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Simple Summary: We analyzed the contouring data of 23 organs-at-risk from 100 patients with head
and neck cancer who underwent definitive radiation therapy (RT). Deep learning-based segmentation
(DLS) with continual training was compared to DLS with conventional training and deformable
image registration (DIR) in both quantitative and qualitative (Turing’s test) methods. Results in-
dicate the effectiveness of DLS over DIR and that of DLS with continual training over DLS with
conventional training in contouring for head and neck region, especially for glandular structures.
DLS with continual training might be beneficial for optimizing personalized adaptive RT in head
and neck region.
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segmented in initial planning computed tomography (CT), modified FC-DenseNet was trained for
DLS: (i) using data obtained from 60 patients, with 20 matched patients in the test set (DLSm); (ii)
using data obtained from 60 identical patients with 20 unmatched patients in the test set (DLSu).
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test sets. Deformable image registration (DIR) was also performed. All 23 OARs were compared
using quantitative measurements, and nine OARs were also evaluated via subjective assessment
from 26 observers using the Turing test. DLSm achieved better performance than both DLSu and
DIR (mean Dice similarity coefficient; 0.83 vs. 0.80 vs. 0.70), mainly for glandular structures, whose
volume significantly reduced during RT. Based on subjective measurements, DLS is often perceived
as a human (49.2%). Furthermore, DLSm is preferred over DLSu (67.2%) and DIR (96.7%), with a
similar rate of required revision to that of manual segmentation (28.0% vs. 29.7%). In conclusion,

Published: 9 February 2021 DLS was effective and preferred over DIR. Additionally, continual DLS training is required for an

effective optimization and robustness in personalized adaptive RT.
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1. Introduction

The standard treatment for head and neck (H&N) cancer entails tri-modality therapy,
including surgery, chemotherapy, and radiotherapy (RT). Particularly, intensity-modulated
radiation therapy (IMRT) could achieve a homogeneous dose distribution in the target
area, minimizing the radiation dose to normal organs. Moreover, the evolution of image-
Attribution (CC BY) license (https:// ~ guided RT has led to adaptive RT (ART), which accounts for anatomical changes arising
creativecommons.org, licenses /by / from weight loss or tumor regression during RT, aiming to provide accurate and precise
40/). dose delivery [1]. Interestingly, planning computed tomography (CT) data of the same
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patient with temporal changes during RT is used for each ART. Detecting changes between
initial planning CT and adaptive CT and dynamic adaptation is required for the optimized
adaptive RT.

In accordance with technical developments in RT, the planning process becomes com-
plicated and important. After planning a computed tomography (CT) acquisition, the
segmentation of the target area (gross tumor volume, clinical target volume, and plan-
ning target volume) and organs-at-risk (OARs), called contouring, is needed to obtain
3-dimensional volumetric information for planning standardization and quality assess-
ment. The planning quality as well as the time expended on the contouring process largely
depend on the personal experience of physicians or technicians. Despite several consensus
guidelines for contouring [2,3], both inter-observer and intra-observer variability remain
an issue for standardization and qualified planning [4-9]. In addition, the H&N region
includes more than 20 OARs, requiring more than 1-2 h for contouring per patient. Con-
sequently, a survey discovered that contouring for the H&N region is more difficult for
physicians than it is for other sites treated with RT [10,11]. Moreover, the burden of con-
touring hinders real-time or frequent ART in H&N cancer. Therefore, auto-segmentation in
the H&N region is essential for standardization and efficiency in treatment planning.

Various auto-segmentation tools have been developed: deformable image registra-
tion (DIR), atlas-based auto-segmentation, and recent deep learning-based segmentation
(DLS) [12]. Both DIR and atlas-based auto-segmentation have been widely implemented,
but they have several limitations in clinical utilization [13,14]. Based on substantial artificial
intelligence research, several reports suggested DLS as a promising method for segmenta-
tion in the H&N region. Most previous reports evaluated 3-5 OARs with the Dice similarity
coefficient (DSC) range of 0.37-0.99 [12]. However, for further clinical applications in the
H&N region, an auto-segmentation of multiple OARs with up to 2025 subsites is essential.

Besides, the major hurdle for developing clinically feasible DLS model starts from the
amount of training samples [15,16]. Although the issue of overfitting is considered as a
challenge in investigations regarding deep learning algorithm, the intentional overfit using
patient-specific prior information could be considered to improve the generalizability of
DLS for clinical applications during ART. Patients candidates for ART have large amount
of previous data for DLS including diagnostic CT, initial planning CT, and even kilo-
voltage/mega-voltage cone-beam CT. In other words, the ART-optimized DLS needs to
be optimized to produce the overfitted performance for the specific patient with prior
information rather than generalized performance for future patients. In this context, a
continual training with initial data for specific patient is considered for DLS in ART of
H&N cancer. Yet, there is no report regarding continual training for DLS concerning ART
for H&N cancer. That is, whether DLS for ART needs re-training based on individual initial
planning data points is still unclear. To address the aforenoted limitations, in the current
study, we evaluate the feasibility of DLS and the ideal training set for DLS in ART for the
H&N region.

2. Materials and Methods
2.1. Patients

Patients with H&N cancer treated via RT were included in this study. The inclusion
criteria for the entire cohort were as follows: (1) patients with pharyngeal (nasopharynx,
oropharynx, and hypopharynx) cancer, (2) patients treated with definitive RT, (3) patients
who underwent adaptive planning CT (aCT), and (4) patients with available contrast-
enhanced planning CT for both primary CT (pCT) and aCT. We excluded patients who
had a history of surgery in the H&N region and whose planning CT was performed with a
more than 3 mm slice thickness. All planning CT scans (either based on Aquilion TSX-201A,
Toshiba, Tokyo, Japan, or Somatom Sensation Open Syngo CT 2009E, Siemens, Munich,
Germany) were performed using a thermoplastic immobilization system (Type-S; Medtec,
Alton, IA, USA) with a slice thickness of 3 mm. We routinely performed pCT 2 weeks prior
to RT and aCT 15 fractions after the initiation of RT. The median interval between aCT
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and pCT was 36 days (range: 29-43). This study was approved by the institutional review
board of the Yonsei Cancer Center (No. 4-2020-0001), and the protocol conformed to the
ethical guidelines of the 1975 Declaration of Helsinki. Owing to the retrospective nature of
this study, the need for informed consent was waived. Because we only included patients
who had already completed the scheduled treatment, the contours generated via DLS or
DIR were never used for actual treatment planning.

2.2. Manual Segmentation

The OARs were manually contoured by a single radiation oncologist according to
the consensus guidelines [3]. We included 23 OARs categorized into 4 groups as follows:
(a) central organs, (b) bony structures, (c) glandular structures, and (d) optic apparatus
(Table S1). All contours were generated using MIM Maestro 6.7 (MIM Software Inc.,
Cleveland, OH, USA).

2.3. Deep Learning-Based Segmentation: Training Set and Preprocessing

In total, 100 patients were randomly selected: pCT images of 100 patients were
employed as the training set, and the aCT images of the 20 patients were selected as the
test set.

Two different training datasets including data regarding 80 patients were employed
for DLS: a matched training set (continual training) which consists of pCT of 60 patients
including pCT data from 20 patients in the test set and an unmatched training set (conven-
tional training) which consists of pCT images corresponding to the same 60 patients with
pCT data regarding 20 different patients from the test set. (Figure 1A). Table S2 presents
the baseline characteristics of the training and test sets.

Because each original planning CT image had a different resolution, we normalized
the images to 1.0 x 1.0 x 3.0 mm?3 for the robustness of DLS. Next, we cropped the planning
CT images of 120 patients with a global field-of-view volume size of 320 x 256 x 130,
which encompassed all regions-of-interest (ROIs) of OARs. Lastly, we adjusted the window
level, based on the Hounsfield unit, from [-100, 300] to [-1.0, 1.0]. This was performed to
improve relative contrast and normalize all input data to the same range.

2.4. Deep Learning-Based Segmentation: Two-Step Segmentation and Network Architecture

We performed DLS in two steps, as we previously reported (localization and ROI-
specific segmentation), with a modified fully convolutional DenseNet [17] (Figure 1B).
The DenseNet was implemented using TensorFlow in Python. In the localization pro-
cess, down-sampling by half in both the x and y directions with the reduction of image
resolution was performed: the final input images had a size of 160 x 128 x 130 with a
resolution of 2.0 x 2.0 x 3.0 mm?3. Subsequently, we separated each OAR simultaneously
via multilabel segmentation concerning each ROl in the preprocessed images. In the second
step, we carried out single-label segmentation for each OAR from the ROIs in the first step.
Specifically, we calculated the middle point of each predicted volume in the first step. From
the shared middle point, ROIs for each OAR that have minimal margin outside the volume
were determined based on the pre-set size of ROIs in x-, y-, and z-axis (e.g., 144 x 176 x 48
for thyroid). Finally, single-label segmentation was performed in those ROIs during the
second step.
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Figure 1. Study scheme: allocation of input data (A), architecture of modified FC-DenseNet (B), and model validation (C).

The resolution of input data could be preserved without down-sampling
(1.0 x 1.0 x 3.0 mm?) because we used a cropped ROI for each OAR. We modified a fully
convolutional DenseNet in a three-dimensional manner. The architecture consisted of a
dense block for preserving high-level features. Furthermore, the number of layers in each
block was [3, 4, 4, 5, 7], and the growth rate and learning rate were 12 and 0.0005, respec-
tively. The number of epochs was 250 and 200 for first and second step, respectively. We
used the Adam as an optimizer and considered dual cross entropy as a loss function [18].
Moreover, there were four transition down and up blocks with skip connections from
the down-sampling path to the up-sampling path as concatenations of the feature maps.
The model was trained with a batch size of 1 owing to the memory usage entailed in
three-dimensional segmentation.

2.5. Deformable Image Registration

We used a commercially available deformable registration software provided by MIM
to perform intensity-based DIR using a free-form deformation [19,20]. The deformation
was based on the demons optical flow algorithm. Regularization prevented tears and
folds in the deformation field following the optimization performed via modified gradient
descent. The process was performed by a blinded physician according to the standard
process of ART. Contours were transferred from the pCT images of 20 patients to the
corresponding aCT images of the 20 patients (test set).
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2.6. Quantitative Evaluation

The computer-generated contours (C) obtained via conventional training of DLS on
the unmatched training set (DLSu), continual training of DLS on the matched training set
(DLSm), and deformable image registration from pCT (DIR) were compared with those
obtained via manual segmentation (M, Figure 1C). The comparison was performed quanti-
tatively based on similarity metrics, classic measurements, and distance measurements.
(1) Similarity metrics: The volumetric DSC calculates the spatial overlap between two

binary images [21]:
2|ICN M|
[Cl+ (M|

(2) Classic measurement: False-positive DSC (FPD) and false-negative DSC (FND) calcu-
late the falsely segmented and detected pixels, respectively [22]:

DSC =

2ICNM™|
FPD =

|Cl+[M]

2[C N M|
FND =

Cl+ M|

(3) Distance measurements: In both 95th percentile Hausdorff distance (HD) [23] and
mean surface distance (MSD) calculation, the value of each voxel is the Euclidean
distance in millimeters from each surface voxel of volume C to the nearest surface
voxel of volume M. HD and MSD measure the distance and the mean of the absolute
values of the surface distance between C and M, respectively:

HD = percentile (VectorC,M U Vectory ¢, 95”1)

1
MSD = 3 (Vectorc p + Vectorpi c).

2.7. Subjective Evaluation

A Turing test that evaluates clinical usability was performed for a subjective evaluation
of three contouring results [24]. All 26 observers from 3 different institutions (including
8 certified radiation oncologists, 5 medical physicists, 5 certified radiologists, 4 dosimetrists,
and 4 residents) were blindly presented with random three-dimensional images for 9 OARs
from the test sets (spinal cord, esophagus, oral cavity, pharynx, larynx, mandible, left
parotid gland, right submandibular gland, and thyroid); such images are generally em-
ployed in routine RT planning for the H&N region. An example of the Turing test is
available at https:/ /forms.gle/uf7sXvKu5h5leCmd?7 (accessed on: 12 December 2020).
The following questions were provided to each observer in 198 scenarios, and the details
regarding each question were adopted from a previous report [13]:

(1) Discrimination of a single contour from M and C (DLSu, DLSm, and DIR) concerning
whether the contouring was performed by a human or a computer.

(2) Comparison between M vs. DLSm, DLSm vs. DLSu, and DLSu vs. DIR, respectively.

(3) Quality assurance, for review purposes, of a single contour from M and C (DLSu,
DLSm, and DIR). Major error was defined as subjective assessment for difference
more than 10% of single contour.

This study did not analyze the consistency of the assessment by observers (either
intra- or interobserver) because this study mainly aimed to identify the optimal train-
ing set for ART preliminarily. A further investigation can be conducted with a multi-
institutional dataset.
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2.8. Contouring Time

For assessing the efficacy of DLS, we recorded the time to produce M, DLSu, and
DLSm for the entire 23 OARs. Only time for running each built network in 20 patients of
test set was recorded for DLS and time spent for data reading, writing, and preprocessing
was not considered.

2.9. Statistical Analysis

After evaluating a normalized distribution via the Shapiro-Wilk test, we performed
pairwise t-tests to compare DSC, FPD, FND, HD, and MSD. Because there are three seg-
mentation methods (i.e., DLSm, DLSu, and DIR), a Bonferroni correction was adopted
with an alpha value of 0.05/3 (0.017): the null hypothesis was rejected if p < 0.017, and the
results were considered statistically significant. All statistical analyses were performed
using R (version 3.6.3; R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Baseline Information

No significant differences with regard to sex, primary tumor site, or T and N categories
were observed between the matched and unmatched training sets and between the training
and testing cohorts (Table S2). Furthermore, the volumes of most OARs remained constant
between pCT and aCT, except for glandular structures (Table S3): there was a 10% volume
reduction in glandular structures, especially the parotid and submandibular glands.

3.2. Quantitative Evaluation
3.2.1. Overall Performance

Figure 2 displays an example of DLSm, DLSu, and DIR. The averages for all tested
values are summarized in Figure 3 and Tables 1 and 2. The proposed DLS, irrespective of
the training cohort, exhibited a better overall agreement with M than that shown by DIR,
as evidenced by an increased mean DSC value (0.81 £ 0.02 vs. 0.70 &£ 0.05, Figure 3A) with
a reduced mean FPD (0.19 £ 0.03 vs. 0.33 £ 0.07, Figure 3B) and mean FND (0.19 £ 0.04
vs. 0.28 £ 0.05, Figure 3C). The HD and MSD values were also lower in the case of
DLS compared with those exhibited by DIR (all p < 0.017, Figure 3D,E). Regarding the
training set, DLSm exhibited minimally improved performance over that of DLSu, but the
improvement was statistically significant (p < 0.017); here, the mean DSC increased from
0.80 £ 0.02 (DLSu) to 0.83 &£ 0.02 (DLSm) with a significant reduction in FND (0.18 £ 0.03
vs. 0.20 =+ 0.04, Figure 3C) rather than FPD (0.19 =+ 0.03 vs. 0.19 £ 0.03, Figure 3B).
In addition, DLSm minimally but statistically significantly reduced the distance between
the automated and manual segmentation compared with that exhibited by DLSu (HD,
2.79 £ 0.22 vs. 3.04 £ 0.3; MSD, 0.98 £ 0.07 vs. 1.05 +£ 0.10, Figure 3D,E).
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Manual
segmentation

DLSm

Figure 2. Examples of manual contour, deep learning-based segmentation based on the unmatched training set (DLSu) and
matched training set (DLSm) and deformable image registration (DIR).
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Figure 3. Median and interquartile range of average (A) Dice coefficient (DSC), (B) false positive Dice coefficient (FPD), (C)
false negative Dice coefficient (FND), (D) Hausdorff distance (HD), and (E) Mean surface distance. Footnotes: DLSm + DLSu
is defined as the average value of DLSm and DLSu, and mean surface distance (MSD). Abbreviations: DLSu, deep learning-based
segmentation using the unmatched training set; DLSm, deep learning-based segmentation using the matched training set;
DIR, segmentation from deformable image registration.
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Table 1. Average volumetric Dice coefficient, false positive Dice coefficient, and false negative Dice coefficient for, deep learning-based segmentation from unmatched set (DLSu), matched

training set (DLSm), and contouring from deformable image registration of primary planning computed tomography (DIR).

Volumetric Dice Coefficient

False Positive Dice Coefficient

False Negative Dice Coefficient

DLSu DLSm DIR DLSu DLSm DIR DLSu DLSm DIR
Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD
All 0.80 ** 4+ 0.02 0.83 * £0.02 0.70t +0.05 0.19 ** 4+ 0.03 0.19 £ 0.03 0337 +0.07 0.20 ** 4+ 0.04 0.18 * +0.03 028" +0.05
Central organs
Brainstem 0.87 £ 0.02 0.87 = 0.03 0.87 4+ 0.05 0.18 4+ 0.07 0.19 £+ 0.09 0.15%t +0.10 0.07 ** 4+ 0.03 0.07 4+ 0.04 012" +0.06
Spinal cord 0.82 ** £+ 0.04 0.82 +0.04 0.67t +£0.16 0.15** 4+ 0.10 0.17 £ 0.10 0331t +0.21 0.21 £0.12 0.18 +0.11 0331 +0.19
Esophagus 0.80 £+ 0.07 0.82 +£0.04 0.74 + 0.10 0.20 £+ 0.09 0.22 +0.07 0.28 +£0.14 0.20 £0.14 0.13* + 0.06 025" +0.10
Oral cavity 0.91 £ 0.02 0.91 £ 0.02 0.88 1T +0.04 0.11 £ 0.06 0.09 * £ 0.05 0.12 = 0.08 0.07 £ 0.04 0.08 4 0.04 0.11 £ 0.07
Pharynx 0.82 ** £+ 0.03 0.82 +£0.03 0.73%t +0.11 0.20 ** 4+ 0.08 0.28* +£0.09 0.29 £0.13 0.15** 4+ 0.07 0.08 * + 0.05 0261 +0.14
Larynx 0.85 ** £ 0.05 0.85 £+ 0.04 0.77t +0.09 0.20 +0.12 0.19 £ 0.13 0.26 +0.17 0.09 ** 4+ 0.10 0.11 £ 0.10 020" +0.12
Bony structures
Mandible 0.95 ** £+ 0.01 0.95 £+ 0.01 0.851 +0.09 0.03 ** 4 0.02 0.05* £ 0.02 0157 +0.10 0.07 ** 4+ 0.03 0.05* £+ 0.03 0.15 " +0.09
R_cochlea 0.76 £+ 0.07 0.76 £+ 0.08 0.68 £ 0.15 0.32 £0.11 0.21* £ 0.09 0341 +0.19 0.17 £0.12 0.26 + 0.15 0.29 +0.20
L_cochlea 0.73 = 0.07 0.76 &= 0.07 0.71 +0.14 0.32 £ 0.16 0.25 +£0.13 0.31 £ 0.15 0.22 £0.13 0.24 +0.16 0.28 +0.22
R_TM]J 0.72 +0.07 0.70 = 0.08 0.65 + 0.14 0.25 +0.10 0.25 +0.13 0.31 £0.20 0.30 £0.17 0.35 +0.18 0.39 +0.19
L_TMJ 0.74 £ 0.07 0.75 £ 0.05 0.71 £0.11 0.27 £0.13 0.21 £0.11 0.24 £0.15 0.26 £ 0.10 0.29 £0.14 0.34 £0.16
Glandular structures
R_parotidG 0.85 ** £+ 0.04 0.87* £0.03 0.76 T +0.08 0.17 ** 4+ 0.08 0.13 £ 0.06 03414013 0.14 £+ 0.08 0.13 + 0.06 0.14 + 0.08
L_parotidG 0.84 ** £+ 0.04 0.86 * £ 0.02 0.77t +0.07 0.18 ** 4 0.07 0.12* £ 0.05 0327 +0.13 0.13 £ 0.06 0.15 4+ 0.06 0.15 £ 0.08
R_SMG 0.81* £+ 0.10 0.88* £ 0.04 0.71t +0.09 0.06 ** 4+ 0.03 0.10* £ 0.04 0401t +0.13 0.32** 4+ 0.21 0.15* + 0.08 0.19 +0.11
L_SMG 0.83 ** 4+ 0.06 0.86 * £ 0.04 0.71t £ 0.11 0.07 ** 4+ 0.04 0.10* £ 0.05 0397 +0.14 0.28 £0.12 0.17* £ 0.08 0.19 £0.14
Thyroid 0.88 ** £+ 0.08 0.88 + 0.04 0.70t +£0.14 0.10 ** 4+ 0.04 0.10 £ 0.05 0331t +0.15 0.15** 4+ 0.16 0.14 4+ 0.08 027t +0.17
Optic apparatus
R_eye 0.91 ** £ 0.02 0.92 +£0.02 0.84 % +0.06 0.12 + 0.06 0.09* £ 0.06 0.16 ¥ +0.07 0.05** 4+ 0.03 0.07 * + 0.04 0.16 t +0.09
L_eye 0.91 ** £+ 0.02 0.90 + 0.02 0.831T +0.07 0.09 ** 4 0.07 0.13* £ 0.08 0.18 = 0.09 0.09 ** 4 0.06 0.06 * £+ 0.05 0161 +£0.11
R_lens 0.78 ** £+ 0.08 0.79 £+ 0.09 052t +022 0.32* 4+ 0.17 0.27 £ 0.16 0541t +0.32 0.11 ** £ 0.10 0.15 4+ 0.10 0421t +022
L_lens 0.76 ** £ 0.13 0.78 £ 0.09 0451 +0.24 0.22* 4+ 0.20 0.28 +£0.19 0637 +£0.33 0.26 ** 4+ 0.27 0.16 £ 0.14 047t +0.25
R_optic nerve 0.72 * £+ 0.07 0.70 £ 0.07 0581 +0.14 0.22** 4 0.10 0.16 * £ 0.09 0367 +£0.18 0.34** 4+ 0.13 0.44* £+ 0.11 0.49 +0.17
L_optic nerve 0.70 ** £+ 0.07 0.72 +£0.07 057t +0.15 0.17 ** 4+ 0.07 0.16 + 0.07 0361 +0.17 043 £0.13 0.40 + 0.15 0.49 +0.19
Optic chiasm 0.53 ** £+ 0.16 0.52 +£0.17 0351 +0.21 0.48 ** 4+ 0.21 0.64* £ 0.20 0.78 +0.25 0.46 +0.24 0.31*4+0.21 051" +0.28

Footnotes: Statistically significant difference (p value of < 0.0167) after the Wilcoxon signed rank test between DLSm and DLSu (*), between DLSm and DIR (*), and between DLSu and DIR (**). Abbreviations: SD,
standard deviation; R, right; L, left; TM]J, temporomandibular joint; parotidG, parotid gland; SMG, submandibular gland.
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Table 2. Average Hausdorff distance and mean surface distance for deep learning-based segmentation for unmatched set (DLSu), matched training set (DLSm), and contouring from
deformable image registration of primary planning computed tomography (DIR).

Hausdorff Distance (mm) Mean Surface Distance (mm)

DLSu DLSm DIR DLSu DLSm DIR
Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD
All 3.04* £ 0.36 279*£022 4191t +0.74 1.05** £+ 0.10 0.98 * +0.07 1611 +0.31
Central organs
Brainstem 2.96 + 0.34 313 +£0.43 3.25+0.86 1.20 ** £ 0.22 1.29 £0.28 1.26 1 +0.43
Spinal cord 2.09** £ 048 2.10 £ 0.50 397t +£215 0.84 ** +0.24 0.82+0.21 156t +0.77
Esophagus 3.66 +2.15 3.04 +0.88 420+ 1.44 1.28 ** £+ 0.53 112 +£0.23 1.621 +0.58
Oral cavity 4.60 £ 1.42 428 +£0.94 575+271 1.70 £ 0.42 1.59 £ 0.30 2157 +0.93
Pharynx 3.53 ** £ 0.84 3.53 £0.52 5181 +2.05 1.39 ** £ 0.26 1.44 £ 0.20 2.011 +0.80
Larynx 419** £148 426 +1.34 6541 £239 1.61 ** £ 0.54 1.66 £ 0.52 2541 £1.06
Bony structures
Mandible 1.28 ** +0.27 1.27 £ 0.37 3551 £264 0.48 +0.12 0.47 +0.09 1.31 £0.87
R_cochlea 2.36 + 0.60 2.26 £0.52 2.70 £0.89 0.74 £ 0.22 0.70 £ 0.22 097 £0.43
L_cochlea 2.61 +0.53 2.40 + 0.67 2.47 £ 0.66 0.83 £0.19 0.73 £0.19 0.88 £ 0.39
R_TM] 3.56 +1.27 413 £+ 1.53 439 £1.99 1.22 +0.44 1.36 £ 0.44 1.55£0.71
L_TM]J 3.29 £ 0.86 336 +1.14 3.61 £1.34 1.17 £0.31 1.14 +£0.30 1.29 £ 0.54
Glandular structures
R_parotidG 3.91 + 1.09 3.16* £ 0.41 536 +2.27 1.41** 4+ 0.33 1.18*+0.18 2251 +0.97
L_parotidG 3.78 £ 0.66 3.32*£0.61 5.08 £2.02 1.43** 4+ 0.22 1.25* 4+ 0.16 2177 +0.83
R_SMG 4.01 +£2.18 2.45*£0.78 5.03 £1.80 1.30 ** £ 0.64 0.84*+£0.22 2091 +0.73
L_SMG 3.60 ** £+ 1.15 272*£0.82 499t +£1.75 1.20 ** £+ 0.38 0.96 * +0.29 2.087 +0.83
Thyroid 2.56 ** +2.57 2.28 £0.89 4831 +1.90 0.84 ** + 0.58 0.76 £0.17 1.88 7 +0.79
Optic apparatus
R_eye 2.05** £ 0.40 1.94 £0.38 3111 +073 0.72* £ 0.14 0.68 +0.14 1.25% + 045
L_eye 212 £ 042 2.13 £0.53 3537 +1.17 0.75+0.13 0.78 £0.19 1.36 T +£0.58
R_lens 1.90 ** £ 0.90 1.71 £0.84 3417 +1.47 0.59 ** £ 0.22 0.56 £0.23 140t +0.75
L_lens 1.85** +0.93 1.94 £ 0.99 4151 £2.01 0.63 ** +£0.32 0.59 £0.22 1.751 +1.05
R_optic nerve 2.74 +1.30 2.57 £ 0.86 3.43 £ 1.02 0.74* £ 0.25 0.74 £0.17 1.07t +0.37
L_optic nerve 3.58 + 3.09 244 +0.74 3.57 £1.09 0.91 ** £ 0.50 0.71 +£0.20 1111 +0.39
Optic chiasm 3.64 +0.95 3.67 £0.93 425+ 1.46 1.18 ** £+ 0.38 1.24 +0.40 1.57 t +0.50

Footnotes: Statistically significant difference (p value of < 0.0167) after the Wilcoxon signed rank test between DLSm and DLSu (*), between DLSm and DIR (*), and between DLSu and DIR (**). Abbreviations: SD,

standard deviation; R, right; L, left; TM], temporomandibular joint; parotidG, parotid gland; SMG, submandibular gland.
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3.2.2. Central Organs

DLS resulted in better segmentation than DIR, especially for the spinal cord, pharynx,
and larynx (p < 0.017); the largest difference in DSC was observed in the spinal cord
(0.82 £ 0.04 vs. 0.67 £ 0.16), followed by the pharynx and larynx. In addition, DLS
exhibited a significantly lower FPD compared with that exhibited by DIR with regard to
the spinal cord (0.16 £ 0.10 vs. 0.33 + 0.21), and HD and MSD exhibited by DLS were
statistically different from those exhibited by DIR with regard to the spinal cord, pharynx,
and larynx (p < 0.017). We did not observe a difference between DLSm and DLSu regarding
DSC, FPD, FND, HD, and MSD. The detailed metrics for central organs are presented in
Tables 1 and 2 and Figure S1.

3.2.3. Bony Structures

The quality of DLS and DIR in bony structures (i.e., the cochlea and the temporo-
mandibular joint), except for the mandible, was barely satisfactory, with a mean DSC of
0.74 and 0.69, respectively. In the subgroup analysis of the mandible, the DSC of DLS
was significantly higher than that of DIR (0.95 & 0.01 vs. 0.85 £ 0.09), with a significant
reduction in FPD (0.04 + 0.02 vs. 0.15 4+ 0.10); furthermore, HD also decreased from
3.55 & 2.64 (DIR) to 1.28 £ 0.32 (DLS). There was no significant difference in the accuracy
of bony structures between DLSm and DLSu. The detailed metrics for bony structures are
presented in Tables 1 and 2 and Figure S2.

3.2.4. Glandular Structures

For all glandular structures, DSC, FND, and MSD exhibited by the DLS showed a
salutary improvement over those exhibited by DIR (p < 0.017), with the largest difference
being for the right submandibular gland, for which DSC increased from 0.71 £ 0.09 (DIR)
to 0.88 £ 0.04 (DLSm). In addition, DLSm achieved a DSC superior to that obtained by
DLSu in the parotid gland (mean DSC: 0.87 £ 0.03 vs. 0.85 £ 0.04, respectively) and the
submandibular gland (mean DSC: 0.87 & 0.04 vs. 0.82 £ 0.08) with significant improvement
in FND, HD, and MSD (p < 0.017). Moreover, DLSm for the submandibular gland also
exhibited a lower FPD compared with that exhibited by DLSu. The detailed metrics for
glandular structures are presented in Tables 1 and 2 and Figure S3.

3.2.5. Optic Apparatus

Although there was a significant improvement in performance regarding DLS com-
pared to DIR concerning all substructures of the optic apparatus, DLS exhibited a low
DSC of 0.52 £ 0.17 for the optic chiasm. Both DLSu and DLSm exhibited similar accura-
cies regarding DSC, FND, FPD, HD, and MSD for all structures of the optic apparatus.
The detailed metrics for optic apparatus are presented in Tables 1 and 2 and Figure S4.

3.3. Time
There was a significant time reduction regarding DLS compared to M for contouring
23 OARs (p < 0.001). The mean time values spent for M, DLSu, DLSm were 2051.20 + 374.51,

5.01 & 0.19, and 4.96 £ 0.29, respectively (Figure 4). In addition, the processing time for
DLSu and DLSm was comparable (p = 0.349).
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Figure 4. Mean and standard deviation of contouring time for 23 structures. Abbreviations: DLSu, deep learning-based

segmentation using the unmatched training set; DLSm, deep learning-based segmentation using the matched training set.

3.4. Subjective Evaluation

Overall, 38.1% of M was misclassified as C; results of DLSm were more frequently
considered human-generated contours than those of DLSu (54.0% vs. 44.3%, Figure 5A).
For individual OARs, the rate of classification was similar between DLS and M for the right
submandibular gland (DLS vs. M; 62.0% vs. 58.7%, Figure S5) and the oral cavity (63.3%
vs. 64.2%). More than 50% of participants discriminated DLS as M for the submandibular
gland, thyroid, mandible, oral cavity, pharynx, esophagus, and spinal cord in the case of
DLSm and for the submandibular gland and oral cavity in the case of DLSu. A significant
difference of more than 10% between DLSu and DLSm was observed for the larynx,
pharynx, esophagus, and spinal cord.

Although M was more frequently preferred over DLSm (63.9% vs. 36.1%, Figure 5B),
DLSm was significantly preferred over DLSu (67.2% vs. 32.8%) and DIR (96.7% vs. 3.3%).
DLSm showed a similar rate of preference for the spinal cord, mandible, thyroid, and
submandibular gland when compared with M (Figure S5). In addition, DLSm was preferred
over DLSu in most OARs, except for the spinal cord, pharynx, and larynx; furthermore,
DLSm was preferred over DIR for all OARs.

Quality assurance for review purposes suggests relatively low rates of major errors
for M, DLSm, and DLSu, accounting for 1.9%, 2.7%, and 4.2%, respectively, in contrast to
38.1% for DIR (Figure 5C). In addition, DLSm needs both minor and major revisions of
contours less often than DLSu does (28.0% vs. 38.4%), and this difference was significant in
the submandibular gland, parotid gland, pharynx, esophagus, and spinal cord (Figure S5).
Moreover, the rate of revision required was comparable between M and DLSm (overall,
29.7% vs. 28.0%) except for the larynx (44.2% vs. 56.2%).
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Figure 5. Subjective evaluation using the Turing test. The rate of discrimination of a single contour as having been generated
by a human or a computer (A); comparison between two contours (B); quality assurance for review purposes of a single
contour (C). Abbreviations: DLSu, deep learning-based segmentation using the unmatched training set; DLSm, deep
learning-based segmentation using the matched training set; DIR, segmentation from deformable image registration.

4. Discussion

Although several studies regarding DLS in RT planning have been reported re-
cently [12], the feasibility of DLS in ART and an ideal training method for DLS have
not been reported yet. In the current study, based on both quantitative and subjective
measurements, we demonstrated the feasibility of DLS and the importance of continual
development in DLS with individualized training sets in ART for H&N cancer.

Patients with H&N cancer frequently experience dry mouth, sore throat, and taste
changes during RT, which negatively affects the oral intake of patients, resulting in signifi-
cant weight loss [25]. In addition to weight loss, volumetric shrinkage [26,27] or migration
of normal organs [28] could hamper the accurate delivery of the initially planned RT dose
to patients [29,30]. This implies that additional work for re-planning would be required
over the course of treatment. That is, the so-called ART is needed to compensate for these
structural changes [29,30]. Currently, a fixed-term ART, which is highly dependent on
physicians’ discretion or departments’ resources, is frequently performed in several centers
owing to the time-consuming RT planning process [30]. The more accurate segmentation
results of DLSm, compared to those of DLSu and DIR, in the current study following a
volumetric reduction in the glandular structures, may enable either real-time or short-term
ART. Several previous papers [31-33] have reported volume reduction in the parotid or
submandibular glands by 12-35% or 1.1-1.5% per day during RT, which is consistent
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with the current results. Consequently, the improved FPD in DLSm can potentially pre-
vent unnecessary target coverage compromises arising from the over-segmentation of
contracted OARs. In addition, a majority (72.0%) of the results obtained from continual
training (DLSm) were deemed satisfactory by the experts, which indicates the robustness of
DLSm compared with DLSu (61.6%) or DIR (25.9%), as well as inter-observer acceptability
comparable with that of M (71.6%).

The improvement of the results from continual training compared with the results of
previous studies on DLS using conventional training for the H&N region was nuanced
but measurable (Table 3). Although the number of training sets (80 sets) was relatively
low compared with that in the recent work by van Dijk et al. [13], both DLSm and DLSu
exhibited a higher DSC concerning the esophagus, pharynx, larynx, and glandular struc-
tures. The two-step approach employed in the DLS algorithm in the current study would
theoretically improve the overall accuracy despite the limited number of training sets.
A similar approach was introduced by Liang et al. [34]: the use of a bounding box around
OARs, followed by segmentation within the box. They reported an overall DSC of 0.86,
better than that obtained in the present study (0.81); an increased number of training
samples (185 sets) could explain the robustness of their DLS. The impact of the training
sample size has been reported by Fang et al. [35], who demonstrated that DLS based on
data obtained from 800 patients achieved more accurate results compared with that based
on data from 200 patients. However, the impact of continual training with regard to DLS
on ART segmentation has not been investigated yet. It has been reported that the use
of different training datasets with the same network could lead to different results [36].
Furthermore, the continuous training and refinement of DLS could guarantee improved
performance regarding both objective and subjective measures. The impact of continual
training in DLS on dosimetric outcomes needs to be investigated in future work.

Table 3. Average volumetric Dice coefficient of our model and for previously published results.

Brain Stem Spinal Cord Esophagus Pharynx Larynx Mandible Cochlea
Current, DLSu 0.87 0.82 0.80 0.82 0.85 0.95 0.75
Current, DLSm 0.87 0.82 0.82 0.82 0.85 0.95 0.76
Fritscher et al. [37]
Ibragimov et al. [38] 0.87
Mocnik et al. [39]
Ren X et al. [40]
Zhu et al. [41] 0.87 0.93
Nikolov et al. [36] 0.84 0.88 0.94 0.70
Tong et al. [42] 0.87 0.94
van Rooij et al. [43] 0.64 0.60 0.71 0.78
Rhee et al. [44] 0.86 0.83 0.81 0.87 0.66
Liang et al. [34] 0.90 0.88 0.87 0.91 0.82
van Dijk et al. [13] 0.84 0.87 0.55 0.68 0.71 0.94
Wong et al. [45] 0.80-0.83 0.79
Zhensong et al. [46] 0.90 0.94
Oktay et al. [47] 0.79-0.90 0.82-0.93 0.94-0.99
ParotidG SMG Thyroid Eye Lens Optic nerve Optic chiasm
Current, DLSu 0.85 0.82 0.88 0.91 0.77 0.71 0.53
Current, DLSm 0.87 0.87 0.88 0.91 0.79 0.71 0.52
Fritscher et al. [37] 0.81 0.65 0.51
Ibragimov et al. [38] 0.78 0.71 0.88 0.64 0.37
Mocnik et al. [39] 0.79
Ren X et al. [40] 0.71 0.58
Zhu et al. [41] 0.87 0.81 0.71 0.53
Nikolov et al. [36] 0.86 0.77 0.95 0.80 0.70
Tong et al. [42] 0.83 0.78 0.67 0.58
van Rooij et al. [43] 0.83 0.82
Rhee et al. [44] 0.83 0.89 0.72 0.69 0.41
Liang et al. [34] 0.85 0.84 0.69
van Dijk et al. [13] 0.84 0.78 0.83
Wong et al. [45] 0.80 0.81-0.82 0.85-0.88 0.43-0.47 0.32-0.38
Zhensong et al. [46] 0.83
Oktay et al. [47] 0.83-0.93 0.75-0.92 0.92-0.97

Abbreviations: parotidG, parotid gland; SMG, submandibular gland; DLSu, deep learning-based segmentation using unmatched training
set; DLSm, deep learning-based segmentation using matched training set.
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Unlike widely adopted atlas-based auto-segmentation, which propagates libraries
from multiple patients to the subject image [12], simple DIR merges the single contour from
an individual patient to the test set. In the current study, DIR achieved a suboptimal average
DSC of 0.70 with substantially increased FPD, HD, and MSD. Moreover, most observers
determined 38.1% of DIR to be edited with a major error. Mencarelli et al. [48] reported the
limitation of adopting DIR for contouring in the H&N region with random errors of 2.2 and
3.3 mm for OARs and tumors, respectively. Although the accuracy evaluated based on the
distance-to-agreement criterion could underestimate the performance of DIR owing to the
variability of human-derived ground truth and registration landmarks [49], the subjective
judgment of experts in active clinical practice also discouraged the application of DIR
compared with that of DLS in the current study.

Although we performed multiple quantitative assessments, including assessments
of similarity (DSC), classification (FPD, FND), and distance-to-agreement (MSD, HD),
these metrics could overestimate the overall accuracy of segmentation. This is because
the baseline “ground-truth” may not be the exact answer owing to its inter-observer
variability and uncertainty [4-6]. In the current study, observers responded that 29.7%
of M might need to be modified, demonstrating the inter-observer variability. Subjective
assessment using the Turing test would allow the evaluation of the acceptance level for
each individual, mitigate institutional bias, and help determine the degree of human-level
performance [13,24]. Although the difference between DLSm and DLSu was significant but
subtle in terms of quantitative metrics, subjective assessments revealed that most clinicians
valued DLSm over DLSu in the ART setting. Therefore, the grading of segmentation
performance should be performed via both objective and subjective assessments in future
investigations regarding segmentation.

High-quality training set rather than low-quality but large-volume training set emerges
as a simple but effective approach for improving the performance of DLS. Zhao et al. pro-
posed synthetic CT generation for training DLS from extremely limited training set [50].
They generated up to 2000 synthetic CT from 30 well-defined segmentations for training
DLS resulting in DSC of 0.74-0.83 [50]. Currently, various DIR software is recommended
for ART; DLS is considered as a potential next step in near future [1,51]. In this context, the
current method of continual training with initial planning CT (DLSm) for ART could repre-
sent a high-quality training data acquisition. Further investigations need to be conducted
to determine whether DLSm could be applicable in the real clinical practice.

Some limitations of the current study should be acknowledged. First, although 100 pa-
tients were randomly selected and had well-balanced baseline characteristics, there remains
a selection bias in terms of CT samples. Second, the lack of external validation based on CT
data from other institutions hinders further implementations in clinical practice. Never-
theless, we hypothesized the potential benefit of continual training on an individualized
(matched) training set for DLS in ART for the H&N region. The results of the present
study supported this hypothesis, and they were preliminarily validated using the Turing
test based on the expert opinions of multi-institutional physicians. Regarding manual
segmentation, 29.7% of respondents disagreed to contouring by a single physician. How-
ever, most disagreement results from <10% of contour volume (27.8% for minor error with
revision) which was consistent with underlying contouring variability among observers, as
previously reported [7-9]. Since the current training set was based on manual segmentation
by a single physician, the inter-physician variability for OARs in constructing training set
needs to be considered in the next phase. In addition, the dismal results obtained for small
organs (i.e., cochlea, temporomandibular joint, optic nerve, and optic chiasm) could be
owing to the limitations of CT such as relatively poor tissue resolution, which could be
improved by performing the segmentation based on MRI. Based on this preliminary study
of DLS in ART for the H&N region, further investigations could evaluate the dosimetric
and clinical impact of DLSm based on continual training with an individualized training set
based on daily kilovoltage or megavoltage cone-beam CT during fractionated RT. We only
included OARs rather than gross tumor volume or clinical target volume following reasons.
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Firstly, CT-based delineation is hard to define the accurate extent of tumor. Secondly,
an inter-observer variation of tumor volume usually surpasses that of OARs. However,
a future study incorporating tumor volumes is needed to assess the continual training in
the real clinical practice.

5. Conclusions

In conclusion, we observed the effectiveness of DLS for OARs in the H&N region.
According to our results, DLS outperformed DIR in terms of both objective and subjective
metrics. In addition, DLS achieved human-level performance within the range of interob-
server variability. In addition, the refinement and continual training of already built DLS
models could provide better optimization and guarantee robustness compared with fixed
DLS based on data obtained from independent patients when personalized ART is needed.

After future studies with consistent results supporting continual training, it is sug-
gested for researchers to develop DLS software with continual training for ART to optimize
the outcomes.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2072-669
4/13/4/702/s1, Figure S1: Median and interquartile range of average Dice coefficient (DSC), false
positive Dice (FPD), false negative Dice (FND), hausdorff distance (HD), and mean surface distance
(MSD) for central organs. Figure S2: Median and interquartile range of average dice coefficient (DSC),
false positive dice (FPD), false negative dice (FND), hausdorff distance (HD), and mean surface
distance (MSD) for bony structures. Figure S3: Median and interquartile range of average dice
coefficient (DSC), false positive dice (FPD), false negative dice (FND), hausdorff distance (HD), and
mean surface distance (MSD) for glandular structures. Figure S4: Median and interquartile range
of average dice coefficient (DSC), false positive dice (FPD), false negative dice (FND), hausdorff
distance (HD), and mean surface distance (MSD) for optic apparatus. Figure S5: Detailed results of
subjective evaluation using Turing test. The rate of discrimination of a single contour as a human
(A); comparison between two contours (B); quality assurance for review purpose of a single contour
(C). Table S1: Lists of organ-at-risk according to four subgroups. Table S2: Patient and tumor
characteristics of training and test set. Table S3: Volumetric changes of contour between primary
planning computed tomography (CT) and adaptive planning CT.
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