interestingly, the response
rate in TP53-mutated patients (n = 19) was 21% compared with 12% in TP53 wild-type
patients (n = 33) [47]. In PDAC, AZD1775 was tested in a dose escalation study alone or
combined with gemcitabine (+radiation) in a cohort of 34 patients with locally advanced
unresectable PCa (NCT02037230). In this trial, the combination of AZD1775 with gemc-
itabine and radiation resulted in an OS of 22 months compared to the 11.9 to 13.6 months
of gemcitabine/radiation alone [48]. Currently, the benefits of adding the AZD1775 into
a gemcitabine + nanoparticle albumin-bound (nab)-paclitaxel are being evaluated in a
phase I/II clinical trial in patients with previously untreated unresectable or metastatic
PCa (NCT02194829).

Preclinical evidence has indicated that Wee1 inhibitors show synergistic effects when
combined with histone deacetylase (HDAC) inhibitors [49], proteasome inhibitors [50],
tyrosine kinase inhibitors [51], anti-apoptotic protein inhibitors (enhance dependency on
BCL-2 and/or MCL-1 inhibition) [52], and mammalian (or mechanic) target of rapamycin
(mTOR) inhibitors [53]. This latter study is particularly noteworthy for PCa as mTOR
inhibition was found to synergize with Wee1 inhibition in KRAS mutant tumors. Future
research is necessary to assess whether the combination of Wee1 with mTOR inhibitors
may be an effective therapeutic strategy for the treatment of PCa.

4. Targeting Epigenetic Alterations

Despite particular mutations in DNA or loss of genes, the rate of gene expression is
regulated by complex mechanisms controlling access to DNA and transcription functional-
ity. Notably, epigenetic changes are considered essential for the initiation and progression
of PCa as well as resistance to therapy [54].

4.1. miRNA

MicroRNAs are non-coding RNAs that interact with mRNA leading to its degrada-
tion or reduced translation [54]. miRNAs regulate and are regulated by a number of key
pathways that involve cell differentiation, proliferation, and apoptosis [55]. In PCa, many
miRNAs are consistently upregulated (miR-21, miR-155, and miR-221), while others are
downregulated (miR-34, miR-200 family, miR-15a, miR-506, miR-96, miR-145, miR-155)
compared to healthy pancreatic tissue. Moreover, the discovery that miRNAs are de-
tectable in blood (miR-21, miR-155, miR-196a, miR-221) [56,57], pancreatic juice (miR-21,
miR-155) [58,59] or stool samples [60] suggests that miRNAs can be used as biomarkers in
PCa. Indeed, miRNAs are not only differentially expressed in PCa compared to healthy
tissue, but their expression is also strongly associated with PCa staging. In a study with
47 PCa patients evaluating the correlation between plasma miR-221 concentrations and
clinicopathological factors, the patients with high plasma miR-221 concentration showed
positive correlation with the presence of distant metastasis and advanced (non-resectable)
cancer status [61].
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Accumulating evidence suggests that miRNAs by modulating key targets and path-
ways such as KRAS, PI3K/AKT, TP53, NF-κB, and Hedgehog signaling are associated with
resistance of PDAC to chemotherapy. In gemcitabine-treated PDAC cells, the expression of
miR-21 dampens the anti-tumor activity of gemcitabine. Moreover, evidence suggests that
miR-21 inhibits the tumor suppressor gene, phosphatase and tensin homologue (PTEN),
thereby activating the PI3K/AKT pathway. Intriguingly, in human PCa tissue, miR-21
overexpression correlates with worse outcome of patients treated with gemcitabine [62].
Similarly, Li et al. showed that miR-200b, miR-200c, and let-7 family (let-7b, let-7c, let-7d,
let-7e) are down-regulated in gemcitabine-resistant PCa cells. Accordingly, restoration
of miR-200 and let-7 resulted in increased PCa sensitivity to gemcitabine [63]. Moreover,
miR-365 overexpression induced gemcitabine resistance by directly targeting the adaptor
protein Src homology 2 domain of 1 (SHC1), as well as BAX protein promoters of apopto-
sis [64]. Overall, the re-expression or inhibition of miRNAs seems to be an effective strategy
for the treatment of PCa, yet more advanced pre-clinical and clinical studies are required
to better understand the potential of miRNAs modulation for PCa therapy.

4.2. DNMTs

The DNA methyltransferase 1 (DNMT1) is required for DNA methylation during
replication [65]. Zagorac et al. found that pancreatic cancer stem cells (CSCs) evidenced
hypermethylation via DNMT1 upregulation. Pharmacologic or genetic targeting of DNMT1
in CSCs reduced their self-renewal and in vivo tumorigenic potential [66]. Interestingly,
aberrant hypermethylation begins at early stages of PanINs and its incidence progressively
increases during neoplastic development; therefore, DNMT1 inhibitors are under intense
clinical investigation [67,68]. Decitabine (a DNMT1 inhibitor) is being tested in combination
with gemcitabine for the treatment of refractory PCa and the study is expected to complete
in early 2021 (NCT02959164). Moreover, there is an ongoing clinical trial testing decitabine
in combination with anti-PD-1 antibodies and chemotherapy in relapsed or refractory ma-
lignancies (NCT02961101). Lastly, a new nucleoside analog, 5-aza-4-thio-2-deoxycytidine
(Aza-TdC), has been shown to decrease DNMT1 levels and suppress tumorigenesis in
lung tumor xenografts [69]. Aza-TdC is currently in phase I clinical trials in patients with
advanced solid tumors (NCT03366116).

4.3. HATs and HDACs

Targeting the pattern of histone acetylation with either histone deacetylase (HDAC)
or histone acetyl transferases (HAT) inhibitors result in increased or decreased histone
acetylation, respectively. HDAC inhibitors induce hyperacetylation of histones and thus
reactivate tumor suppressor gene expression, leading to suppression of cell proliferation,
cell differentiation, and apoptosis [70]. Although the HAT inhibitors are still in pre-
clinical phases, the HDAC inhibitors have progressed into clinical assessment and there
have been many clinical phase I/II trials over the years. A phase II randomized clinical
study with CI-994, an oral HDAC inhibitor, and gemcitabine in patients with advanced
PCa (NCT00004861) did not show greater efficacy compared to gemcitabine alone [71].
Vorinostat, a HDAC inhibitor, was assessed in phase I trials together with capecitabine
and radiation therapy in 21 patients with non-metastatic PCa (NCT00983268). The most
common adverse events that were observed with vorinostat were lymphopenia (76%)
and nausea (14%), suggesting that the drug is overall well tolerated. However, despite
an encouraging median OS, the small number of patients enrolled in this trial prevented
the proper evaluation of this therapy [72]. Moreover, the treatment with panobinostat
for patients that progressed on gemcitabine-based therapy (NCT01056601) or advanced
solid tumors (NCT00550199) had to be terminated because of a complete lack of treatment
response and early treatment-related toxicity [73]. Thus, HDAC inhibitors seem to have
serious adverse effects, requiring careful clinical evaluation. Moreover, patient stratification
based on transcriptome or epigenetic signatures is essential for the correct assessment of
these targeted therapies.
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4.4. Bromodomain Proteins

The limited success of HDAC inhibitors in clinical trials against solid tumors increased
the interest in targeting epigenetic “readers” of histone acetylation, in particular members
of bromodomain (BRD) and extra terminal domain (BET) family of proteins. These proteins
recognize acetylated lysine residues and regulate molecular interactions with relevance
to transcriptional control. In PCa, BRD4 was found to promote cell proliferation, enhance
gemcitabine resistance [74], and block the proliferation of PCa cells in three-dimensional
collagen [75]. Moreover, BET inhibition decreased desmoplastic pancreatic stromal cell
proliferation and suppressed the growth of patient-derived pancreatic tumor xenografts
(PDX) by inhibiting Hedgehog and TGF-β pathways [76]. I-BET762, a benzodiazepine
compound, inhibited PDAC cell proliferation and enhanced the therapeutic effect of gem-
citabine in Panc1-derived xenograft tumors [77]. However, in clinical trials, many BET
inhibitors showed adverse effects and lack of efficacy in solid tumors [78]. Molibresib
(GSK525762) was tested in 19 patients with nuclear protein in testis (NUT) midline carcino-
mas (NCT01587703). NUT midline carcinoma is a rare and invariably lethal cancer caused
by the fusion protein BRD4-NUT, which spurs faulty gene expression [79]. Molibresib
was well tolerated, and out of the 19 patients, 4 achieved partial response, 8 had stable
disease as best response, and 4 were progression-free for more than 6 months, providing
a promising future for this inhibitor [80]. MK-8628, an oral BET inhibitor targeting BRD2
and BRD4 is in phase Ib clinical trial in patients with selected advanced solid tumors, but
38/46 (83%) patients manifested treatment-related adverse events (NCT02259114) [81].
Moreover, another clinical study of 13 patients with MK-8628 was terminated due to limited
efficacy (NCT02698176).

In summary, epigenetic approaches to PCa therapy have considerable potential but face
challenging clinical translation due to poor response and treatment-related adverse events.
In order to effectively implement this clinical approach, it is important to first determine the
tumor subtypes and specific cancer vulnerabilities to tailor specific drug combinations.

5. Targeting Key Signaling Pathways
5.1. KRAS and Main Targets

KRAS is mutated in >90% of PDACs [82]. This high prevalence has contributed to
considerable interest in therapies that selectively target mutated KRAS. Inhibitors targeting
KRASG12C are currently in clinical development (i.e ARS-1620 and AMG 510), showing
promising results in colorectal and lung cancers [83,84]. However, KRASG12C mutations are
rare in PCa (~1% of all KRAS mutations), excluding them as a therapeutic option. Because
inhibitors that specifically target the most prevalent KRAS mutations in PCa do not exist,
there is a lot of interest in developing means to deliver small interfering RNAs (RNAi)
in vivo via exosomes or small extracellular vesicles (Figure 1). This strategy has recently
entered a phase-I trial for metastatic PCa patients and is expected to be completed in early
2022 (NCT03608631).

Another approach that is currently being tested to target mutated KRAS is with
peptide-based vaccines. This approach is described in the context of the “vaccine therapy”
section below.

In view of the difficulty to directly target KRAS, during the last four decades ef-
forts were focused on developing treatments aimed at targeting its main downstream
effector pathways, including the RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR signal-
ing pathways (Figure 1). However, in patients with metastatic PDAC, no clinical benefit
was observed with MEK inhibitors plus gemcitabine compared with gemcitabine alone
(NCT01016483, NCT01231581) [85,86]. Despite these deceptive findings, recent research
has helped to clarify a potential resistance mechanism of PCa to MAPK inhibition. Indeed,
results by two different research groups showed that pharmacological inhibition of the
ERK or MEK signaling pathway in KRAS-mutant PCa elicited a protective increase of
autophagy [87,88]. Moreover, related to MAPK inhibition, a recent study revealed that
combination MEK1/2 and CDK4/6 inhibitors triggers senescence-associated secretory
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phenotype (SASP)–mediated increase in CD31+ cells and endothelial activation, promoting
CD8+ T cell tumor infiltration in PCa [89]. Consequently, the addition of gemcitabine or
anti-programmed death-1 (anti-PD-1) therapy to the above-described combination resulted
in tumor regression, suggesting that combining senescence-inducing therapies with both
chemotherapy and immunotherapy may be an effective strategy to treat PCa. However,
care should be taken to first assess the impact of this therapeutic regiment in metastatic
PCa because of the increase in CD31+. Even though it suppresses the primary tumor, it
may contribute to the metastatic potential.
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Figure 1. Targeting key signaling pathways in patients with pancreatic ductal adenocarcinoma (PCa).
EGFR, epidermal growth factor receptor; RAS, rat sarcoma viral oncogene; AKT, protein kinase B;
CDK4/CDK6, cyclin-dependent kinase 4/6; RAF, rapidly accelerated fibrosarcoma; MEK, mitogen-
activated protein kinase; ERK, extracellular signal-regulated kinases; PI3K, phosphoinositide 3-kinase;
mTOR, mechanistic target of rapamycin; FAK, focal adhesion kinase; BTK, Bruton’s tyrosine kinase.

There are multiple alterations affecting the PI3K pathway in PCa. PCa has been shown
to harbor activating mutations in PIK3CA (~4%) and/or loss of the tumor suppressor PTEN
(25–70%) [82,90]. Moreover, increased AKT activity has been identified in about 60% of
PCa samples and amplification of AKT2 occurs in 10–20% of the cases [91]. This mutational
profile, together with the highly promising preclinical antitumor efficacy of the PI3K path-
way inhibitors in combination with clinically relevant interventions [92–94], provided the
rationale for the initiation of clinical trials. A first clinical trial with Copanlisib (BAY
80-6946), a potent pan-class I PI3K inhibitor, showed promising anti-tumor pharmaco-
dynamic activity and clinical benefit in patients with advanced solid tumors, including
PCa (NCT00962611) [95]. In parallel, BKM120, a pan-class I PI3K inhibitor, was tested
in combination with mFOLFOX6 (5-FU/leucovorin plus oxaliplatin) in metastatic PCa
patients (NCT01571024). Unfortunately, this combination resulted in increased toxicity
compared with that expected from either the PI3K inhibitor or the chemotherapy alone [96].
Similarly, increased toxicity was found when BKM120 was given in combination with
the MEK inhibitor, trametinib (GSK1120212), in patients with advanced BRAF/KRAS
mutant solid tumors (NCT01155453) [97]. This toxicity was somehow expected as also
other PI3K or AKT or dual PI3K/mTOR and MEK inhibitor combination studies have



Cancers 2021, 13, 799 9 of 29

shown similar toxicity, with fatigue, gastrointestinal, and cutaneous toxicity being most
predominant [97–99]. Currently, there is an ongoing clinical trial with a dual PI3K/mTOR
inhibitor, gedatolisib (PF-05212384), in combination with a CDK4/6 inhibitor, palbociclib
(PD-0332991), for patients with advanced solid tumors including PCa. These trials will
assess the safety and efficacy of these compounds in order to determine whether these
combinations can be applied in PCa patients.

Lastly, there are multiple trials focusing on mTOR inhibitors (Figure 1). AZD2014, a
potent dual mTORC1 and mTORC2 inhibitor showed promising preclinical results in the
KPC (LSL-KrasG12D; Trp53R172H; Pdx1-Cre) mouse model. However, the first phase I clinical
study with AZD2014 evidenced that, out of the 56 patients, only 2 showed confirmed
partial response. Interestingly, one patient with confirmed partial response was a patient
with acinar PCa bearing KRAS, PDGFRA, APC, ERB4, KIT, and FBXW7 mutations [100].
AZD2014 was also tested in a cohort of 27 patients with TSC1/2 mutated refractory solid
cancer as monotherapy (NCT03166176). However, the study was withdrawn due to lack of
efficacy. AZD2014 is currently undergoing evaluation in combination therapies in patients
with solid tumors, including one with the Bcl-2 inhibitor, navitoclax (NCT03366103) or
with selumetinib (AZD6244), a MEK1/2 inhibitor (NCT02583542).

5.2. TP53

Preclinical research has focused on restoring/reactivating wild-type p53 or to desta-
bilize mutant p53 [11,101]. Statins recently showed a promising potential in depleting
mutant p53 via inhibition of the mevalonate pathway [102]. Nevertheless, either ineffective
or sluggish clinical translation of targeting p53 was achieved [103]. The safety of SGT-53, a
liposomal formulation encapsulating a plasmid carrying a human wild-type p53, has been
recently evaluated in a phase I trial for the treatment of solid tumors (NCT00470613) [104].
This trial not only showed that systemically delivered SGT-53 is well tolerated and exhibits
anticancer activity, but also provided evidence of targeted delivery of SGT-53 to metastatic
lesions. A phase II trial is currently carried out in combination with gemcitabine/nab-
paclitaxel and SGT-53 for metastatic PCa and is expected to be finalized at the end of 2021
(NCT02340117).

5.3. SMAD4

SMAD4 mutations are widespread in PCa patients (detected in 16–44% of patients) [105].
Loss of SMAD4 accelerates PCa progression and correlates with metastasis and poor prog-
nosis [106]. Recent evidence suggested that metformin inhibits PCa progression and
improves the survival of patients with SMAD4-deficient PCa, while this is not the case in
patients with SMAD4-normal PCa [107]. These findings suggest that metformin could be
used to selectively treat patients with SMAD4 deficiency and should be further investigated
in the clinical setting.

5.4. Tyrosine Kinase Signaling

Tyrosine kinases (TKs) play an important role in malignancy [108]. They are able to
initiate a range of intracellular signals that govern proliferation, cell survival, transfor-
mation, differentiation, migration, and metastases [109,110]. Compared to other mutant
KRAS tumors, such as lung cancer, the activation in TKs is not a common future of PCa, yet
targeting TKs was proved to prevent the insurgence of resistance mechanisms [111]. The
epidermal growth factor receptor (EGFR) inhibitor, erlotinib, is one of the only targeted
drugs with significant survival benefit in the clinic that received approval for the treatment
of patients with metastatic PCa (Figure 1). Erlotinib treatment prolongs the survival of
PCa patients partly by blocking gemcitabine-induced MAPK signaling activation [112].
Nimotuzumab, which is a humanized EGFR-optimized antibody, increased the 1-year
survival rate of PCa patients by 2-fold in a phase II trial randomized (gemcitabine plus
nimotuzumab vs. gemcitabine plus placebo) [113]. Oddly, the patients carrying wild type
KRAS showed better survival compared to those carrying mutant KRAS.
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The ERBB2 (HER2) gene is frequently amplified (24%) in PCa, and it is associated
with worse prognosis partly by mediating resistance to gemcitabine and irinotecan/SN-38
treatment [114,115]. Afatinib, an irreversible EGFR, HER2, and HER4 small molecule
inhibitor, is currently being evaluated in clinical studies in combination with capecitabine
(NCT02451553) or selumetinib (AZD6244), a MEK1/2 inhibitor (NCT02450656) for the
treatment of advanced stage PCa or with gemcitabine/nab-paclitaxel for metastatic PCa
(NCT02975141).

Focal adhesion kinase (FAK) is a non-receptor TK with a role in invasion, growth, and
metastasis, which is found elevated in high-grade mutant KRAS non-small cell lung cancer
and PCa [116,117]. In PDAC, FAK interacts with both tumor and stromal cells and its activ-
ity levels are associated with immunosuppressive TME and poor survival. The administra-
tion of a FAK inhibitor (VS-6063) in combination with gemcitabine and nab-paclitaxel has
been shown to delay tumor growth in PDX models compared to chemotherapy alone [118].
Moreover, a FAK inhibitor (VS-4718) in the KPC mouse model (p48-CRE; LSL-KRasG12D/wt;
p53flox/wt) decreased fibrosis, TAMs, myeloid-derived suppressor cells (MDSCs), regu-
latory T (Treg) cell infiltration, and improved mice survival [117]. However, the signal
transducer and activator of transcription 3 (STAT3) signaling-triggered compensatory sur-
vival pathways and rendered tumors resistant to FAK inhibition [119]. Given the role of
FAK in modulating the TME, a clinical trial is in progress to examine the interaction of FAK
inhibitors with immune checkpoint inhibitors (defactinib/pembrolizumab: NCT02758587).
Moreover, another ongoing trial is currently evaluating whether reprograming the tumor
microenvironment by targeting FAK following chemotherapy can potentiate the anti-PD-1
antibody-mediated anti-tumor response (NCT03727880).

The non-receptor TK, Bruton’s tyrosine kinase (BTK), plays a role in proliferation
of leukemic cells in many B-cell malignancies [120]. The BTK inhibitor, ibrutinib, has
already shown clinical activity in hematological malignant patients. In mouse models of
PCa, administration of ibrutinib contributed to the reprogramming of M2 macrophages
to an antitumor M1 phenotype that boosted CD8+ T cell cytotoxicity and suppressed
PCa growth [121]. A combination therapy has been carried out with acalabrutinib (ACP-
196), a BTK inhibitor, in combination with pembrolizumab (an FDA approved checkpoint
inhibitor targeting PD-1) in patients with advanced or metastatic PCa (NCT02362048) [122].
The results from this trial evidenced that although the combination of acalabrutinib and
pembrolizumab was well tolerated and peripheral reduction of MDSCs was observed,
the overall response rate was limited for both regimens, with responses in 0% of patients
undergoing monotherapy and 7.9% of those receiving combination therapy.

6. Targeting the Tumor Microenvironment and Related Metabolic Reprogramming

The TME of PCa consists of stromal cells, a dense ECM, and immune cells. PCa
stroma is a crucial feature, regulating tumor growth, vascularization, drug responsiveness,
immune landscape, and metastasis. Indeed, stromal fibroblasts (termed cancer associated
fibroblasts, CAFs) play an important role in promoting PCa progression and in dampen-
ing chemotherapeutic response [123]. The ECM that occupies the bulk of tumor mass is
a dense network of structural and adaptor proteins, proteoglycans, and enzymes [124].
Among these components, hyaluronic acid (HA), a glycosaminoglycan, limits the accessi-
bility of chemotherapeutic agents to cancer cells by increasing interstitial pressure leading
to vascular collapse and reduced tumor perfusion [125]. Extensive preclinical research
evidenced that recombinant human hyaluronidase 20 (PEGPH20) reduces total intratu-
moral pressure and vascular collapse [125,126], which encouraged further clinical testing.
However, among the trials that have been performed in combination with chemotherapy
in metastatic PCa patients provided discouraging outcomes (Table 1). One trial in uns-
elected for tumor HA status patients reported treatment-related grade 3 to 4 toxicity in
the PEGPH20 + mFOLFIRINOX arm vs mFOLFIRINOX alone and failed to show any
difference in OS [127]. Similarly, a phase III trial of gemcitabine plus nab-paclitaxel with or
without PEGPH20 failed to meet the expected primary end point of OS or PFS and had
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to be terminated (NCT02715804) [128]. Currently there is an ongoing trial of PEGPH20 in
combination with pembrolizumab for patients with previously treated, HA-high metastatic
PCa (NCT03634332).

Table 1. Summary of clinical trials modulating the tumor microenvironment and metabolic reprogramming in PCa patients.

Drug Targeted
Pathway

Phase/Patient
Number Intervention Subject

Population Results Refs

PEGPH20 HA Phase 1b/II n = 138 mFOLFIRINOX Metastatic PCa
Grade 3 to 4
toxicity and

worsened OS

NCT01959139
[127]

PEGPH20 HA Phase III n = 494 Gem + nab-PTX Metastatic PCa
Grade 3 to 4
toxicity and

worsened OS

NCT02715804
[128]

Vismodegib Hedgehog
pathway Phase Ib/II n = 106 Gem Metastatic PCa

Does not
improve overall

response rate,
PFS, or OS

NCT01064622
[129]

Vismodegib Hedgehog
pathway Phase II n = 71 Gem + nab-PTX Metastatic PCa

Does not
improve overall

response rate,
PFS, or OS

NCT01088815
[130]

Bevacizumab VEGF pathway Phase III n = 535 Gem Advanced PCa Does not
improve OS

NCT00088894
[131]

Bevacizumab VEGF pathway Phase III n = 607 Gem + erlotinib Metastatic PCa
Does not

improve OS,
improved PFS

NCT01214720
[132]

Axitinib VEGF pathway Phase III n = 632 Gem Advanced PCa
Does not

improve OS,
improved PFS

NCT00471146
[133]

Sorefenib
VEGF, PDGF

and RAF
pathway

Phase III n = 102 Gem Advanced PCa

Does not
improve overall

response rate,
PFS, or OS

NCT00541021
[134]

HCQ Autophagy Phase II/n = 98 Gem + nab-PTX Preoperative
PCa

Greater tumor
response,
improved

serum
biomarker

response, and
immune
activity

NCT01978184
[135]

HCQ Autophagy Phase II/n = 112 Gem + nab-PTX Metastatic PCa

Greater
pathological

tumor response,
but not OS

NCT01506973
[136]

Gem: Gemcitabine; nab-PTX: Nab-paclitaxel; HCQ: Hydroxychloroquine; OS: Overall survival; PFS: Progression-free survival.

Given the rich stromal component of PCa TME, one would expect that eliminating
stromal components may be an effective strategy for PCa therapy. However, preclinical
studies proved that this is not the case because radical stromal depletion via Hedgehog
deletion resulted in more aggressive, poorly differentiated, and highly vascularized tu-
mors [137]. Similarly, complete depletion of αSMA+ fibroblasts during PCa development
accelerated disease progression and decreased mouse survival [138]. Importantly, two
clinical trials with vismodegib, a Hedgehog pathway inhibitor, in combination with gem-
citabine or gemcitabine/nab-paclitaxel in metastatic PCa patients did not improve the
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overall response rate, PFS, or OS compared to gemcitabine or gemcitabine/nab-paclitaxel
alone (Table 1) [129,130]. On the other hand, suppression of the lipid-triggered pro-fibrotic
plasminogen activator inhibitor-1 (PAI-1) pathway limited desmoplasia and immuno-
suppression, and delayed tumor progression without enhancing tumor vascularization
in preclinical KPC and orthotopic mouse models of PCa [139]. These results suggest
that limiting some stromal components rather than completely eliminating them may
help to gradually allow therapeutic agents to reach tumors without risking enhancing
metastases formation. Currently, there are many ongoing clinical trials targeting differ-
ent aspects of stromal cell biology, which have been extensively summarized by Hosein
and colleagues [140].

The previously described desmoplastic environment of PCa limits the availability of nutri-
ents and oxygen in cancer cells. Indeed, PCa is highly hypoxic, with median pO2 < 5.3 mmHg
compared to the surrounding normal pancreatic tissue where the median pO2 reaches
24.3–92.7 mmHg [141]. Moreover, due to the already highly hypoxic environment of PCa, anti-
angiogenic therapy is not an option as worsens tumor hypoxia, promoting chemoresistance,
cancer stem cell enrichment, invasion, and metastasis [142,143]. Indeed, chronic treatment
with an anti-vascular endothelial growth factor (anti-VEGF) antibody in a mouse PCa model
(LSL-KrasG12D; Cdkn2alox/lox; p48Cre) increased collagen deposition, epithelial plasticity, and
metastasis [144]. Accordingly, a series of phase III clinical trials with VEGF inhibitors, such as
bevacizumab (a humanized anti-VEGF-A monoclonal antibody), axitinib, or sorafenib with
various drug combinations (gemcitabine or gemcitabine/erlotinib) in patients with advanced
or metastatic PCa failed to improve OS (Table 1) [131–134].

In absence of oxygen and nutrients, cancer cells must rely on several metabolic re-
arrangements for survival such as a shift from oxidative phosphorylation to glycolysis,
inhibition of fatty-acid desaturation, increased scavenging of lipids and proteins and high
basal autophagy (Figure 2) [145–149]. An acute effect of hypoxia is the shift from oxidative
phosphorylation to glycolysis due to hypoxia inducible factor 1a (HIF1a) stabilization [150].
As the glycolytic shift of hypoxic tumors could be considered as a targetable vulnerability,
attempts have been made to develop inhibitors that would target the glycolytic pathway;
2-deoxy-D-glucose (2DG) is a synthetic glucose analog and phase I clinical trials in solid
tumors evidenced that 2DG can be safely combined with docetaxel because the adverse
effects were tolerable (NCT00096707) [151]. However, since then, there have been no new
clinical trials assessing 2DG in combination with other compounds. Another promising
approach would be to target lactate transporters (monocarboxylate transporters: MCTs).
MCT1/2-selective inhibitors (AZD3965) are currently being tested in advanced tumors
(NCT01791595). However, one patient developed malignant hyperlactaemic acidosis upon
treatment with AZD3965 due to a preexisting metabolic disorder (hyper-Warburgism) [152].
Thus, patients with elevated plasma lactate must be excluded from the treatment with
MCT inhibitors (Figure 2).

KRAS-transformed cells scavenge extracellular proteins through macropinocytosis as
a major source of amino acids, which are the source of the central carbon metabolism and
tricarboxylic acid cycle [147,148]. Inhibition of macropinocytosis by amiloride inhibited
in vitro PCa cell proliferation and tumor growth in vivo [153,154], suggesting that that
may be an interesting strategy in clinical trials for PCa therapy (Figure 2). Similarly,
KRAS-mutant tumors rely on scavenging of extracellular lipids [149,155,156], which is a
potential vulnerability. Indeed, we showed that inhibition of acyl-CoA synthetase long
chain 3 (ACSL3), an enzyme that activates extracellularly-derived fatty acids by adding a
CoA moiety, delayed tumor growth, suppressed fibrosis, and enhanced the activation and
abundance of CD8+ T cells in KPC mice [139].
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Autophagy is a catabolic process of degradation in which autophagosomes engulf macro-
molecules and specific organelles and then fuse with lysosomes to provide the cell with recy-
cled building blocks and substrates for metabolism and energy (Figure 2) [157]. PCa cancer
cells have been shown to actively use high autophagy to survive and proliferate [158]. The
antimalarial drug chloroquine inhibits autophagy and suppresses the proliferation of PCa
cells in vitro, leading to xenografted mouse tumor regression [158]. In the pre-operative
setting, the combination of hydroxychloroquine (HCQ) with gemcitabine/nab-paclitaxel
evidenced improved tumor and serum biomarker response (CA 19-9) and enhanced tumor
immune cell infiltration compared to gemcitabine/nab-paclitaxel alone [135]. Despite
these promising trials, preliminary results of a similar ongoing study in metastatic PCa
patients (NCT01506973) showed that the addition of HCQ to gemcitabine/nab-paclitaxel
did not improve the primary endpoint of overall survival at 12 months [136], suggest-
ing that more rationalized approaches must be followed (Table 1). For instance, upon
certain interventions, autophagy has been shown to be highly activated acting as a pro-
survival mechanism [87,88], indicating that, in some contexts, autophagy inhibitors may
be particularly successful.

7. Targeting Immune Regulatory Networks

The induction of an immune response against tumors in many advanced-stage cancers
has been proven to be extremely effective. However, like with other antitumor strategies,
PCa is highly refractory. The reason for this is that the TME of PCa is occupied by an im-
pressive number of highly immunosuppressive cell populations, namely tumor associated
macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), neutrophils, and regula-
tory T cells (Tregs) that allow immune evasion and limit the effectiveness of chemotherapy
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(Figure 3) [159]. Moreover, TAMs not only affect the activity of cytidine deaminase, a
key enzyme in gemcitabine metabolism, hence driving resistance to gemcitabine-based
chemotherapy [160], but also mediate angiogenesis by releasing cytokines and growth
factors such as VEGF [161]. Furthermore, because PCa is known to contain relatively few
genomic mutations in protein coding regions, there is a limited number of neoantigens
that could be used for immunotherapy. Several immunotherapeutic strategies (vaccination,
adoptive cell transfers, and targeting immune checkpoints) are being evaluated in PCa. The
choice of the chemotherapeutic drug to combine with immunotherapy has to be carefully
considered since many chemotherapeutic drugs suppress immune activation. Chemother-
apy that is able to induce immunogenic cell death such as oxaliplatin, cyclophosphamide,
and gemcitabine are preferred [162]. For instance, immediately after the initial course of
gemcitabine treatment, naïve, activated immune functions are triggered [163]. However,
there is also a decline in memory T cells, suggesting that rationalized treatment protocols
must be used in clinical trials when combining chemotherapy with immunotherapy.
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7.1. Vaccine Therapy

Vaccines prime the patient’s own T cells against cancer-specific antigens, promoting
effective anticancer immunity. Cancer vaccines which can be whole cell, peptide-, dendritic
cell (DC)- or DNA-based, have shown high potential in triggering persistent increase in
T cell response, can be easily evaluated for personalized target development and, most
importantly, are well tolerated (Table 2).
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Table 2. Summary of clinical trials targeting immune regulatory networks.

Drug Targeted
Pathway Phase/Patient # Treatment

Combo PCa Result Refs

Cancer vaccines

GVAX T cell response Phase IIb n = 169 CP + CRS-207 Previously
treated metastatic

Well tolerated,
does not improve

OS vs
chemotherapy

NCT02004262 [164]

Peptide
vaccine mRAS Phase I/II n = 38 GM-CSF as

adjuvant Advanced

Durature memory
against mRAS,
activation of

RAS-specific T
cells, improved

OS vs non
responders

CTN-97004 [165]

Peptide
vaccine mRAS 10 year follow-up

n = 11
GM-CSF as

adjuvant
Advanced/lymph
node metastases

Durature memory
against mRAS

(years) positive
immune response

in all patients

CTN-98010 [166]

Peptide
vaccine

(GI-4000)
hTERT Phase III n = 1062 Gem+ Cap Advanced/Metastatic

Well tolerated,
does not improve

OS
[167]

Peptide
vaccine

(SVN-2B)

HLA-A24 of
survivin 2B Phase II n = 83 IFNβ Advanced

SVN-2B + IFNβ
improved OS and

immunological
reaction vs

placebo

UMIN000012146 [168]

DC-based
vaccine WT1 Phase I n = 10 Gem Advanced

Increased OS, PFS
and specific T cell

responses.
UMIN00004063 [169]

Monoclonal antibodies

CD40
monoclonal

antibody
(CP-870,893)

T cell responses Phase I n= 21 Gem CT-naïve, unre-
sectable/metastatic

Mild cytokine
release syndrome,

4/21 PR, 11/21
SD, and 4/21 PD,
improved OS and

PFS vs Gem

NCT00711191 [170]

Immune checkpoint inhibitors

Ipilimumab CTLA-4 Phase Ib n = 16 Gem Advanced

Grade 3 to 4
hematologic

adverse events,
2/16 PR, 5/16 SD,
does not improve

OS

NCT01473940 [171]

Tremelimumab
(CP-675,206) CTLA-4 Phase I n = 34 Gem Advanced

Grade 3 to 4
hematologic

adverse events,
improved OS vs
historical Gem

results

NCT00556023 [172]

Ipilimumab CTLA-4 Phase I n = 30 GVAX Previously
treated, advanced

3/17 SD, 7/15
reduced CA19-9,
improved OS vs

ipilimumab alone

NCT00836407 [173]

Pembrolizumab PD-1 Phase Ib/II n = 17
(11 evaluable) Gem + nab-PTX Metastatic

Grade 3 to 4
hematologic

adverse events,
3/11 PR, 8 SD

NCT02331251 [174]
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Table 2. Cont.

Drug Targeted
Pathway Phase/Patient # Treatment

Combo PCa Result Refs

Nivolumab/nab-
PTX PD-1 Phase I n= 44 Gem Advanced

2% CR, 16% PR,
46% SD ≥ 6

weeks, 20% PD
NCT02309177 [175]

Adoptive cell therapy/CAR-T

Cytokine-
induced killer

cells

MHC- antitumor
activity Phase II/n = 20

Second-line Gem
refractory
advanced

Does not improve
OS or PFS, but

improves quality
of life

NCT00965718 [176]

CAR-T Mesothelin Phase I/n = 6 CT-refractory
metastatic SD (2/6) NCT01897415 [177]

CAR-T Mesothelin Phase I/II n = 7 anti-CD3 +
anti-EGFR Advanced/Metastatic

Anti-cancer
cytotoxicity and
increased innate

immune
responses

NCT02620865 [178]

CP: Cyclophosphamide; Gem: Gemcitabine; CT: Chemotherapy; nab-PTX: Nab-paclitaxel; HCQ: Hydroxychloroquine; OS: Overall
survival; PFS: Progression-free survival; CR: Complete response; PR: Partial response; SD: Stable disease; PD: Progressive disease; Combo:
Combination; #: means the patient number.

GVAX pancreas is an irradiated allogeneic whole pancreatic tumor cell vaccine in
which cancer cells are engineered to express granulocyte-macrophage colony stimulat-
ing factor (GM-CSF). GVAX pancreas combined with low dose cyclophosphamide to
inhibit Treg cells, and a cancer vaccine, CRS-207 (live, attenuated Listeria monocytogenes
expressing mesothelin), which stimulates innate and adaptive immunity in previously
treated metastatic PCa, improved OS of patients compared to historical OS achieved with
chemotherapy (NCT01417000) [179]. However, when a phase IIb trial was performed in
a bigger cohort of previously treated metastatic PCa patients with cyclophosphamide +
GVAX + CRS-207 the OS did not improve compared to chemotherapy (Table 2) [164].

Regarding peptide-based vaccination, administration of a cocktail containing mutated
RAS peptides combined with GM-CSF in advanced PCa patients showed vaccine-induced
immune response—32% of the patients had stable disease after peptide vaccination and
all of the patients with stable disease showed an immunological response, while 45% of
patients showing an immune response to the vaccine had progression of disease [165]. This
triggered a second study in which previously resected PCa patients, treated as above (but
with a pool of 7 peptides against mutant RAS) were followed up for 10 years [166]. This
study showed the persistence of T cells recognizing vaccine peptides many years after the
last vaccination (Table 2). However, in a pilot study, out of the 9 evaluable patients that
were vaccinated with a 21-mer peptide containing the corresponding KRAS mutation of the
patient’s tumor, only 1 patient showed immune response [180]. In this case, the extremely
low number of patients, coupled with the inconsistent number of vaccinations performed,
may have limited this study. Taken together, these results suggest that cancer peptides
targeting mutant KRAS should be included in the standard of care of all PCa patients, but
before this, carefully designed combination therapies need to be performed (Figure 3).

Another tumor-specific antigen that has been tested in PCa is the human telomerase
reverse transcriptase (hTERT) with the GV1001 vaccine consisting of 16 amino acids of
hTERT. A phase III trial of 1062 patients treated either with gemcitabine/capecitabine
alone or concurrently or sequentially with GV1001 provided no survival benefit in patients
with advanced PCa. However, T cell proliferation was positive in 31% of patients given
sequential immunotherapy and 14.7% of patients given concurrent chemoimmunotherapy,
suggesting that sequential immunotherapy should be preferred [167].

Survivin, a member of the inhibitor of apoptosis (IAP) family, is another potentially
attractive target. A phase II study in advanced, previously treated PCa patients with SVN-
2B, a peptide derived from survivin 2B protein in combination with interferon β (IFNβ),
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showed longer OS in patients receiving the combination vs SVN-2B alone or placebo [168].
These data also show that IFNβ is a promising adjuvant for peptide vaccination therapy.
Moreover, it was subsequently shown that treatment with SVN-2B triggered a dense
infiltration of CD8+ T cells in some patient lesions and a high rate of programmed cell
death ligand 1 (PD-L1) expression in cancer cells, indicating emergence of resistance against
CTL attack [181]. This clearly provides a rationale for the combination of SVN-2B with
anti-PD1 or anti-PD-L1 therapies.

DCs are powerful antigen presenting cells that can be manipulated in vitro to develop
a cancer vaccine in order to increase antigen presentation, break tolerance against tumor-
associated antigens where it is lacking, or enhance T cell priming (Figure 3). Unfortunately,
the clinical studies performed with DC-based vaccines are only limited to early phase with
a small number of patients. Of these, one study used gemcitabine followed by DCs pulsed
with the MHC-I, -II, or -I/II–restricted epitopes of Wilms tumor (WT1), which is highly
expressed in PCa [169]. Importantly, 50% of the patients showed increased OS, PFS, and
specific T cell response.

7.2. Monoclonal Antibodies

CD40 activation can reverse immune suppression and drive antitumor T cell responses
(Figure 3) [182]. Preclinical evidence in KPC mice (KrasLSLG12D/+, Trp53LSL-R172H/+, Pdx1-
Cre) suggested that CD40 agonist antibody combined with immune checkpoint inhibitors
(ICI), trigger tumor regressions, and immunological memory. Of note, this is not the
case when ICIs are given alone [183]. The combination of a CD40 agonist antibody with
gemcitabine in a small cohort of patients with chemotherapy-naïve, surgically incurable
PCa evidenced improved OS and PFS (Table 2) [170]. Moreover, there is an ongoing
trial testing the APX005M (CD40 antibody) with gemcitabine and nab-paclitaxel with
or without nivolumab (anti-PD-1) in patients with previously untreated metastatic PCa
(NCT03214250) or CDX-1140 (CD40 antibody), either alone or in combination with CDX-
301 (FLT3L), pembrolizumab or chemotherapy (NCT03329950). Given the previously
reported antitumor efficacy of CD40 agonists when combined with ICIs and their capacity
to stimulate tumoricidal macrophage infiltration in tumors [170], if safe, these combinations
are promising in bringing new hope for PCa treatment.

7.3. Immune Checkpoints Inhibitors

The objective of ICIs is to intensify existing anti-cancer responses by improving stim-
ulatory or blocking activity of the immune system regulators to allow better clearing of
cancer cells (Figure 3). Monotherapy with ipilimumab (anti CTLA-4) on locally advanced
and metastatic PCa did not show any benefit (NCT00112580). Moreover, combination of
ipilimumab with gemcitabine did not prove to be more effective than gemcitabine alone in
advanced PCa in one phase Ib trial [171]. However, when gemcitabine was combined with
10 or 15 mg/kg tremelimumab, the OS was longer compared to historical data of gemc-
itabine monotherapy, suggesting that a high dose of ICIs should be obtained for increased
efficacy (Table 2) [172]. Interestingly, when ipilimumab was combined with GVAX in pa-
tients with previously treated PDAC, 3 out of 15 patients showed stable disease, and 7 out
of 15 patients manifested a decline in CA19-9 [173]. Pembrolizumab (anti PD-1) is approved
for patients with advanced PCa that harbor high microsatellite instability, DNA mismatch
repair deficiency, or high tumor mutational burden. A phase Ib/II trial of a combination
of pembrolizumab with gemcitabine/nab-paclitaxel in chemotherapy naïve metastatic
patients showed improved efficacy vs historical gemcitabine/nab-paclitaxel [174].

Based on recent preclinical and diagnostic approaches, CD73, a nucleotide metabo-
lizing enzyme that sustains immune homeostasis, is highly expressed in tumor PCa cells
and it is associated with poor survival independently of the number of tumor-infiltrating
lymphocytes or TNM stage [184]. Clinical trials combining a CD73 Inhibitor, LY3475070
(NCT04148937) or CPI-006 (NCT03454451) alone or in combination with pembrolizumab
in patients with advanced cancers, including PCa are currently ongoing. Thus, CD73 may
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be a novel immunotherapeutic target and a promising immune prognostic biomarker for
PCa in the future.

7.4. Adoptive Cell Transfer Therapy

Adoptive cell transfer (ACT) therapy uses ex vivo expanded tumor-infiltrating lym-
phocytes and is the most prominent form of immunotherapy with impressive results in
B-cells malignancies and 20–25% of patients with metastatic melanoma [185,186]. Two trials
assessing ex vivo-expanded, cytokine-induced killer (CIK) cells in gemcitabine-refractory
advanced PCa, reported no OS or PFS improvement in patients compared with previous
trials, yet the treatment improved patients’ quality of life (pain, gastrointestinal distress,
jaundice, body image alterations, altered bowel habits, health satisfaction, and sexual-
ity) [176]. Related to mutant KRAS targeting, a phase II clinical trial designed to test
whether the ACT of ex vivo expanded tumor-infiltrating lymphocytes targeting person-
alized cancer neoepitopes can mediate regression of metastatic solid cancers, identified
CD8+ T cells reactive to KRASG12D (NCT01174121). Expansion and infusion of KRASG12D

reactive CD8+ T cells back to a colorectal cancer patient resulted in regression of metastatic
lung lesions [187]. If successful, this may be a potential strategy to provide in combination
studies for PCa treatment.

Currently, there are many ongoing chimeric antigen receptors (CAR)-T cell therapies
for PCa. In a phase I study, patients with chemotherapy-refractory metastatic PDAC,
received T cells engineered to transiently express an mRNA encoding a CAR specific for
mesothelin (Table 2) [177]. The results from this trial revealed stable disease in 2 out of
the 6 patients, underscoring the potential of mesothelin-specific CAR T cell therapy for
PCa. Moreover, a phase I/II adoptive T cell trial in 7 locally advanced and metastatic PCa
patients using infusions of anti-CD3/anti-EGFR bispecific antibody armed activated T cells,
induced anti-cancer cytotoxicity, and increased innate immune responses [178].

Lastly, there are many ongoing clinical studies against multiple PCa relevant targets
such as prostate stem cell antigen (PSCA) NCT02744287, carcinoembryonic antigen positive
(CEA+) for liver metastases (NCT03818165), and CD133 (NCT02541370). Moreover, new po-
tentially promising combination therapies are ongoing targeting the tumor cell-associated
antigen Nectin 4 and FAP present in CAFs in patients with Nectin4-positive/FAP-positive
advanced solid tumors (NCT03932565).

7.5. Other Immune Regulators

Preclinical studies revealed that colony-stimulating factor-1 (CSF1) and receptor
(CSF1R) blockade not only decreases the number of the immunosuppressive TAMs, but also
reprograms the remaining ones to support antigen presentation and bolster T cell activation
within the tumor microenvironment (Figure 3) [188]. Based on this strong rationale, a trial
assessing a CSF1R inhibitor, ARRY-382, in combination with pembrolizumab in patients
with advanced solid tumors has been finalized and the results are pending (NCT02880371).
Given the role of CSF1/CSF1R blockade in TAM reprogramming, this therapeutic option
may be successful in combination therapies.

CXCR-4 is an alpha-chemokine receptor specific for stromal-derived-factor-1 which
has been found to cause immune suppression and promote PCa [189]. The combination
of CXCR4 antagonist, BL-8040, with pembrolizumab in patients with metastatic PCa, is
currently being assessed (NCT02907099 and NCT02826486). Moreover, more trials are
underway with plerixafor (CXCR4 antagonist), in combination with cemiplimab (anti-PD-1)
in metastatic PCa patients (NCT04177810).

Natural killer (NK) cells have the ability to target and destroy tumor cells without
prior sensitization, via activation of NK cell-activating receptors against ligands present on
target tumor cells, providing a promising tool in the field of cancer immunotherapy [190].
Currently, there is an ongoing trial with FT500, an induced pluripotent stem cell-derived
NK cell product in combination with ICIs (NCT03841110). Although it is early to say,
one expected drawback of therapy with NK cells in PCa is their relatively short lifespan,
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which causes a reduction in in vivo persistence and therapeutic efficacy. Future combi-
nation studies will provide information on the possibility to add NK cells in patients’
treatment options.

8. The Road to Personalized Oncology

The ideal world of personalized oncology is that of a patient going to the clinic, having
an image-guided percutaneous core needle biopsy, and subsequently screened to identify
its mutational and transcriptional profiles, which would allow for the optimal design of
a personalized treatment regimen. Although pancreatic tumors are considered generally
“cold” or non-T cell inflamed, some tumor subtypes called immunogenic display significant
immune infiltrate, antigen presentation, CD4+, and CD8+ T cells and show upregulation of
CTLA-4 and PD-1 suppressive pathways [191]. These results suggest that these patients
may benefit from immunotherapy with checkpoint inhibitors.

With the emergence of new technologies such as whole genome and single-cell RNA
sequencing, there are many ongoing trials assessing the genome and transcriptional profil-
ing of patients with advanced pancreatic tumors to identify predictive biomarkers and new
actionable targets for therapy. For example, GATA6 expression in tumors was found to be a
robust biomarker in basal-like tumor subtypes having significantly lower levels compared
to classical subtype tumors. Interestingly, the basal-like tumor subtypes were found in the
metastatic PCa patients, suggesting that this subtype may be present in more advanced
tumors. Interestingly, 20 potentially actionable somatic mutations were found in 30% of the
patients assessed involving ARID1A (n = 8%), BRAF (n = 2%), CDK4/6 (n = 7%), PIK3CA
(n = 7%), PTEN (n = 5%), and RNF43 (n = 3%), giving rise to possibilities for personalized
treatment for some of these patients [192].

The major limit to the success of personalized oncology for PCa patients is the lack of
time from biopsy to treatment due to the fast disease progression that gives only a little
time for personalized screening strategies. Moreover, the tumor site differences and the
high intratumoral heterogeneity of PCa suggest that an exact treatment protocol may not be
possible. There are many actionable targets currently under development (summarized in
Table 3), but more rationalized and controlled clinical trials are needed. For instance, many
studies described in this review were performed with a very low number of patients and/or
lack of adequate controls within the same population. Moreover, there are many safe and
potentially promising targeted therapies, yet some studies did not screen the patients
for expression of specific targets before treatment, making difficult any interpretation.
Since not all patients are positive for a specific tumor associated antigen, every clinical
trial should first screen the target population for patients that are destined to respond (i.e
mesothelin-high vs low) in order to obtain meaningful results. We hope that in the near
future, biopsy-based genomic, transcriptomic, and immune landscape analysis for all PCa
patients will become the standard of care.

Table 3. Summary of mechanisms of oncological treatment.

Targeted Mechanism Targeted Pathway

DNA Repairing Deficiency and Microsatellite
Instability

PARP
ATM
ATR

DNA-PK
CHK1/2

Wee1
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Table 3. Cont.

Targeted Mechanism Targeted Pathway

Epigenetic Alterations

miRNAs
DNA methyltransferase 1

HATs and HDACs
Bromodomain proteins

Key Signaling Pathways

KRAS, PI3K, mTOR
TP53

SMAD4
Tyrosine Kinase Signaling (EGFR, HER2, FAK,

BTK)

Tumor Microenvironment and Related
Metabolic Reprogramming

HA
Hedgehog

VEGF
Glycolysis, monocarboxylate transporters

Autophagy

Immune Regulatory Networks

GM-CSF
Mutated KRAS peptides (T cell response)

hTERT peptides (T cell response)
Survivin peptides (T cell response)

DCs (WT1)
CD40

CTLA-4
PD-1/PD-L1

CD73
CD3/EGFR

PSCA (ongoing)
CEA+ (ongoing)
CD133 (ongoing)

Nectin 4/FAP (ongoing)
CSF1/CSF1R (ongoing)

CXCR-4 (ongoing)
Pluripotent stem cell-derived NK cells

(ongoing)

9. Conclusions

Pancreatic ductal adenocarcinoma is a critical and increasing global health concern,
hence it is highly essential to improve the effectiveness of the currently available therapeu-
tic options. The complexity and the signaling pathway redundancy of RAS have reduced
the successful targeting of RAS-mediated oncogene dependence at the clinical level [193].
Thus, combination therapies are the only option to treat RAS-mutant tumors. Recent exper-
imental evidence made significant progress towards a better understanding of the unique
characteristics of PCa progression and in relation to its surrounding microenvironment.
From past successes and failures, we learned that an effective therapeutic strategy depends
on the timing of its application. This model suggests that tumors should “ask” for a specific
intervention and the timing of the addition of a compound may be determinant for the
efficacy of a combination therapy.
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