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Simple Summary: Pharmacoepidemiologic research provides opportunities to evaluate how com-
monly used drug groups, such as cholesterol-lowering drugs, may affect the prostate cancer risk or
mortality. However, such studies need to be carefully designed in order to avoid biases caused by
systematic differences between medication users and non-users. Similarly, data must be carefully
analyzed and interpreted while acknowledging possible biases that can lead to erroneous conclusions.
Here, we review common pitfalls in such studies and describe ways to avoid them in an effort to aid
future research.

Abstract: Pharmacoepidemiologic research provides opportunities to evaluate how commonly used
drug groups, such as cholesterol-lowering or antidiabetic drugs, may affect the prostate cancer
risk or mortality. This type of research is valuable in estimating real-life drug effects. Nonethe-
less, pharmacoepidemiological studies are prone to multiple sources of bias that mainly arise from
systematic differences between medication users and non-users. If these are not appreciated and
properly controlled for, there is a risk of obtaining biased results and reaching erroneous conclu-
sions. Therefore, in order to improve the quality of future research, we describe common biases in
pharmacoepidemiological studies, particularly in the context of prostate cancer research. We also
list common ways to mitigate these biases and to estimate causality between medication use and
cancer outcomes.

Keywords: pharmacoepidemiology; prostate cancer; metabolism; common biases; confounding;
retrospective studies

1. Introduction

The widely accepted theory of carcinogenesis is that it involves a sequential devel-
opment; first, a local primary tumor develops, progressing over time to adopt a more
aggressive phenotype, finally invading other tissues and forming metastases. The hall-
marks of the progression of cancer to metastatic disease includes the cancer cells’ ability
to sustain proliferative signals and evade growth suppressors, resist cell death, induce
angiogenesis, enable replicative immortality, and finally develop an ability to invade
the surrounding tissues and form metastases [1]. Genetic instability, changes in energy
metabolism, the ability to evade immune defense, and boundless growth have key roles
in every step of carcinogenesis, leading to the creation of a microenvironment that favors
tumor development and progression. The hallmarks of cancer have been comprehensively
reviewed by Hanahan and Weinberg (2011) [1].

Many of the typical adaptation properties utilized by cancer cells, especially those
affecting energy metabolism, can be targeted with established drugs currently used for
other indications, e.g., the antidiabetic drug metformin and the cholesterol-lowering statins.
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Potential cancer preventive effects of such established drugs can be evaluated in several
ways—in vitro studies are helpful in clarifying cancer-preventive mechanisms in cancer
cell lines whereas randomized clinical trials are needed to evaluate a drug’s clinical efficacy.
Pharmacoepidemiological studies provide an important opportunity to evaluate how
established drug groups may associate with the cancer risk and outcomes in large study
populations, providing important real-life data on possible drug efficacy.

In this review, we performed a pharmacoepidemiological evaluation of potential
cancer-preventive drugs in prostate cancer (PrCa). We reviewed the most common pitfalls
encountered in this type of research, especially when studying cancer-related events, and
present ways to avoid these obstacles so that the research results will be as reliable and free
of bias as possible.

2. Biological Rationale for Pharmacoepidemiological Studies in Prostate Cancer
2.1. Energy Metabolism

In many cancer types, the energy metabolism of the tumor cells becomes changed to
favor rapid cell growth and proliferation [1]. A common shift is termed the Warburg effect;
cancer cells avoid oxidative phosphorylation and favor anaerobic glycolysis even when
oxygen is available [2,3]. Glycolysis produces less energy than oxidative phosphorylation
but produces material for macromolecules, thus enhancing carcinogenesis [4,5]. Glycolysis
produces lactate that is converted by tumor stromal cells into pyruvate, which is utilized
as an energy source [6,7]. Tumor cells often have an increased uptake of glucose due to
the upregulated expression of glucose transporters on the cell surface [8]. This increased
glucose flux and metabolism are clinically used in positron emission tomography imaging
of tumor cells via the accumulation of a radiolabeled glucose analog in the primary tumor
tissue and metastases [9]. The Warburg phenomenon is not commonly encountered in
prostate cancer, but evidence for the importance of glucose metabolism exists also in this
cancer type [10].

The role of hyperinsulinemia, insulin receptors (IR), and insulin-like growth factor
(IGF) on cancer development and progression have attracted scientific interest due to the
global epidemics of obesity and type 2 diabetes [11]. In prostate cancer, the overexpression
of both IR and IGF has been shown to present in around 10–30% of patients, and IGF in
particular has been linked to advanced prostate cancer [12,13]. Furthermore, androgen
deprivation therapy (ADT), a standard treatment for advanced PrCa, causes hyperinsuline-
mia as a side effect of treatment [14], which might partly represent a mechanism for the
progression of hormone-independent PrCa. In cell models of PrCa, hyperinsulinemia has
been shown to increase cellular proliferation, invasiveness, and the activation of cellular
plasticity mechanisms [15,16].

In preclinical studies, the use of the antidiabetic drug metformin has been postu-
lated to affect prostate cancer development and progression in multiple ways: through
AMPK-dependent and -independent mechanisms, changing activity in the IGF-1 signaling
pathway, suppressing the androgen receptor pathway, inhibiting the mTOR pathway, as
well as impacting on lipogenesis [17]. However, according to a meta-analysis of epidemio-
logical studies, the use of metformin has not been associated with either the prostate cancer
risk [18] or the disease-specific mortality [19].

2.2. Cholesterol Metabolism

Cholesterol is an important compound of cellular membranes and substrate for many
biological compounds such as steroid hormones including androgens. Serum cholesterol is
produced either by de novo synthesis through the mevalonate pathway or by uptake of
dietary cholesterol.

Cholesterol metabolism is important to allow the growth of cancer cells, but it has
also been linked to cell proliferation, migration, and invasion [20,21]. Cholesterol is
the precursor for biosynthesis of all steroid hormones, including androgens. Therefore,
it is logical to assume cholesterol metabolism to be important, especially in hormone-
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dependent cancer types. Indeed, upregulation of cholesterol and lipid biosynthesis is a
known hallmark of prostate cancer. In advanced prostate cancer, the de novo synthesis of
cholesterol is increased, while the expression of the low-density lipoprotein (LDL) receptors
and activity in cholesterol esterification pathways are downregulated [22]. Thus, prostate
cancer cells rely more on de novo synthesis of cholesterol rather than dietary cholesterol.
Further, esterified cholesterol can be stored and accumulated in lipid droplets in high-grade
and metastatic prostate cancer cells. In a mouse model, it was demonstrated that a deletion
of these droplets inhibited cancer cell proliferation, as well as the invasion capability of the
malignant cells, thus preventing tumor growth [23].

In epidemiological studies, hypercholesterolemia has been considered as a possible
risk factor for prostate cancer progression—the risk of disease recurrence after primary
treatment is significantly elevated in men with hypercholesterolemia compared to men
with normal serum cholesterol levels [24].

Cholesterol-lowering drugs, i.e., statins, inactivate the mevalonate pathway by inhibit-
ing 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase. In epidemiological
studies, the use of statins has been associated with a lowered risk of prostate cancer
recurrence and progression [25,26], but not with the overall risk of prostate cancer diag-
nosis [27,28]. In a randomized clinical trial, an intervention with atorvastatin lowered
the concentration of serum prostate-specific antigen (PSA) as compared to placebo in
men with high-grade prostate cancer [29]. Treatment also decreased tumor proliferation
after a minimum exposure of 27 days. In another trial, treatment with fluvastatin before
prostatectomy showed promising effects on tumor cell apoptosis [30]. Statin treatment is
also associated with better survival in men with advanced prostate cancer managed with
androgen deprivation therapy; statin use has been associated with an 8–10 month longer
response to androgen deprivation when compared to non-users [31].

2.3. Metabolic Adaptions to Hypoxic Tumor Microenvironment

Hypoxia is common during cancer progression due to the rapid growth of tumors.
Hypoxia is consistently associated with resistance to oncological treatments [32,33]. It is
believed that metabolic alterations in cancer cells likely contribute to the cells’ ability to
withstand hypoxic conditions. Reliance on glycolysis demands that the cells have access
to an energy source and materials for proliferation despite hypoxia. In fact, a hypoxic
microenvironment further induces glycolysis by upregulating glucose transport and the
enzymes needed for glycolysis [34]. Sterol regulatory element-binding proteins (SREBPs)
control cholesterol metabolisms and are activated by hypoxia [35,36]. SREBPs are tran-
scription factors that upregulate the genes involved in the cholesterol pathways [37,38].
Hypoxia induces the expression of hypoxia-inducible factors (HIFs) that regulate many
hypoxia-related metabolic changes. Thus, the presence of a hypoxic environment also regu-
lates lipid metabolism in a HIF-dependent manner [39]. In prostate cancer cells, aberrant
lipid metabolism has an important role in overcoming the hypoxic microenvironment [40].

2.4. Other Target Mechanisms for Evaluation in Pharmacoepidemiological Studies

Inflammation, especially chronic inflammation, plays a key role in the development
and progression of many cancers. There is evidence that chronic inflammation also plays a
role in PrCa etiology (for review, see [41]). The commonly used analgesics non-steroidal
anti-inflammatory drugs (NSAIDs) reduce inflammation, and thus the use of these drugs,
especially acetylsalicylic acid (aspirin), has often been a focus of pharmacoepidemiological
studies on prostate cancer. A meta-analysis evaluating 29 studies concluded that use
of aspirin was associated with a slightly (approximately 10%) decreased risk of PrCa;
however, the overall use of all NSAIDs was associated with a slightly increased risk [42].
Subsequently, a meta-analysis of 39 studies concluded that use of aspirin and NSAIDs was
associated with a lowered risk of PrCa-specific death [43]. We have also reported similar
results among the Finnish population [44,45].
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Other drugs that have been pharmacoepidemiological targets for prostate cancer de-
velopment and progression are antihypertensive drugs as well as allopurinol and anticoag-
ulants. Compounds inhibiting the renin–angiotensin–aldosterone system and beta-blockers
have been the most widely investigated antihypertensive drugs [46,47]. Platelets have
been suggested to play a role in promoting tumor metastasis, but the association between
anticoagulant therapy and prostate cancer risk is controversial [48,49]. In addition, it has
been reported that treatment with anticoagulants may be associated with an increased
risk of cancer death [50]. Allopurinol may possess anti-inflammatory properties [51]; in
a pharmacoepidemiological study, its use was associated with a reduced risk of prostate
cancer [52].

3. Commonly Used Data Sources in Pharmacoepidemiological Studies
3.1. Registries

Many countries have registries that routinely collect healthcare data either nationally,
such as the UK National Health Service, or from a clearly outlined population, such as
members of a certain healthcare plan, such as Kaiser Permanente in the USA. Data is
collected routinely either continuously or between certain time intervals. In the Nordic
countries, national registries have been shown to be accurate, thus representing a valuable
resource for pharmacoepidemiological studies. In addition, data from different registries
can be combined easily and reliably using personal identification numbers [53]. Many
different routinely collected registries are available, such as national cancer registries, drug
prescription databases, the causes of death registries, and hospital outpatient registries.

3.2. Surveys

When appropriate routinely collected registries are not available, data can be collected
using surveys. Information on medication use is collected at one or more time-points. Since
the surveys are filled in by the participants, the information may not be as accurate and
reliable as in registries with routinely collected data, especially if survey data are collected
retrospectively at the time of cancer diagnosis or after it; in other words, the quality of
survey data may systematically differ between cancer patients and controls. When survey
data includes personal identifiers compatible with registries, such as a social security
number, survey data can be combined with registry data. Optimally these two data sources
can be complementary; for example, comprehensive registry data on medication use can
be complemented with survey data on lifestyle factors such as smoking and diet. There are
several examples of successful studies based on survey data, e.g., the Physician’s health
study [54] and the FINRISK study [55]. For instance, FINRISK is a large Finnish population
survey on risk factors for chronic, non-communicable diseases that has been carried out
every five years since 1972. These survey data have been combined with Finnish national
registries to evaluate the risk for various health outcomes.

4. Common Pitfalls in Pharmacoepidemiological Research
4.1. Immortal Time Bias

In general, the immortal time bias refers to a situation occurring when one comparison
group has periods of follow-up when the study outcome cannot occur (Figure 1). In
pharmacoepidemiology, this typically occurs when cohort follow-up starts at the baseline
time point, e.g., cancer diagnosis, but medication use could have started at any time point
after the baseline. Therefore, follow-up time before the initiation of medication use is
termed “immortal time” as the users lived to subsequently become medication users. This
bias favors medication users, especially in observational cohort studies assessing mortality
according to medication use. Thus, when a flawed approach is used in the design and/or
in the data analysis of the results, it might lead to immortal time bias, which can generate
an illusion of treatment effectiveness [56]. The immortal time bias is a problem, especially
in pharmacoepidemiological studies that compare users of a certain drug or drug group
against non-users [57].
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Figure 1. Illustration of time immortal bias in an observational cohort study (treated (misclassified)) and one solution to
avoid it (treated). Immortal time bias can generate an illusion of treatment effectiveness when it does not actually occur.
This bias can be avoided by using time-dependent variables where exposure status is updated during the follow-up, or
alternatively by excluding all of the non-exposed follow-up times from the beginning of exposure.

Lévesque et al. (2010) [58] listed criteria for identifying immortal time bias in cohort
studies: (1) is the treatment status determined after the start of follow-up or defined
using follow-up time?; (2) is the start of follow-up different for the treated and untreated
group relative to the date of diagnosis?; (3) have the treatment groups been identified
hierarchically?; (4) are subjects excluded on the basis of treatment identified during follow-
up?; and (5) has a time-fixed analysis been used? If a study does not take into account
the above-mentioned criteria, then an immortal time bias may occur. The use of the time-
dependent variable is especially recommended as a way of avoiding the immortal time
bias [59].

The immortal time bias can be controlled with time-dependent exposure variables in
which exposure status is updated during the follow-up. In pharmacoepidemiology, this
means that medication usage status changes, being a non-user before the first documented
drug purchase or report of use and changing to becoming a user after that event. This
eliminates follow-up time where a user would be falsely categorized as exposed before the
actual start of usage. We used time-dependent variables and the start of follow-up from the
beginning of exposure when the impact of commonly used drugs on prostate cancer risk
or mortality is compared against that in non-users [46,60]. Use of these methods requires,
at minimum, knowledge on starting dates of medication use. Future studies should make
every possible effort to obtain these data in order to control for immortal time bias.

4.2. Time-Window Bias

Suissa et al. (2011) [61] described a time-window bias in case–control studies demon-
strating that the protective impact of statin use on lung cancer was due to the longer
time-window for measuring exposure in controls rather than in cases; among the cases, the
statin exposure was limited to usage that occurred before lung cancer diagnosis, whereas in
controls, no similar limitation was applied, and statin use could have occurred over a longer
time period. Therefore, controls had a greater likelihood of being statin users, creating a
bias that lowered the risk association between lung cancer and statin use (Figure 2). This
time-window bias can be avoided by assessing equal time windows to observe exposure
in cases and their matched controls. Usually this is done by using the diagnosis date of
the case in a matched case–control pair as an index date also for the control. Medication
use is limited to occur before the index date both for the case and the control, ensuring
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equal exposure times. Suissa et al. (2007) [56] proposed the application of time-dependent
sampling, i.e., ensuring equal exposure time to cases and controls to avoid the problem
of the time-window bias. Di Martino et al. (2015) [62] demonstrated how results change
markedly in the same study population due to time-window bias, i.e., differences when
time-dependent sampling was used compared to time-independent sampling.
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Figure 2. Illustration of time-window bias in an observational pharmacoepidemiological case–control study. This bias
occurs when the limitation for drug exposure differs between the cases and controls; exposure is limited to occur before
cancer diagnosis among the cases, but no such limitation is applied among the controls. The time-window bias can be
avoided by assessing equal time windows for exposure both in cases and their matched controls.

4.3. Bias Caused by Selective Discontinuation of Drugs at Terminal Phase of Cancer

When cancer has progressed to the terminal phase of cancer progression, it is common
clinical practice to discontinue all drugs that have no direct palliative impact on pain
relief or other symptoms. This commonly includes preventive drugs such as statins,
antihypertensive drugs, and oral antidiabetic drugs [63]. The practice can create a powerful
bias in pharmacoepidemiological studies on cancer mortality if medication use during the
final follow-up year affects the exposure status. The bias creates an illusion that non-users,
who might have been users for a long time but discontinued usage shortly before cancer
death, have more cancer deaths compared to those who have kept using the drug until the
end of follow-up (Figure 3). Our approach to avoid this bias while analyzing medication
use as a time-dependent exposure is to keep the subjects as users after the first recorded
usage, i.e., user status may change from non-user to user but will not change back to
non-user even though the medication use has been later discontinued [46]. This effectively
eliminates the selective discontinuation bias described above. A limitation of this approach
is that it overestimates the length of medication use in those who had used medication
only for a very short period of time. This limitation can be overcome by using washout
periods, where medication users with only short exposure periods are excluded.
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Figure 3. Illustration of bias caused by selective discontinuation of drugs in the terminal phase of cancer and the use of
time-dependent variables. This bias may create an illusion that non-users, who might well have been users for most of the
follow-up time but discontinue usage in the terminal phase of cancer (user with outcome), are more prone to die. This bias
can be avoided by keeping subjects as non-users until the first exposure of drugs, and after that, they remain as ever-users
throughout the whole follow-up period.

4.4. Confounding by Indication

Confounding by indication is a common source of bias in observational pharmacoepi-
demiological studies as treatment allocation is not randomized. Therefore, medication
users differ systematically from non-users, at least in the condition for which the medication
was prescribed. Especially in the context of cholesterol-lowering and antidiabetic drugs,
multiple comorbidities associate with medication use and with cancer outcomes, providing
a further potential source of bias. Confounding by indication can either overestimate or
underestimate the risk association with the outcome depending on the association between
the underlying condition requiring medication use and the cancer [64].

One example of this situation occurred when we investigated the association between
use of antihypertensive drugs and the risk of prostate cancer death in a Finnish population-
based cohort [46]. In the preliminary analysis, the use of diuretics was associated an
increased risk of prostate cancer death compared to non-users (hazard ratio 2.61, 95% CI
2.22–3.06). Furthermore, the risk association was strongest in men who used drugs at a
low dose and only for a short time (1 year or less) prior to the end of follow-up (hazard
ratio 3.17, 95% CI 2.6–3.87). When the analysis on diuretics was broken down to allow
a separate analysis for each drug in the diuretics class, we found that the increased risk
was associated with two compounds in particular, namely, furosemide and spironolactone.
These drugs are commonly used in the treatment of oedema and fluid retention, both of
which are common problems in advanced, terminal phase cancer, prostate cancer included.
Thus, the increased risk for PrCa death among diuretic users was due to confounding by
indication; more prostate cancer deaths occurred in diuretic users than non-users because
these drugs were actually being used to manage the complications of advanced prostate
cancer. Thus, when the use of loop-diuretics and spironolactone was excluded from the
final analysis, we estimated that the hazard ratio decreased to 1.25 (1.05–1.49).

One option to avoid such a bias is to use a washout period at the beginning of the
exposure; confounding by indication is likely to have the greatest impact at the beginning
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of medication use, as demonstrated by our example of prostate cancer mortality among
diuretics users. Therefore, exclusion of a reasonable time period from the beginning of
medication use can help to mitigate this bias. Another very beneficial way to evaluate con-
founding by indication is to include in the analysis all drugs that have the same indication
of use but differing mechanisms of action. To avoid biases due to confounding by indica-
tion, one calculates the risk estimates for all drugs used for that indication, independent of
the mechanism of action. If, however, one drug group would exhibit a different associa-
tion with cancer outcomes compared to other drugs used for same indication, this would
suggest that the mechanism of that particular drug group may be exerting an oncological
impact. For example, if antihypertensive drugs affecting the renin–angiotensin–aldosterone
(RAA) system were associated with a lowered risk of prostate cancer death, whereas other
antihypertensive drug groups were associated with no decrease in risk or even an increased
risk, this would suggest a protective effect for RAA inhibition [46].

4.5. Protopathic Bias

A protopathic bias is another common source of bias that should be taken into con-
sideration when designing and interpreting pharmacoepidemiological studies. In cancer
epidemiology, a protopathic bias occurs when the drug of interest is used to treat symptoms
caused by a still undiagnosed cancer, i.e., drugs have been prescribed for an undiagnosed
or pre-stage of the disease [65]. An excellent example of protopathic bias occurs when
the association between analgesic drugs and risk of advanced prostate cancer or cancer
mortality is being investigated. Such studies find a strong association between analgesic
medication use and the risk of advanced prostate cancer, especially for short-term medica-
tion use. In this case, the risk association is not caused by analgesic drugs, but by treatment
of metastasis pain, a symptom that often precedes the diagnosis of advanced prostate
cancer, as prostate cancer predominantly metastasizes to bone [44,45]. It is important to
take this bias into account when studying the association between medication use and
slowly progressing and potentially symptomatic diseases such as cancer. Several options to
control for protopathic bias are available. One option is to exclude medication use from the
time assumed to be affected by the possible protopathic bias, e.g., in the case of analgesics,
this would mean an exclusion of the first year of medication use as this would considerably
limit any protopathic bias in the association with the risk of advanced prostate cancer.

Another useful option to control and evaluate the protopathic bias is to adopt lag-time
analyses (Figure 4) [66]. In this approach, the exposure is lagged with a follow-up time, e.g.,
with a one-year time lag, the cancer risk is not evaluated by medication use that occurred
at the time of diagnosis, but by usage that occurred one year before that diagnosis. Thus,
the time period immediately preceding cancer diagnosis is excluded, avoiding, or at least
mitigating, the protopathic bias. We have also used this concept in our analysis [60].
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4.6. Recall Bias

In pharmacoepidemiological studies, the risk of recall bias is evident especially in
studies where surveys are used to collect data on past medical use. The typical setting
where this bias is encountered is a case–control study where cases are cancer patients
treated in an outpatient clinic; the controls are patients without cancer but treated in the
same outpatient clinic or hospital for other indications. A recall bias arises when patients
who have become diagnosed with a potentially life-threatening disease will fill in surveys
more comprehensively or in greater detail as compared to patients with a less serious
condition. Patients who have fallen seriously ill often do a lot of soul-searching and think
about what could have caused the disease. The compliance of these patients to fill in survey
questionnaires is often higher and more accurate than that of less seriously ill patients. This
may lead to an overestimation of the association between the drug of interest, length of
use, and outcome in the cases. To avoid this bias, routinely collected data, e.g., hospital
or national registries are a preferable data source, as data availability does not depend on
the patient’s conditions or memories. In addition, the control group should be selected
cautiously so that it resembles the patient group as much as possible. One way to assess
this kind of bias is to investigate whether the compliance in filling of surveys is similar
between the cases and controls.

4.7. Healthy User Bias

The healthy user bias is a form of selection bias that occurs in pharmacoepidemiology
when medication users generally follow a healthier lifestyle than non-users. This situation
occurs especially when drugs that affect a non-symptomatic risk factor, such as cholesterol-
lowering or antihypertensive drugs, are used in primary prevention, i.e., to lower the risk
for an adverse health outcome. The willingness to take primary preventive medications
is a signal of compliance with medical advice and health-seeking behavior. Medication
users generally have a healthier lifestyle also in other areas, e.g., having a healthy diet
and regular exercise habits and more active participation in cancer screening programs.
Prostate cancer incidence and mortality in a given population are influenced by frequency
of PSA testing; therefore, in the context of prostate cancer, healthy user bias may cause
falsely elevated overall prostate cancer risk but lowered disease-specific mortality among
users compared to non-users due to more active participation in PSA testing.

Subjects who are using prescription drugs for primary prevention also meet physicians
on a regular basis. Thus, their health status is monitored more actively than non-users.
Therefore, statin users who use the drugs for primary prevention of coronary artery disease
are prone to this bias; such statin users have a decreased risk of various health outcomes
unrelated to effects of statins, such as a lowered risk of motor vehicle accidents and
workplace accidents [67]. On the other hand, statins are more commonly used for secondary
prevention, i.e., to prevent worsening of some established cardiovascular disease. In the
secondary prevention group, the healthy user bias is reversed; patients with cardiovascular
disease have more risk factors, such as smoking, in comparison to non-users. Therefore,
when considering the possibility of a healthy user bias, it is important to consider whether
the drugs have been used for primary or secondary prevention.

4.8. Bias Due to Competing Causes of Death

This source of bias occurs in pharmacoepidemiology when medication users have an
elevated risk of dying of non-cancer causes. For example, users of cholesterol-lowering,
antihypertensive, and antidiabetic drugs have cardiovascular risk factors that indicate
the medication use. Therefore, they are at an increased risk of cardiovascular morbidity
and mortality compared to non-users and thus their increased cardiovascular mortality
may introduce a bias, lowering the observed risk estimates for cancer mortality, as these
medication users do not live long enough to die later of cancer. This may be especially
relevant in prostate cancer, where most patients are elderly men with often multiple
comorbidities. This bias can be estimated by analyzing separately the risk for the presumed
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competing cause. One common way to control this bias is to use a competing risks
regression model in the analysis, such as that described by Fine and Gray (1999) [68].

5. Tools to Assess Causality and Control Bias
5.1. Assessment of Temporal and Dose Dependence Between Medication Use and Cancer Outcomes

The rules of causality include that there should be a temporal and quantitative rela-
tionship between the exposure and the outcome. Pharmocoepidemiological studies should
always aim to estimate whether the risk association between cancer and the studied drug
changes with the duration or dose of medication use. In a causal association, there should
be a correlation between changes in the outcome risk with the duration and amount of the
exposure, becoming stronger in conjunction with long-term/high-dose use. On the other
hand, the selection bias related to the beginning of drug use, such as protopathic bias and
confounding by indication, mainly affects short-term use, as we presented above in our
example of the use of diuretics when prostate cancer-specific mortality was evaluated [46].
In the long-term use of drugs, the impact of selection bias tends to even out over time, and
thus the strongest association is seen among the short-term users. Therefore, if the dose
and time dependency cannot be analyzed, the causal association between drug exposure
and the outcome cannot be comprehensively evaluated.

5.2. Assessment of Adherence to Medication Use

The assessment of adherence to medication use is particularly a problem when data
are collected from prescription registries collecting information on prescriptions or drug
purchases; purchase data are available, but information on whether the subject actually
used the drug is missing. Therefore, medication use may appear to be greater than what
actually happened. This can create a bias by diluting the observed risk associations accord-
ing to medication use. On the other hand, in studies where information on medication use
is collected with surveys, subjects might exaggerate or underestimate their actual usage. In
the absence of documented medication intake, there is no sure way to evaluate or mitigate
this bias. It is logical to assume that it would affect mostly short-term use, whereas those
who have purchased the drugs repetitively over a long time span can be assumed to have
actually consumed the drugs. If measurements of blood glucose or cholesterol levels are
available, compliance with antidiabetic and cholesterol-lowering medication use can be
evaluated indirectly by observing changes in these parameters.

5.3. Propensity Score and Instrumental Variables

In order to obtain reliable results from retrospective observational studies, we must
not only control for factors causing the above-mentioned biases, but also we must adjust
for potential confounding factors. When the data include information on such confounding
factors, adjustment is commonly done by adding these as variables into the regression
models used to calculate the relative risks for the outcome. In small datasets in particular,
adjustment for multiple confounding factors can be problematic, as confidence intervals for
the risk estimates tend to become wider along with the number of model adjustments. One
remedy for the problem is to use adjustment for propensity score instead of multiple vari-
ables [69]. In this method, the association is evaluated between the potential confounding
factors and the exposure. For example, odds ratios for statin use by smoking, obesity, anti-
hypertensive drug use, and antidiabetic drug use can be calculated. On the basis of these
odds ratios, we can calculate an individual propensity score for statin use for each person in
the study population in terms of how many of these risk factors they have. The propensity
score can be used in multiple ways: (1) model adjustment—adjusting regression model for
propensity score allows for an adjustment for multiple potential confounding factors in
one variable, reducing the toll on statistical precision; (2) matching—case–control pairs can
be matched according to their propensity scores, creating a situation where the case and
the control are equally likely to be medication users in terms of their known background
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characteristics; and (3) stratification—stratifying the data by propensity score divides the
study population into groups homogenous in their likelihood to be medication users.

Thus, the propensity score is a method that can be used to balance known background
baseline variables between exposed and non-exposed study subjects or cases and controls.
There are several different methods available for calculating propensity scores [70].

One limitation of the propensity score method is that it does not mitigate systematic
biases or confounding by unknown background variables. The propensity score has the
greatest value in studies with small study populations, whereas in large datasets with
tens of thousands of subjects, the use of a propensity score does not confer any additional
benefit over separate adjustment for each background variable [71].

The instrumental variable method can be used to address unmeasured confound-
ing [72]. This means using a variable that is related to the exposure but not with the
outcome as a way to assess causality. In cancer epidemiology, a common application is
to evaluate the genotype known to predict a certain trait, such as hypertension to assess
the causality between hypertension and cancer. In pharmacoepidemiology, this may give
opportunity for indirect estimations, as genotype may predict a trait that indicates medica-
tion use but does not mean that medication has actually been used. The use of this method
is recommended only when unmeasured confounding is a major concern as the adoption
of this method lowers statistical power of the risk estimates, e.g., creating high confidence
intervals.

5.4. Other Study Setups to Control Bias

Lund et al. (2015) [73] reviewed the concept of the active comparator, a new user
study design in pharmacoepidemiological research. This study design aims to mimic the
design of a randomized controlled trial. In this design approach, the study population
is limited to participants with documented indication to use the medication of interest,
e.g., elevated blood glucose concentrations. Additionally, the participants must have no
documented medication usage before the baseline. This active comparator part helps to
restrict the study to subjects with an indication for treatment without contraindications.
Then participants who start using the drug of interest, such as metformin, after baseline
are compared to those who start using another drug such as insulin. Including only usage
post-baseline ensures correct timing between the covariate and the exposure, and thus the
adoption of this design helps to avoid problems caused by confounding by indication and
some forms of selection bias. The exclusion of participants with medication use before the
baseline makes an evaluation of the exposure more accurate, as medication use data before
the baseline are often incomplete, whereas this is not the case for usage data during the
study period.

5.5. Further Considerations

A pharmacoepidemiological evaluation is always retrospective and the ability to
adjust for the above-mentioned confounding factors and biases evidently depends on the
quality of the available data; furthermore, it is commonly not possible to control for all of
these factors. Still, every effort should be made to ensure that the data have as high a quality
as possible. Often this means combining data from many different registers with survey
data. The above-mentioned biases should already be taken into account in the study’s
design, and the data need to be carefully analyzed and interpreted while acknowledging
the possibility of biases if the data do not allow for their control.

It is also important to systematically assess the quality of the data sources; complete-
ness and validity of the register data should be evaluated as should the response activity in
a survey. There may well be validation studies available for some widely used registries.
For instance, Sund (2012) [74] systematically reviewed the quality of the Finnish hospi-
tal discharge register and concluded that data completeness and accuracy varied from
satisfactory to very good as long as the recognized limitations were taken into account.
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6. Conclusions

In conclusion, we describe the biological rationale behind a pharmacoepidemiological
study on commonly used medications and their possible association with the develop-
ment and progression of prostate cancer. Such studies hold great possibilities to enhance
understanding of prostate cancer etiology and identify new targets for anticancer interven-
tions. Nevertheless, such studies are prone to multiple sources of bias, which need to be
acknowledged and addressed by all pharmacoepidemiological studies to avoid making
erroneous conclusions, which would lead to wasting of research resources to study a risk
association that was biased in the first place. We have highlighted several sources of bias
and recommend methods to avoid these commonly occurring biases in pharmacoepidemi-
ological studies aimed at identifying associations between medication use and cancer risk
or outcomes. When designing a study, the completeness and validity of the register data
should be evaluated before conducting any analysis. In the analysis, it is essential to control
for an immortal time bias and a time-window bias. Finally, when inferring causality of
the risk association, we must evaluate the time and dose dependency between medication
use and the outcome. A lag-time analysis can help to control for a protopathic bias, and
the adoption of the propensity score method can help in controlling for confounding by
known background variables. If data are available, other drugs with the same indication
but different mechanisms of action should be evaluated to estimate confounding by in-
dication. This approach is essential when evaluating a drug or drug group with a given
mechanism of action, such as those affecting cancer metabolism. When these biases have
been properly addressed, pharmacoepidemiological studies provide invaluable source of
real-life information on how commonly used drugs may affect prostate cancer.
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