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Simple Summary: Immune checkpoint blockade targeting PD-1/PD-L1 has a promising therapeutic
efficacy in different tumors, but a significant percentage of patients cannot benefit from this therapy
due to primary and acquired resistance during treatment. This review summarizes the recent findings
of PD-L1 role in resistance to therapies through the PD-1/PD-L1 pathway and other correlating
signaling pathways. A special focus will be given to the key mechanisms underlying resistance to
the PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, we also discuss the promising
combination of therapeutic strategies for patients resistant to the PD-1/PD-L1 blockade in order to
enhance the efficacy of immune checkpoint inhibitors.

Abstract: Release of immunoreactive negative regulatory factors such as immune checkpoint limits
antitumor responses. PD-L1 as a significant immunosuppressive factor has been involved in resis-
tance to therapies such as chemotherapy and target therapy in various cancers. Via interacting with
PD-1, PD-L1 can regulate other factors or lead to immune evasion of cancer cells. Besides, immune
checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in the different tu-
mors, but a significant percentage of patients cannot benefit from this therapy due to primary and
acquired resistance during treatment. In this review, we described the utility of PD-L1 expression
levels for predicting poor prognosis in some tumors and present evidence for a role of PD-L1 in
resistance to therapies through PD-1/PD-L1 pathway and other correlating signaling pathways.
Afterwards, we elaborate the key mechanisms underlying resistance to PD-1/PD-L1 blockade in
cancer immunotherapy. Furthermore, promising combination of therapeutic strategies for patients
resistant to PD-1/PD-L1 blockade therapy or other therapies associated with PD-L1 expression was
also summarized.
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1. Introduction

T-cell activation and proliferation induced by antigens is regulated by expression of
both co-stimulatory and co-inhibitory receptors and their ligands [1]. Inhibitory pathways
in the immune system can prevent autoimmunity through maintaining self-tolerance and
regulating immunity [2]. While in tumors inhibitory pathways known as “checkpoints”
can evade immune surveillance. Programmed cell death -1(PD-1) interacting with its
corresponding ligand PD-L1 leads to immune suppression via preventing the T-cell activa-
tion in the tumor [3]. PD-1 is expressed on activated CD8+ T-cells as well as B cells and
natural killer cells, and inhibits T-cell receptor (TCR) signaling and CD28 co-stimulation
under chronic antigen exposure. As ligands of PD-1, PD-L2 is primarily expressed on
antigen-presenting cells (APC) while PD-L1 is expressed on various types of cells including
tumor cells and immune cells. Evidence of PD-L1 expression increase and spontaneous
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immune resistance is proved in several types of human cancers [4]. Besides, predictive
and prognostic value of PD-L1 immunohistochemical expression has been reported in
certain cancers. Moreover, PD-L1 as an inhibitory factor is also involved in other signaling
pathways underlying mechanisms in resistance to tyrosine kinase inhibitors (TKIs).

Immunotherapy identified as the most promising approach in cancer treatment com-
pared with chemotherapy and targeted therapy, immune checkpoint inhibitors have re-
ported higher rates of response, remission, and better overall survival rates in a variety of
tumors [5]. Immunotherapy has received the US Food and Drug Administration (FDA)
approval for 57 indications in 17 solid tumors in less than 10 years, while over 80% are
PD-1/PD-L1-targeted antibodies. Beneficial function of the PD-1/PD-L1 axis blockade is
confirmed in treating many different types of cancers such as non-small cell lung cancer
(NSCLC), melanoma and bladder carcinoma [6,7]. So far, six immune checkpoint inhibitors
targeting PD-1/PD-L1 have been approved by the FDA for the first and second line of
patients with non-small cell lung cancer including monoclonal antibodies (mAb) pem-
brolizumab, nivolumab and cemiplimab targeting PD-1 and mAb atezolizumab, avelumab
and durvalumab targeting PD-L1. However, limited efficacy has been reported in PD-
1/PD-L1 blockade therapy which rarely exceeds 40% in most cancer types and a large
number of patients show partial responsiveness [8,9]. Even if there is a consistent rate
of initial responses, the majority of patients develop therapeutic resistance and disease
progression [10,11]. Focusing on PD-L1, we described all these concepts in this review
including its predictive and prognostic value, immune resistance induced by PD-L1 and
key mechanisms underlying resistance to PD-1/PD-L1 blockade therapy.

2. The Expression of PD-L1 Levels Predicting Resistance and Poor Prognosis

PD-L1 expression is increased in many types of human cancers and is regarded as
a predictive and prognostic marker in cancer tissues. Prior data have demonstrated that
PD-L1 expression is upregulated in cisplatin-resistant lung cancer cells compared with
parent cells [12–14]. Resistance to epigenetic therapy is associated with enhanced PD-
L1 expression in myeloid malignancies [15]. For example, 7 myelodysplastic syndrome
and 6 acute myeloid leukemia patients received treatments with either azacytidine (Aza)
or combined Aza and the histone deacetylase inhibitor LBH-589 to investigate the PD-
L1 expression levels. Non-responders showed a more than two-fold increase in PD-L1
expression after treatment commenced, and except for two patients, none of the responders
demonstrated increased expression of PD-L1.

PD-L1 expression is correlated with poor prognosis in different cancers. In chemother-
apy and radiotherapy-treated patients with head and neck squamous cell carcinoma
(HNSCC), high PD-L1 mRNA (>125 FPKM) from The Cancer Genome Atlas database
had significantly reduced the 5-year survival rate [16]. Other data regarded PD-L1 as a
potential biomarker for radiation therapy failure of HNSCC [17]. Following radiother-
apy, a panel of radiation-resistant human papilloma virus (HPV)-negative HNSCC cell
lines exhibited increased expression of PD-L1, three cohorts of HPV-negative HNSCC
tumors with high expression of PD-L1 had much higher failure rates compared to the
PD-L1-low expression group. Similar results have been reported in metastatic melanoma
patients (MMP) [18]. Forty six and thirty four BRAFi-treated MMP harboring mutant
BRAFV600 received vemurafenib and dabrafenib respectively. Patients with PD-L1 ex-
pression and an absence of tumor-infiltrating immune cells (TIMC) are related to shorter
progression-free-survival compared to those with TIMC and absence of PD-L1. This study
also identified PD-L1 overexpression and loss of TIMC as independent prognostic factors
for melanoma-specific survival.

Interestingly, an experiment involving 18 patients with epidermal growth factor
receptor (EGFR)-mutant NSCLC investigated the change of PD-L1 expression following
gefitinib. A proportion of 38.9% (7/18) of NSCLC patients had a significant increase in the
median H-score (marked as group A) of PD-L1, while the rest (61.1%) did not vary (group
B). Besides, MET positivity by immunohistochemistry in biopsies is significantly correlated
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with group A. The results described a marked increase in expression of PD-L1 in tumor
cells of a subset of patients after gefitinib treatment. Though EGFR-mutated NSCLC is
prone to express less PD-L1 than wild type [19]. Similar results in several studies indicated
that PD-L1 expression as a biomarker predicts resistance and poor prognosis after gefitinib
treatment, rebiopsy should be considered [20]. Nevertheless, combination therapy with
Durvalumab targeting PD-L1 and gefitinib has been proved to be more toxic and does not
demonstrate a significant augmentation in progression-free survival (PFS) [21]. As a crucial
factor predicting resistance and poor prognosis, PD-L1 has absolutely specific mechanisms
for leading to resistance.

3. PD-L1-Induced Resistance

PD-L1 as an inhibitor in the immune system that induces immune resistance through
interacting with its ligand PD-1. Besides, it is also involved in other signaling pathways
generating resistance to TKIs.

3.1. PD-L1-Mediated Immune Resistance

In certain cancers, efficacy of antitumor treatment has always been found to be limited,
due to the activation of immune checkpoints such as PD-1 and PD-L1. Once recognizing
the tumor antigen, T-cells produce an anti-tumor immune response, which eventually leads
to PD-1 lymphocyte expression and interferon release. To evade this immune attack, PD-L1
expression is adaptively upregulated by cancer cells and other inflammatory cells in the
tumor microenvironment (TME) [22]. IFN-γ is secreted by tumor-infiltrating lymphocytes
(TILs) and induces PD-L1 expression in the TME, thus T-cell cytotoxic function is impaired
through the interaction of PD-L1 and PD-1. A similar pattern has been observed in other
cancers including gastric cancer [23]. Fractionated radiation therapy can lead to increased
tumor cell expression of PD-L1 in response to CD8+ T-cell production of IFN-γ [24]. In
HPV-HNSCC, which is highly infiltrated by lymphocytes, IFN-γ-induced PD-L1 on tumor
cells and CD68+ tumor-associated macrophages (TAMs) and highly expressed PD-L1 by
CTLs, are found located at the same site [1].

In prior studies, PD-L1 expression is also upregulated followed by drug treatment
and mediates an immune resistance. For example, in glioblastoma a compensatory recruit-
ment of tumor-infiltrating myeloid cells elicited by antitumor immune response induced
by dendritic cell (DC) vaccination contributed to the majority of PD-L1 expression [25].
Placenta-specific protein 8 (PLAC8) as an oncogene promoting cancer growth and pro-
gression is abnormally upregulated in gallbladder carcinoma. Overexpression of PLAC8
conferred resistance to gemcitabine and liplatin (OXA), mainstays of chemotherapy by
upregulating PD-L1 expression [26]. 5-Fluorouracil selectively depletes myeloid-derived
suppressor cells (MDSCs) and OXA triggers an immunogenic form of tumor cell death. A
combined chemotherapy Folfox, 5-Fluorouracil plus OXA, has routinely been regarded
as a first line of treatment for advanced colorectal cancer. However, Folfox up-regulates
high expression of PD-1 on activated CD8+ TILs, and induces CD8+ T-cells to secret IFN-γ
which upregulates PD-L1 expression on tumor cells [27]. CD40 stimulation on APC directly
activates CTLs without the help of CD4+ T-cells. Agonistic anti-CD40 antibodies induce
antitumor responses and upregulation of PD-L1 on tumor-infiltrating monocytes and
macrophages, which are extremely dependent on T-cells and IFN-γ [28]. When co-cultured
with human PBMC, trastuzumab, the anti-human epidermal growth factor receptor-2
(HER2) antibody, is shown to upregulate PD-L1 in HER2-overexpressing breast cancer cells
via mediating stimulation of IFN-γ secretion on immune cells [29]. Inhibitors of mTOR
approved by the Food and Drug Administration to treat advanced metastatic renal cancers
and enhance nuclear translocation of transcription factor EB, was bound to PD-L1 promoter
and thereby led to increased PD-L1 expression [30].
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3.2. Signaling Pathways and Factors Involved in PD-L1-Induced Resistance

Despite immune resistance, PD-L1 has generated resistance to TKIs in certain cancers.
Possible mechanisms by which PD-L1 induced acquired resistance through upregulating
Yes-associated protein1 (YAP1), [31] Bcl-2-associated athanogene-1 (BAG-1), [32] and DNA
methyltransferase 1 (DNMT1), [33] and generated primary resistance by inducing epithelial-
to-mesenchymal transition (EMT) have been reported [34] (Figure 1).
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Figure 1. Signaling pathways and factors involved in programmed cell death ligand-1(PD-L1)-induced resistance. (1) PD-L1
expression induced by epidermal growth factor receptor (EGFR) mutation activation via extracellular single-regulated
kinase (ERK) signaling, indirectly promotes expression of Bcl-2-associated athanogene-1 (BAG-1), the EGFR/ERK/PD-
L1/BAG-1 feedback loop reaches the reactivation of ERK signaling which promotes Bcl-2-interacting mediator of cell
death (BIM) phosphorylation to help cells escape from apoptosis. (2) PD-L1-induced hypoxia-inducible factor-1α (HIF-1α)
expression is stimulated by reactive oxygen species (ROS), hypoxia increases YAP-1 expression which confers resistance
via a YAP1/EGFR/ERK/NF-κB loop. (3) PD-L1 regulates DNA methyltransferase 1(DNMT1) via Signal transducer and
activator of transcription 3 (STAT3) signaling and thus induces DNMT1-dependent DNA hypomethylation which promotes
cancer development. (4) Activation of transforming growth factor-beta (TGF-β)/Smad pathway induced by PD-L1 is crucial
in epithelial-to-mesenchymal transition (EMT) expression which leads to resistance to TKIs.

Activation of MEK/extracellular single-regulated kinase (ERK) signaling furthers
phosphorylation and ubiquitination of the Bcl-2-interacting mediator of cell death (BIM),
a BH-3-only protein, thereby preventing cells from apoptosis [35]. Resistance to TKI
in NSCLC generally occurs through reactivating ERK signaling [36]. EGFR mutation
activation induces expression of PD-L1 in NSCLC cells via ERK-signaling [37]. Once
triggered by ERK signaling, phosphorylated C/EBPβ induced by PD-L1 can enhance
binding to the BAG-1 promoter, thus promoting BAG-1 expression. The PD-L1/BAG-1 axis
confers TKI resistance through persistent activated ERK signaling via the EGFR/ERK/PD-
L1/BAG-1 feedback loop [32]. Thus combining treatment with TKIs and anti-PD-L1 therapy
may provide a promising strategy for tumors with a high expression of PD-L1 and BAG-1,
though this has not been researched yet.

YAP1 is another factor known to confer EGFR-TKI resistance in lung cancer cells [38].
Distinct experiments utilizing reactive oxygen species (ROS) scavengers and inducers
demonstrated a concomitant change of expression of PD-L1 and hypoxia-inducible factor-
1α (HIF-1α), YAP1 [31]. While prior reports described that PD-L1-induced HIF-1α is
stimulated by the generation of ROS [39,40], hypoxia promotes formation of YAP1 and
HIF-1α complex via regulating SIAH2 ubiquitin E3 ligase and increases YAP1 gene ex-
pression [41,42]. TKI resistance may be conferred by PD-L1/ROS/HIF-1α/YAP1 axis and
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a YAP1/EGFR/ERK/NF-κB loop [31]. Markedly high expression of YAP and PD-L1 are
observed in EGFR-TKI-resistant cells in another study, and they demonstrate a positively
related change in expression when given a knockdown of YAP [43]. Thereby, giving an
anti-PD-L1 or anti-YAP1 may overcome the EGFR-TKI resistance.

The PD-L1/DNMT1 axis is also a critical mechanism leading to acquired resistance [33].
DNMT1, as a member of the DNA methyltransferase family, maintains the DNA methy-
lation pattern [44]. Signal transducer and activator of transcription 3 (STAT3), a well-
characterized transcription factor that binds to DNMT1 promoter and positively regulates
transcription of DNMT1 [45], since phosphorylated STAT3 induces transcriptional acti-
vation via binding with specific DNA elements. PD-L1 regulates DNMT1 through the
STAT3-signaling pathway and induces DNMT1-dependent DNA hypomethylation to pro-
mote development of cancers [46], thereby resulting in acquired resistance [33]. Currently,
a combination therapy with oxaliplatin and decitabine inhibiting DNA demethylation
was proved to have a synergistic effect in enhancing anti-PD-L1 therapeutic efficacy in
colorectal cancer [47].

The transforming growth factor-beta (TGF-β)/Smad signaling pathway plays a role
in PD-L1-induced primary resistance to EGFR-TKIs [34]. EMT can decrease efficacy of
drug treatment in NSCLC [48,49]. PD-L1 upregulates phosphorylation of Smad3, which
significantly participates in the transcriptional regulation mediated by TGF-β1 [50], and the
TGF-β/Smad-signaling pathway has been reported to be crucial in EMT progression [51].
The mechanism of primary resistance to EGFR-TKIs in EGFR-mutant NSCLC may confer
through the PD-L1/TGF-β/Smad/EMT axis [34]. In addition, in Kirsten rat sarcoma viral
oncogene homolog (KRAS)-mutant NSCLC, KRAS G12 mutation is reported to promote
PD-L1 expression via a TGF-β/EMT-signaling pathway [52]. Apparently, PD-L1 expression
plays a key role in poor prognosis and resistance after treatment in several types of cancers,
thereby adding an anti-PD-1 or anti-PD-L1 therapy may improve the efficacy and become
a promising therapeutic strategy.

4. Key Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade

PD-1/PD-L1 blockade therapy has been approved as a significantly helpful treatment
in certain cancers, a problem of its limited efficacy has occurred and the targeting solution
is urgently discussed and provided. Focusing on PD-L1, we described key mechanisms
underlying resistance to PD-1/PD-L1. Surprisingly, abnormally upregulated PD-L1 expres-
sion and a lack of PD-L1 can both lead to inefficacy of PD-1/PD-L1 inhibitors (Figure 2).

4.1. Aberrant PD-L1 Expression

PD-L1 is generally regulated by tumor cells in two ways: the first is innate immune
resistance in which constitutive oncogenic signaling is correlated with PD-L1 expression,
the second is an adaptive immune resistance through which IFN-γ produced by TILs
induces PD-L1 expression.

K-ras mutation as a common oncogenic driver in the lung adenocarcinoma (LUAD)
and upregulates PD-L1 through p-ERK instead of p-AKT signaling [53]. Different sub-
groups of KRAS-mutant LUAD are dependent on STK11/LKB1 or TP53 mutations, and
alterations of the former has been confirmed as a major factor that leads to primary re-
sistance to PD-1 blockade [54]. Besides, EGFR-mutant or ALK-rearranged patients had
a PD-L1 tumor proportion score of ≥50% and turned out not to respond to PD-1/PD-L1
inhibitors [55].

The transcription factor Yin Yang 1 (YY1); a major regulator reported participating in
various pathways, is involved in cell growth, survival and metastasis. YY1 upregulates
PD-L1 expression on tumor cells via signaling pathways, including p53, STAT3, NF-κB
and PI3K/AKT/mTOR [56]. PD-L1v242 and PD-L1v229, two secreted PD-L1 C-terminal
splicing variants, could capture the aPD-L1 antibody and function as a “decoy” to prevent
antibodies from binding to PD-L1 [57].
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Figure 2. Key mechanisms underlying resistance to PD-L1 (1). The transcription factor Yin Yang 1
(YY1)-induced upregulation of PD-L1 expression triggers NOD-, LRR- and pyrin domain-containing
3 (NLRP3) inflammasome to promote tumor Wnt5α expression via HSP70-TLR4 signaling, and
non-canonical WNT ligands activate the YAP pathway to induce chemokine (C-X-C motif) receptor 2
(CXCR2) ligands, while granulocytic subset of myeloid-derived suppressor cells (PMN-MDSCs) relied
on CXCR2 to suppress T-cell function. (2) Loss-of-function mutations in JAK1/2 leads to the paucity of
PD-L1 expression. (3) Tumor-suppressing microenvironment. Tumor-associated macrophages (TAMs)
promote tumor progression, while Indole 2,3-dioxygenase (IDO) generated by tumors enhances Tregs
and MDSCs activity, which suppress immunity. (4) Activation of alternative immune checkpoints.
T-cell immunoglobulin mucin 3 (TIM-3) and Lymphocyte activation gene-3 (LAG-3) produced by
T-cells impair generation of IFN-γ, which activates T-cells. CTLA-4 demonstrates a higher affinity and
avidity in conjunction with CD80 and CD86 than CD28 to antagonize costimulation. VISTA is found
to be related to MDSC mainly derived CD33 expression and HHLA2 decreases T-cell proliferation.

Besides, a tumor-intrinsic signaling pathway involved with NLRP3 inflammasome in
response to upregulated expression of PD-L1 was found to drive adaptive resistance to anti-
PD-1 antibody immunotherapy [58]. NLRP3 inflammasome triggered by PD-L1 induces
tumor Wnt5α expression via HSP70-TLR4 signaling, while non-canonical WNT ligands
promote production of CXCR2 ligands through the activated YAP pathway [59,60]. CXCR2-
relied migration and recruitment of a granulocytic subset of MDSCs (PMN-MDSCs) play
a role in suppressing CD8+ T-cell infiltration and function, therefore leading to adaptive
resistance [61,62].

Previous study showed that tumors can be divided into four categories according to
positive/negative tumor PD-L1 expression and presence/absence of TILs. For instance,
patients with PD-L1 positive and TILs indicate adaptive immune resistance and those with
PD-L1 negative and without TILs show immune ignorance [63]. Among these four types,
type I with PD-L1 positive and TILs is the most likely to respond to PD-1/PD-L1 blockade
therapy, whilst other types may show unresponsiveness to this monotherapy [64].
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4.2. Paucity of PD-L1 Expression

The interaction between PD-L1 and its receptor PD-1 leads to immune escape and
inhibits T-cell function and blockade of PD-L1 and PD-1 enhances the antitumor immu-
nity in several cancers. However, the expression of PD-L1 or PD-1 is a prerequisite for
the therapeutic efficacy. Evidence of the relation of rare PD-L1 expression and poorer re-
sponses to PD-1 blockade has been proved in prostate cancer [65]. DNA hypomethylating
agent upregulate PD-L1 gene expression [66]. Anti-PD-1 therapy curbs the expression of
PD-L1 through either eliminating the tumor cells that overexpress PD-L1 and possess a
hypomethylated PD-L1 promoter or switching off the PD-L1 expression through epigenetic
modulation, therefore leading to resistance [67]. Loss-of-function mutations in JAK1/2 can
lead to primary resistance to anti-PD-1 therapy due to the inability to respond to IFN-γ
for a lack of PD-L1 expressions [68]. Despite the effect of aberrant PD-L1 expression, an
abnormal process from antigen expression to T-cell activation can result in resistance to
PD-1/PD-L1 inhibitors. Moreover, a recent study demonstrated that PD-L1 expression
is enhanced via nicotinamide adenine dinucleotide (NAD+) metabolism, in which nicoti-
namide phosphoribosyltransferase (NAMPT) functions as the rate-limiting enzyme [69].
NAMPT increases PD-L1 expression induced by IFN-γ and leads to immune escape in
tumors with the help of CD8+ T-cells. Thus NAD+ metabolism is a promising strategy for
resistance to anti-PD-L1 therapy [69].

4.3. Aberrant Antigen Expression, Presentation and Recognition

Tumors with a higher tumor mutation burden (TMB) are likely to have more neoanti-
gens, which can be recognized by the immune system as “non-self” in response to check-
point inhibition. In Naiyer’s study, the result of the treatment of PD-1 targeting antibody
pembrolizumab in NSCLC described that a higher burden of nonsynonymous tumors
is correlated with a better response and PFS [70]. Besides, strong immunogenicity and
extensive expression of immune checkpoint ligands make the microsatellite instability
subtype more susceptible to immunotherapeutic methods, for example, with anti-PD-L1
and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibodies [71]. Tumors
with defective mismatch repair possess more DNA mutations and show an improved
responsiveness to anti-PD-1 therapy [72]. In short, a low mutational burden, microsatel-
lite stability and efficient DNA repair mechanisms are involved in innate resistance to
immune-checkpoint blockade therapy. Moreover, evolution of neoantigen loss can produce
an acquired resistance [73]. A study also demonstrates that deficiency of heterogeneity in
HLA genes is observed in cancer development, a high level of HLA loss results in acquired
resistance during immunotherapy [74].

Resistance to immune checkpoint blockades also involves impaired DC maturation,
which is an essential process in T-cell activation, through it is displayed in various co-
stimulatory factors expression including MHC class I/II, CD80, CD86 and CD40 [75]. IL37b
decreases CD80 and CD86 expression through the ERK/S6K/NF-κB axis and suppresses
DC maturation [76]. A transcription factor STAT3 that facilitates tumor growth and metas-
tasis leads to the induction of other immunosuppressive factors that possess a suppressive
function on DC maturation, including IL10, Tregs and TGF-β [77–80].

Despite inducing PD-L1, IFNs have been reported to (re-)activate T-cells to control
the tumor development via advancing DC cross-priming [81–83]. It is well-known that
CTLs recognize MHC class I-presented peptide antigens on the surface of tumor cells. Het-
erozygous mutations, deletions or deficiency in β-2-microglobulin (β2M); a crucial factor
in MHC class I antigen presentation, generally reduces antigen recognition by antitumor
CD8+ T-cells and mutation of β2M gene leads to resistance to anti-PD-1 therapy [84,85].
IFN-γ can induce tumor cells to express MHC class I molecules, significantly promoting
CTL differentiation and enhancing apoptosis. Mutations or loss of IFN-γ pathway-related
proteins on tumor cells (such as STATs, IFN-γ receptor chain JAK1 and JAK2) can cause
escape from immune recognition and resistance to immune checkpoint inhibitions [68,86].
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4.4. Aberrant Immunity of T-Cells

Despite normal antigen expression, presentation, recognition and successfully acti-
vated T-cells, resistance to the PD-1/PD-L1 blockade inhibitors may occur owing to the
T-cell itself. The aberrant immunity of T-cells include insufficient T lymphocytes infiltration,
dysfunction of T-cell and exhausted T-cells.

4.4.1. Insufficient T Lymphocytes Infiltration

Despite the expression of PD-L1, a lack of T lymphocyte infiltration can cause unre-
sponsiveness to anti-PD-L1 therapy. A crucial prerequisite for the therapeutic efficacy is
the existing and tumor-infiltrated anti-tumor CTLs [87]. LIGHT, a member of the tumor
necrosis factor superfamily, may activate lymphotoxin β-receptor signaling, resulting in
the generation of chemokines that recruit a huge number of T-cells [88].

The PI3K-AKT-mTOR pathway, a crucial oncogenic signaling pathway, is involved
in a multitude of cellular processes including cell survival, proliferation, and differentia-
tion. PTEN, a lipid phosphatase, inhibits the PI3K signaling activity which activates the
pathway. Loss of PTEN has been reported to reduce CD8+ T-cells infiltrating into tumors
and lead to resistance to PD-1 blockade therapy. A selective PI3Kβ inhibitor treatment
enhanced the efficacy of anti-PD-1 antibodies [89]. The MAPK pathway also plays a ma-
jor role in cell proliferation, inhibits T-cell recruitment and functions by inducing VEGF
and IL-8 [90]. An inhibited MAPK pathway promotes CD8+ T-cell activation and infil-
tration in melanoma [91,92]. Furthermore, studies showed that the combination of PD-1
blockade, BRAFi and MEKi enhances tumor immune infiltration and improves treatment
outcomes [93].

A crucial oncogenic signaling pathway Wnt/β-catenin has been highly related to
immune escape [94,95]. An activated Wnt/β-catenin pathway is correlated to loss of T-cell
gene expression in metastatic melanoma [96]. Another study reported that the activation
of the Wnt/β-catenin pathway in tumors brings about a non-inflammatory environment
via numerous mechanisms. For instance, it acts on CD103+ DCs of the Batf3 lineage and
induces the transcription inhibitor ATF3 (activating transcription factor 3) expression to
decrease production of Chemokine (C-C motif) ligand 4 (CCL4), thereby reducing initiated
and infiltrated CTLs. Moreover, the Treg survival rate is enhanced by β-catenin [97].

Recently immune tumors are divided into three phenotypes: immune-desert, excluded
and inflamed. Among these, the first and second phenotypes, which are non-inflamed tu-
mors, show a low density of CTLs in the tumors and poor prognosis in immune checkpoint
blockade therapy [98].

4.4.2. Dysfunction of T-Cells

Accumulation of extracellular adenosine is exploited by tumors to escape immuno-
surveillance through the activation of purinergic receptors [99]. CD38 expression ex-
pressed on Tregs and MDSCs is infiltrated in the tumor microenvironment and stimulated
adenosine production via the CD38–CD203a-CD73 axis, and therefore inhibits CTL func-
tion [100,101].

4.4.3. Exhausted T-Cells

In vitro studies have reported that the PD-1 signal intensity determines the severity
of T-cell exhaustion, which in turn affects the efficacy of anti-PD-1 treatment. In Nigow’s
animal model, high expression of PD-1 and extremely unresponsive T-cells showed rele-
vance with resistance of anti-PD-1 therapy [102]. PD-1 treatment helps patients with low or
moderate PD-1 expression to re-invigorate exhausted CD8+ T cells and exert their immune
effects. However, the cellular, transcriptional, and epigenetic changes following the PD-1
pathway blockade suggested limited storage potential after TEX re-invigoration, which
means re-exhaustion following PD-L1 blockade [103].
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5. Tumor-Suppressing Microenvironment

Apart from abnormal T-cells and PD-L1 expression, there are some other types of
cells and cytokines that benefit tumor development inside the tumor microenvironment,
they form the tumor-suppressing microenvironment to play a key role in resistance to the
PD-1/PD-L1 blockade.

5.1. Tregs

Tregs are involved in maintaining self-tolerance, and inhibit autoimmunity through
secreting cytokines, including TGF-β1. The ratio of CD8+ Teff cells/Tregs is strongly asso-
ciated with the prognosis of immunotherapy [104,105]. The administration of low-dose
TLR-7 agonist resiquimod could transform Treg accumulation-caused resistance to the
PD-L1 blockade [106]. Combination of radiation therapy and dual immune checkpoint
blockade restores antitumor immunity of consumed Tregs [107]. Currently, anti-CD25 ther-
apy is believed to take effect through Treg depletion when combined with PD-1 blockade
therapy [108].

5.2. MDSCs

MDSCs suppress immunity mainly through preventing T-cell activation and function,
Arg1 and ROS are the common molecules used. Besides, they downregulate macrophage
production of the type I cytokine IL-12 to polarize macrophages toward a tumor-promoting
phenotype [109,110], suppress tumor cell lysis mediated by NK cells and induce and
recruit Tregs [111–114]. In the presence of MDSCs, the levels of PD-1 expression show
a decrease, while PD-L1 expression shows an increase [115]. MDSC-targeted therapy,
which decreases MDSC frequency and transforms its function, is studied to overcome the
resistance to immune checkpoint inhibitors, thus combining MDSC-targeted therapy and
immune checkpoint blockades is considered a promising strategy for the future [116].

5.3. TAMs

Protumor macrophages are differentiated through interaction with tumor cells and
turn to polarize into M2-like TAM, which play a significant role in immunosuppression,
invasion and metastasis. For the sake of overcoming the latent resistance of macrophages,
CSF-1R blockade reduces the frequency of TAMs, therefore increasing production of in-
terferon and tumor regression [117], and synergizing with immune checkpoint block-
ades [118].

5.4. IDO

Indole 2,3-dioxygenase is generated by tumors and immune cells to enhance Tregs and
MDSCs production and activity. IDO, an enzyme catalyzing the degradation of tryptophan
along the kynurenine pathway, is induced in response to inflammatory stimuli and its
activity is known to have an inhibition of effector on T-cell immunity [119]. A report
conducted on B16 melanoma demonstrated that following PD-1 blockade treatment, a
subset of mice with IDO knockout had an obviously slower tumor development and better
overall survival rates compared with wild type [120]. Thus, a combination therapy of
IDO inhibitors and PD-1/PD-L1 antibodies may demonstrate a better efficacy than single
agent [121].

5.5. VEGFA

TMB with hypoxia and hyper-angiogenesis is obviously crucial for tumor growth and
progression, and vascular endothelial growth factor A (VEGFA) plays a significant role in it.
High expression of VEGFA is reported to impair infiltration of effective anti-tumor T-cells,
thus leads to innate resistance in PD-1/PD-L1 blockade [122]. Unfortunately, combining
treatment with inhibiting the VEGFA and PD-1/PD-L1 blockade demonstrates more toxic
and harbors more adverse effects than monotherapy.
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5.6. Immunosuppressive Cytokines

TGF-β inhibits the expansion and function of many components of the immune system,
either by stimulating or inhibiting their differentiation and function, therefore it maintains
immune homeostasis and tolerance. Specific chemokines are capable of recruiting cells into
tumors. CXCL9, CXCL10, CXCL11, CCL3, CCL4 and other chemokines and their receptors
are recruited to cause antitumor response via recruiting CTL and NK cells while CCL2
CCL22, CCL5, CCL7 and CXCL8 recruit immunosuppressive cells to suppress the immune
response. Research reveals that epigenetic silencing of CXCL9 and CXCL10 can suppresses
T-cell homing [123].

6. Activation of Alternative Immune Checkpoints

As one of the most prospective approaches in cancer treatment, immunotherapy
has reached notable achievements, especially with the PD-L1 blockade. However, the
efficacy of PD-L1 inhibitor therapy has been found to be limited due to activation of other
immune checkpoints including TIM-3 and VISTA. So far, some studies have reported that
the combination therapy targeting distinct types of immune checkpoints has been proved
effective in several cancers.

6.1. TIM-3

T-cell immunoglobulin mucin 3 (TIM-3) has been identified as a critical regulator
of CTL exhaustion with co-expression of PD-1 [124]. TILs with co-expression of TIM-3
and PD-1 do not produce IL-2 and IFN-γ, and they are prone to exhaust. In response
to radiotherapy and PD-L1 inhibition, TIM-3 is upregulated and subsequently caused
acquired resistance in HNSCC [107]. Combination therapy targeting TIM-3 and PD-1
signaling pathways simultaneously is proved to be effective against cancer [124].

6.2. HHLA2

HHLA2, a member of the B7 family, can predict poor overall survival in several
cancers, including human clear cell renal cell carcinoma and colorectal carcinoma [125].
HHLA2 can suppress T-cell activation and proliferation in the presence of TCR and CD28
signaling [126], and can do this more robustly than PD-L1 [127].

6.3. VISTA

V-domain Ig suppressor of T-cell activation (VISTA) expression induced by IL-10
and IFN-γ is observed to be higher in immature DCs, MDSCs and Tregs compared with
peripheral tissues [128,129]. The synergistic effect of the combining VISTA and PD-L1
monoclonal therapy in colon cancer can be taken as an example, reduction of tumor growth
and better OS are observed compared with monotherapy [130].

6.4. LAG-3

Lymphocyte activation gene-3 (LAG-3) is responsible for maintaining immune home-
ostasis through repressing activation of T-cells and cytokines secretion [131]. Interaction
between LAG-3 and Galectin-3, a soluble lectin regulating antigen-specific T-cell activation,
expands the immunomodulatory effect of LAG-3 on tumor-infiltrating CD8+ T-cells in the
TME [132]. Sinusoidal endothelial cell lectin binds to LAG-3 to reduce IFN-γ expression
produced by activated T-cells [133]. An amazing synergistic effect in suppressing immune
responses is found in LAG-3 with PD-1 under distinct conditions [134].

6.5. CTLA-4

CD28 interacting with the CD80 dimer and the CD86 monomer mediates T-cell co-
stimulation along with TCR signals, while CTLA-4 demonstrates a higher affinity and
avidity in conjunction with the two ligands than with CD28, which in turn antagonizes
CD28-mediated co-stimulation [135]. A combination of PD-1-targeted mAb nivolumab
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and CTLA-4-targeted mAb ipilimumab has been approved as the first-line treatment for
renal clear cell cancer patients with moderate or poor prognosis [136].

6.6. Siglec-15

As a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) gene family,
Siglec-15 is found to impair anti-tumor immunity through suppressing T-cell functions.
Siglec-15 is expressed only on some myeloid cells normally, while it is upregulated on
TAMs and tumor cells [137]. Interestingly, an antagonistic relationship between Siglec-15
and PD-L1 has been reported, mainly due to regulation of IFN-γ [138]. M-CSF induces
expression of Siglec-15 on macrophages and IFN-γ, identified as a crucial factor promoting
PD-L1 expression, inversely decreases it [137].

6.7. TIGHT

T-cell immunoglobulin and ITIM domain (TIGIT), expressed mainly on Tregs, is a
co-inhibitory checkpoint receptor which has a significantly higher affinity in binding to
CD155 than the co-stimulatory receptor CD226 [139]. TIGIT/CD155 signaling causes
T-cell exhaustion to impair anti-tumor immunity in several types of cancer, including
melanoma and HNSCC [140,141]. Furthermore, the phenomenon that TIGIT expression
often accompanies PD-1 has been observed in both normal tissues and tumors [142].

6.8. BTLA

B and T lymphocyte attenuator (BTLA), expressed mostly on B-cells, is upregulated
on CD19+ high B-cells through AKT and STAT3 pathways once triggered by IL-6 and IL-
10 [143]. BTLA is regarded as one of the factors leading to resistance to anti-PD-1 therapy,
though they do not suppress T-cell signaling through an identical mechanism related with
src-homology-2 domain-containing phosphatase (SHP)1 and SHP2 [143,144].

7. Current Combination Therapies with PD-1/PD-L1 Inhibitors

With regard to clinical the limitations of anti-PD-1/PD-L1 monotherapy, it exists
more and more in combination therapies based on mechanisms underlying resistance to
the PD-1/PD-L1 blockade. Among all of them, chemotherapy, VEGF/VEGFR-targeted
therapy and anti-CTLA-4 rank in the top three. Other treatments that are considered to
combine with PD-1/PD-L1 blockade include radiotherapy, vaccines, cytokine therapy
and chemokine inhibition. Radiotherapy is identified to alter differentiation and function
of T-cells and promote the expression of PD-L1, which means adding radiotherapy may
enhance the effects of anti-PD-L1 treatment [145]. A triple therapy with anti-PD-1 antag-
onist antibody, anti-CD137 agonist antibody and vaccine therapy has been reported to
significantly enhance T-cell activation in pancreatic ductal adenocarcinoma in a preclinical
study [146]. Recently, another immune checkpoint inhibitor tiragolumab targeting TIGIT
has been granted breakthrough therapy designation by the FDA and combining anti-PD-L1
and anti-TIGIT has been reported as highly effective in clinic with metastatic NSCLC pa-
tients [147]. Combining TNF-α-loaded liposomes and anti-PD-1/PD-L1 further enhances
the anti-tumor immunity [148]. Even utilizing newly emerged neoantigens may improve
the therapeutic efficacy of immune checkpoint blockade treatment [148].

8. Conclusions

As an inhibitor in the immune system, PD-L1 plays multiple roles in tumors. PD-L1
has been confirmed as a prospective and prognostic biomarker in certain cancers, while
rebiopsy should be considered when PD-L1 expression is increased due to treatment
(such as gefitinib treatment). Immune resistance induced by PD-L1 following various
therapies inspired a combination therapy of PD-L1 blockade and these therapies. To date,
immunotherapy, especially PD-1/PD-L1 blockade, which is at forefront of clinical therapy,
has benefited many patients. However, primary and acquired resistance to this blockade
therapy still exists and limits its efficacy. So far, key mechanisms suggest complement
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approaches for patients who cannot respond well to PD-1/PD-L1 antibodies. For example,
modulating the immunosuppressive tumor microenvironment, such as depletion of Tregs,
IDO, or MDSCs, interfering suppressive cytokines and inhibiting alternative immune
checkpoints, may enhance the therapeutic efficacy of the PD-1/PD-L1 blockade. Other
mechanisms underlying resistance to this blockade therapy and individual treatments for
more patients requires further investigation.
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