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Simple Summary: The assistance of computer image analysis that automatically identifies tissue
or cell types has greatly improved histopathologic interpretation and diagnosis accuracy. In this
paper, the Convolutional Neural Network (CNN) has been adapted to predict and classify lymph
node metastasis in breast cancer. We observe that image resolutions of lymph node metastasis
datasets in breast cancer usually are quite smaller than the designed model input resolution, which
defects the performance of the proposed model. To mitigate this problem, we propose a boosted
CNN architecture and a novel data augmentation method called Random Center Cropping (RCC).
Different from traditional image cropping methods only suitable for resolution images in large scale,
RCC not only enlarges the scale of datasets but also preserves the resolution and the center area
of images. In addition, the downsampling scale of the network is diminished to be more suitable
for small resolution images. Furthermore, we introduce attention and feature fusion mechanisms
to enhance the semantic information of image features extracted by CNN. Experiments illustrate
that our methods significantly boost performance of fundamental CNN architectures, where the
best-performed method achieves an accuracy of 97.96%± 0.03% and an Area Under the Curve (AUC)
of 99.68% ± 0.01% in Rectified Patch Camelyon (RPCam) datasets, respectively.

Abstract: (1) Purpose: To improve the capability of EfficientNet, including developing a cropping
method called Random Center Cropping (RCC) to retain the original image resolution and significant
features on the images’ center area, reducing the downsampling scale of EfficientNet to facilitate
the small resolution images of RPCam datasets, and integrating attention and Feature Fusion (FF)
mechanisms with EfficientNet to obtain features containing rich semantic information. (2) Methods:
We adopt the Convolutional Neural Network (CNN) to detect and classify lymph node metastasis in
breast cancer. (3) Results: Experiments illustrate that our methods significantly boost performance of
basic CNN architectures, where the best-performed method achieves an accuracy of 97.96% ± 0.03%
and an Area Under the Curve (AUC) of 99.68% ± 0.01% on RPCam datasets, respectively. (4) Conclu-
sions: (1) To our limited knowledge, we are the only study to explore the power of EfficientNet on
Metastatic Breast Cancer (MBC) classification, and elaborate experiments are conducted to compare
the performance of EfficientNet with other state-of-the-art CNN models. It might provide inspiration
for researchers who are interested in image-based diagnosis using Deep Learning (DL). (2) We
design a novel data augmentation method named RCC to promote the data enrichment of small
resolution datasets. (3) All of our four technological improvements boost the performance of the
original EfficientNet.
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1. Introduction

Even though considerable advances have been made in understanding cancers and
implementing the diagnostic and therapeutic methods, breast cancer is the most com-
mon malignant cancer diagnosed globally and is the secondary leading cause of cancer-
associated death in women [1–3]. Metastatic Breast Cancers (MBCs), the main cause of
death from incurable breast cancer, spreads from local invasion of peripheral tissue to
lymphatic and blood vessels and ends in distant organs [4–6]. It is estimated that 10 to
50% of patients experience metastases eventually, despite being diagnosed with regular
breast cancer at the beginning [7]. Moreover, because of the primary tumor subtype, the
metastasis rate and site are heterogeneities [8]. Thus, prognosis, accurate diagnosis, and
treatment for MBCs remain challenging. For MBC diagnosis, one of the most important
tasks is the staging of BC that counts the recognition of Axillary Lymph Node (ALN)
metastases, which is detectable among most node-positive sufferers using Sentinel Lymph
Node (SLN) biopsies [9,10]. Assessing microscopy images from SLNs are conventional
techniques for evaluating ALNs. However, they require on-site pathologists to investigate
samples, which is time-consuming, laborious, and less reliable due to a certain degree of
subjectivity, particularly in cases that contain small lesions or in which the lymph nodes
are negative for cancer [11].

Consequently, developing digital pathology methods to assist in microscopic diagnosis
has evolved significantly during the last decade [12,13]. Advanced scanning technology,
cost reduction, quality of spatial images, and magnification have made full digitalization
feasible for evaluating histopathologic tissues [14]. Multiple advantages appear with digital
pathology technology development, which include online consultation and case analysis,
thus advancing the availability of samples and waiving on-site experts. However, manual
inspection is also necessary, and the potential inconsistent diagnosis decisions may affect
the accuracy of diagnosis. In addition, hospitals are often short of advanced equipment
and pathologists to support digital pathology. It is reported that presumptive treatment
phenomena may exist widely among developing countries due to the lack of well-trained
pathologists and advanced equipment [15]. Moreover, the majority of the population often
has difficulty getting access to pathology and laboratory medicine services. Regarding
cancer, cardiovascular disease, and bone generation as examples, few communities can get
the pathology and laboratory medicine treatment [16–21].

To better facilitate digital pathology and alleviate the above mentioned problems, var-
ious analytic approaches have been proposed (e.g., deep learning, machine learning, and
some specific software) to strengthen the accuracy and sensitivity of metastatic cancer de-
tection [22–26]. With excellent robust ability to extract features in images, a Convolutional
Neural Network (CNN) becomes the most successful deep learning-based method in the
Computer Vision (CV) field. It has been widely used in diseases diagnosed with microscopy
(e.g., Alzheimer’s disease) [27–30]. CNN automatically learns image features from multiple
dimensions in a large image dataset, which is applied to identify or classify structures and
is therefore applicable in multiple automated image-recognition biomedical areas [31,32].
CNN-based cancer detection has proved to be a convenient method to classify tumors from
other cells or tissues and has demonstrated satisfactory results [33–36]. EfficientNet is one
of the most potent CNN architectures. It utilizes a compound scaling method to enlarge
the network depth, width, and resolution, obtaining state-of-the-art capacity in various
benchmark datasets while requiring fewer computation resources than other models [37].
Hence, the EfficientNet is a suitable model, which may provide significant medical image
classification potentials, although there is a substantial difference between medical images
and traditional images. However, less attention has been paid to the abilities of EfficientNet
in medical images, making motivation for us to conduct this work.

One core problem defecting the performance of these CNN-based models in medical
imaging is the image resolution disparity. State-of-the-art CNN models normally are
designed for large resolution images (e.g., 500 × 500 or larger), but the image resolution of
the lymph node metastasis datasets in breast cancer is usually quite smaller (e.g., 96 × 96
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If we follow the same CNN structure designed for large resolution images to process the
small resolution medical images, the final extracted features could be too abstractive to
classify. In addition, before sending training images to models, the data augmentation
method cropping is utilized to uniform input resolution (e.g., 224 × 224) and enrich the
dataset. The performance of Deep Learning (DL) models relies heavily on the scale and
quality of training datasets since a large dataset allows researchers to train deeper networks
and improves the generalization ability of models, thus enhancing the performance of DL
methods. However, traditional cropping methods, such as center cropping and random
cropping, cannot be simply applied since they will further reduce the image size. Moreover,
the discriminative features to detect the existence of cancer cells usually concentrate on the
center areas of images on some datasets, and traditional cropping methods may lead to the
loss and incompleteness of these informative areas.

To cope with the aforementioned problems, we propose three strategies to improve
the capability of EfficientNet, including developing a cropping method called Random
Center Cropping (RCC) to retain the original image resolution and discriminative features
on the center area of images, reducing the downsampling scale of EfficientNet to facilitate
the small resolution images of Rectified Patch Camelyon (RPCam) datasets, and integrat-
ing the attention and FF mechanisms with EfficientNet to obtain features containing rich
semantic information. This work has three main contributions: (1) To our limited knowl-
edge, we are the first study to explore the power of EfficientNet on MBC classification,
and elaborate experiments are conducted to compare the performance of EfficientNet
with other state-of-the-art CNN models, which might inspire those who are interested in
image-based diagnosis using Deep Learning (DL); (2) A new data augmentation method,
RCC, is investigated to promote the data enrichment of datasets with small resolution;
(3) These four technical improvements noticeably advance the performance of the original
EfficientNet. The best accuracy and Area Under the Curve (AUC) achieve 97.96% ± 0.03%
and 99.68% ± 0.01%, respectively, confirming the applicability of utilizing CNN-based
methods for MBC diagnosis.

2. Results
2.1. Summary of Methods

Rectified Patch Camelyon (RPCam) was used as the benchmark dataset in our study to
verify the performance of our proposed methods for detecting BC’s lymph node metastases.
We utilized the original EfficientNet-B3 as the baseline binary classifier to implement our
ideas. Firstly, the training and testing performances of boosted EfficientNet were eval-
uated and compared with two state-of-the-art backbone networks called ResNet50 and
DenseNet121 [38] and the baseline model. To investigate the capability of each strategy
(Random Center Cropping, Reduce the Downsampling Scale, Feature Fusion, and Atten-
tion) adopted in the boosted EfficientNet, ablation studies were conducted to explore the
performance of the baseline network combining with a single strategy and multiple strategies.

2.2. The Performance of Boosted EfficientNet-B3

As illustrated in Table 1 and Figure 1, the basic EfficientNet outperforms the boosted-
EfficientNet-B3 on the training set both on the Accuracy (ACC) and AUC, while a different
pattern can be seen when applying them on the testing set. The contradictory trend is
because the basic EfficientNet overfits the training set, while the boosted-EfficientNet-B3
mitigates overfitting problems since RCC enables the algorithm to crop images randomly,
thus improving the diversity of training images. Although enhancing the performance
of a well-performing model is of great difficulty, the boosted-EfficientNet-B3 significantly
improves the ACC from 97.01% ± 0.03% to 97.96% ± 0.03% and noticeably boosts AUC
from 99.24% ± 0.01% to 99.68% ± 0.01% compared with the basic EfficientNet-B3. Further-
more, more than a 1% increase can be seen in the Sensitivity (SEN), Specificity (SPE), and
F1-Measure (F).
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Table 1. Classification results (%) of different methods for the RPCam dataset.

Training Test

ACC AUC ACC AUC SEN SPE F

EfficientNet-B3 99.61± 0.02 99.99± 0.00 97.01± 0.03 99.24± 0.01 95.99± 0.09 96.61± 0.04 96.29± 0.05

ResNet50 99.85± 0.02 100.00± 0.00 96.68± 0.04 99.13± 0.01 95.62± 0.05 96.18± 0.03 95.90± 0.05

DenseNet121 99.78± 0.03 100.00± 0.00 97.05± 0.03 99.47± 0.01 96.08± 0.07 96.62± 0.04 96.35± 0.04

Boosted EfficientNet-B3 98.02± 0.03 99.74± 0.01 97.96± 0.03 99.68± 0.01 97.29± 0.06 97.65± 0.04 97.47± 0.04

Similar patterns of comparison can be found when comparing EfficientNet-B3 to other
CNN architectures. Notably, ResNet50 and DenseNet121 suffer from the overfitting prob-
lem severely. EfficientNet-B3 obtains better performance than ResNet50 and DenseNet121
for all indicators on the testing dataset while using fewer parameters and computation
resources, as shown in Figure 1. All these results confirm the capability of our methods, and
we believe these methods can boost other state-of-the-art backbone networks. Therefore,
we intend to extend the application scope of these methods in the future. Ablation studies
were conducted to illustrate the effectiveness and coupling degree of the four methods,
which are elaborated in Section 2.3.

2.3. Ablation Studies

To specifically handle the MBC task of which the data resolution is small, we adopted
four strategies, including Random Center Cropping (RCC), Reduce the Downsampling
Scale (RDS), FF, and Attention, on the baseline model, which is also the difference between
our work and predecessors. In this part, we conducted ablation experiments to illustrate
the capacity of each strategy. We utilized AUC and ACC as primary metrics to evaluate the
performance of the model.

The results reveal that these four key strategies contribute to the cancer detection, in-
cluding increased generalizability and higher accuracy to the classifier models. Specifically,
the inclusion of RCC augments the datasets and retains the most informative areas, leading
to increased generalizability to unseen data. In addition, RDS improves feature repre-
sentation ability by adjusting the excessive downsampling multiple to a suitable scale.
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Simultaneously, FF and Attention mechanisms effectively improve the feature representa-
tion ability and increase the response of vital features.

2.3.1. The Influence of Random Center Cropping

From the first two rows of Table 2, it can be observed that the RCC significantly boosts
the performance of the algorithms by noticing the AUC increases from 99.24 to 99.54%, and
the ACC increases from 97.01 to 97.57% because RCC enhances the diversity of training
images and mitigates the overfitting problem.

Table 2. Classification performance comparison of EfficientNet with various strategies of the RPCam
testing set.

RCC RDS FF Attention ACC (%) AUC (%)

EfficientNet

97.01 99.24√
97.57 99.54√
97.36 99.43
97.55 99.57√
97.63 99.63√ √
97.73 99.62√ √ √
97.96 99.66√ √ √ √
97.96 99.68√ √
97.59 99.58√ √ √
97.85 99.68

2.3.2. The Influence of Reducing the Downsampling Scale

As the first and third rows of Table 2 show, modest improvements in ACC and AUC
(0.35 and 0.19%, respectively) are achieved because of the larger feature map. The image
resolution of the RPCam dataset is much lower than the designed input of the EfficientNet-
B3, resulting in smaller and abstractive features, thus adversely affecting the performance.
It is worth noting that the improvement of the RDS is enhanced when being combined
with the RCC.

2.3.3. The Influence of Feature Fusion

FF combines low-level and high-level features to boost the performance of models. As
the results in Table 2 indicate, when adopting only one mechanism, the FF demonstrates
the largest AUC and the second-highest ACC increases among RCC, RDS, and FF, revealing
FF’s adaptability and effectiveness in EfficientNet. The FF contributes to more remarkable
improvement to the model after utilizing RCC and RDS since ACC reaches the highest
value, and AUC comes to the second-highest among all methods.

2.3.4. The Influence of the Attention Mechanism

Combining the attention mechanism with FF is critical in our work. Utilizing the atten-
tion mechanism to enhance the response of cancerous tissues and suppress the background
can further boost the performance. From the fourth and fifth rows of Table 2, it can be seen
that the attention mechanism improves the performance of original architectures both in the
ACC and AUC, confirming its effectiveness. Then, we analyzed the last four rows. When
the first three strategies were employed, adding attention increases the AUC by 0.02%, but
the ACC remains at a 97.96% value. Meanwhile, attention brings a significant performance
improvement compared with models that only utilize RCC and FF, since ACC and AUC are
increased from 97.59 to 97.85% and from 99.58 to 99.68%, respectively. Although the model
using all methods demonstrates the same value of the AUC as the model only utilizing
RCC, RDS, and FF, all utilized models have a 0.11% ACC improvement. A possible reason
for the minor improvement between these two models is that RDS enlarges the size of the
final feature maps, thus maintaining some low-level information, which is similar to the FF
and attention mechanism.
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3. Discussion

With the rapid development of computer vision technology, computer hardware, and
big data technology, image recognition based on DL has matured. Since AlexNet [39]
won the 2012 ImageNet competition, an increasing number of decent ConvNets have
been proposed (e.g., VGGNet [40], Inception [41], ResNet [42], DenseNet [43]), leading
to significant advances in computer vision tasks. Deep Convolutional Neural Network
(DCNN) models can automatically learn image features, classify images in various fields,
and possess higher generalization ability than traditional Machine Learning (ML) methods,
which can distinguish different types of cells, allowing the diagnosis of other lesions. This
technology has also achieved remarkable advances in medical fields. In past decades, many
articles have been published relevant to applying the CNN method to cancer detection and
diagnosis [44–47].

CNNs have also been widely developed in MBC detection. Agarwal et al. [48] released
a CNN method for automated masses detection in digital mammograms, which used trans-
fer learning with three pre-trained models. In 2018, Ribli et al. proposed a Faster R-CNN
model-based method for the detection and classification of BC masses [49]. Furthermore,
Shayma’a et al. used AlexNet and GoogleNet to test BC masses on the National Can-
cer Institute (NCI) and Mammographic Image Analysis Society (MIAS) database [38].
Furthermore, Al-Antari et al. presented a DL method, including detection, segmentation,
and classification of BC masses from digital X-ray mammograms [50]. They utilized the
CNN architecture You Only Look Once(YOLO) and obtained a 95.64% accuracy and an
AUC of 94.78% [51]. EfficientNet, a state-of-the-art DCNN, that maintains competitive per-
formance while requiring remarkably lower computation resources in image recognition is
proposed [37]. Great successes could be seen by applying EfficientNet in many benchmark
datasets and medical imaging classifications [52,53]. This work also utilizes EfficientNet as
the backbone network, which is similar to some aforementioned works, but we focus on
the MBC task. There are eight types of EfficientNet, from EfficientNet-B0 to EfficientNet-B7,
with an increasing network scale. EfficientNet-B3 is selected as our backbone network
due to its superior performance over other architectures according to our experimental
results on RPCam datasets. In addition, quite differently from past works that usually use
BC masses datasets with large resolution, our work detects the lymph node metastases in
breast cancer, and the dataset resolution is small. To our limited knowledge, we are the
first researchers to utilize EfficientNet to detect lymph node metastases in BC. Therefore,
this work aims to examine and improve the capacity of EfficientNet for BC detection.

This study has proposed four strategies, including RCC, Reducing Downsampling
Scale, Attention, and FF, to improve the accuracy of the boosted EfficientNet on the RPCam
datasets. Discriminative features used for metastasis distinguishing are mainly focused
on the central area (32 × 32) in an image, so traditional cropping methods (random
cropping and center cropping) cannot be simply applied to this dataset as they may
lead to incompleteness or even loss of these essential areas. Therefore, a method named
Random Center Cropping (RCC) is investigated to ensure the integrity of the central
32 × 32 area while selecting peripheral pixels randomly, allowing dataset enrichment.
Apart from retaining the significant center areas, RCC maintains more pixels enabling
deeper network architectures.

Although EfficientNet has demonstrated competitive functions in many tasks, we
observe a large disparity in image resolution between the designed model inputs and
RPCam datasets. Most models set their input resolution to 224 ×224 or larger, maintaining
a balance between performance and time complexity. The depth of the network is also
designed for adapting the input size. This setting performs well in most well-known
baseline image datasets (e.g., ImageNet [54], PASCAL VOC [55]) as their resolutions usually
are more than 1000 × 1000. However, the resolution of RPCam datasets is 96 ×96, which
is much less than the designed model inputs of 300 × 300. After the feature extraction,
the size of the final feature will be 32 times smaller than the input (from 96 × 96 to 3 × 3).
This feature map is likely to be too abstractive and thus lose low-level features, which may
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adversely affect the performance of EfficientNet. Hence, along with the RCC, we proposed
to reduce the downsampling scale to mitigate this problem, and the experimental results
prove our theory.

When viewing a picture, the human visual system tends to selectively focus on a
specific part of the picture while ignoring other visible information due to limited visual
information processing resources. For example, although the sky information primarily
covers Figure 2, people are readily able to capture the airplane in the image [55]. To simulate
this process in artificial neural networks, the attention mechanism is proposed and has
many successful applications including image caption [56,57], image classification [58], and
object detection [59,60]. As previously stated, for RPCam datasets, the most informative
features are concentrated in the center area of images, making attention to this area more
critical. Hence, this project also adopts the attention mechanism implemented by a Squeeze-
and-Excitation block proposed by Hu et al. [61].
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Moreover, high-level features generated by deeper convolutional layers contain rich
semantic information, but they usually lose details such as positions and colors that
are helpful in the classification. In contrast, low-level features include more detailed
information but introduce non-specific noise. FF is a technique that combines low-level and
high-level features and has been adopted in many image recognition tasks for performance
improvement [62]. Detailed information is more consequential in our work since complex
texture contours exist in the RPCam images despite their small resolution. Accordingly, we
adopt the FF technique to boost classification accuracy.

The experimental results reveal that boosted EfficientNet-B3 alleviates the problem
of overfitting training images and outperforms the ResNet50, DenseNet121, and the ba-
sic EfficientNet-B3 for all indicators in testing datasets. Furthermore, the results of the
ablation experiment indicate that these four strategies adopted are all helpful to enhance
the performance of the classifier model, including generalization ability, accuracy, and
computational cost.

There are some limitations in this work. Our main purpose was to propose a method
to classify the lymph node metastases in BC, and we only tested the RPCam dataset.
If multiple sources are applied for training, there are potentials to improve the model
classification and generalization performance. Additionally, we believe our model can be
used for other biomedical diagnostic applications after a few modifications.

Besides, we select features from the 4th, 7th, 17th, and 25th blocks to perform fea-
ture fusion, but other combinations may obtain better performance. Due to the limited
computation resources, we have not tried other attention mechanisms and feature fusion
strategies yet.

4. Materials and Methods
4.1. Rectified Patch Camelyon Datasets

A Rectified Patch Camelyon (RPCam) dataset created by deleting duplicate images in
the PCam dataset [63] was sponsored by the Kaggle Competition. The dataset consisted of
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digital histopathology images of lymph node sections from breast cancer. These images
are in the size of 96 × 96 pixels and have 3 channels representing RGB (Red, Green, Blue)
colors, and some of which are shown in Figure 3.
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More importantly, these images are associated with a binary label for the positive (1)
or negative (0) of breast cancer metastasis. In addition, the potential pathological features
for classifying the cancerous tissues are in the center area with 32 × 32-pixel in size, as
shown in the red dashed square of Figure 3. The RPCam data set consists of positive (1)
and negative samples (0) with unbalanced proportions; 130,908 images in the positive class
and 89,117 in the negative one.

4.2. Random Center Cropping

We denote I ∈ R96×96×3 as a training image in the RPCam dataset. As Figure 4
illustrates, RCC first enlarges image I by padding 8 pixels around the images. The padded
images Ipad = Padding(I, 8), Ipad ∈ R112×112×3 have random cropping performed to enrich

the datasets. The resolution of the cropped image Icrop = RandomCrop
(

Ipad, 96× 96
)

,

Icrop ∈ R96×96×3 returns to the original size. Eventually, these Icrop images are fed as
inputs into the CNN models to perform feature extraction and cancer detection. Despite
enriching the dataset and improving the generalization ability of models, RCC guarantees
the integrity of the center 32 × 32 areas in each Icrop in the training set. As mentioned
in Section 4.1, the potential pathological features for classifying the cancerous tissues are
in the center area with 32 × 32 size. Hence, retaining the integrity of these areas may
contribute positively to the models’ capability since training images contain informative
patches rather than background noises.
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Figure 4. The workflow of the Random Center Cropping (RCC). (a) is the original training image. Images are first padded
with eight pixels from four directions (left, right, up, down) to create a 112× 112 resolution as shown in (b). (c) demonstrates
the process that Random cropping is then performed on these modified images to restore a 96 × 96 resolution image (d).
Particular center areas are shown in the red dashed rectangular and retained after the cropping process.
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4.3. Boosted EfficientNet

The architecture of boosted EfficientNet-B3 is shown in Figure 5. The main building
block is MBConv [64,65]. The components in red dashed rectangles are different from
the original EfficientNet-B3. Images are first sent to some blocks containing multiple
convolutional layers to extract image features. Then, these features are weighted by the
attention mechanism to improve the response of features contributing to classification.
Next, the FF mechanism is utilized, enabling features to retain some low-level information.
Consequently, images are classified according to those fused features.
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4.4. Reduce the Downsampling Scale

To mitigate the problem mentioned in the discussion, we adjusted the downsampling
multiple in EfficientNet. Our idea is implemented by modifying the stride of the convo-
lution kernel of EfficientNet. To select the best-performed downsampling scale, multiple
and elaborate experiments were conducted on the downsampling scale {2, 4, 6, 8, 16}, and
Strategy 16 outperforms other settings. The size of the feature map in the best-performing
downsampling scale (16) was 6 × 6, which is one times larger than the original downsam-
pling multiple (32). The change of the downsampling scale from 32 to 16 was implemented
by modifying the stride of the first convolution layer from two to one, as shown in the red
dashed squares on the left half of Figure 5.

4.5. Attention Mechanism

As an example for the attention mechanism, it can be seen from Figure 6 that the
response to the background is large, since most parts of the image consist of the background.
However, this information usually is useless for classification, so their response should be
suppressed. On the other hand, cancerous tissue is more informative and deserves higher
activation, so its response is enhanced after being processed by the attention mechanism.
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We adopted the attention mechanism implemented by a Squeeze-and-Excitation block
proposed by Hu et al. [61]. Briefly, the essential components are the Squeeze and Excitation.
Suppose feature maps U have C channels and the size of the feature in each channel is
H ∗W. For the Squeeze operation, global average pooling is applied to U, enabling features
to gain a global receptive field. After the Squeeze operation, the size of feature maps U
change from H ∗W ∗ C to 1 ∗ 1 ∗ C. Results are denoted as Z. More precisely, this change is
given by

Zc = Fsq(Uc) =
1

H ×W

W

∑
i=1

H

∑
j=1

Uc(i, j) (1)

where c denotes cth channel of U, and Fsq is the Squeeze function.
Following the Squeeze operation, the Excitation operation is to learn the weight (scalar)

of different channels, which is simply implemented by the gating mechanism. Specifically,
two fully connected layers are organized to learn the weight of features and activation
function sigmoid, and Rectified Linear Unit (RELU) are applied for non-linearity increasing.
Excepting the non-linearity, the sigmoid function also certifies the weight falls in the range
of [0,1]. The calculation process of the scalar (weight) is shown in Equation (2).

S = Fex(Z, W) = σ(g(Z, W)) = σ(W2δ(W1Z)) (2)

where S is the result of the Excitation operation, Fex is the Excitation function, and g refers
to the gating function. σ and δ denote the sigmoid and RELU function, respectively. W1
and W2 are learnable parameters of the two fully connected layers. The final output is
calculated by multiplying the scalar S with the original feature maps U.

In our work, the attention mechanism is combined with the FF technique, as shown
in Figure 5.

4.6. Feature Fusion

Four steps are involved during the FF technique, as shown in Figure 7. (1) During
the forward process, we save the outputs (features) of the convolutional layers in the
4th, 7th, 17th, and 25th blocks. (2) After the last convolutional layer extracts features,
the attention mechanism is applied to features recorded in Step 1 to value the essential
information. (3) Low-level and high-level features are combined using the outputs of Step
2 after applying the attention mechanism. (4) These fused features are then sent to the
following layers to conduct classification.
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4.7. Evaluation Metrics

We evaluated our method on the RPCam dataset. Since the testing set was not pro-
vided, we split the original training set into a training set and a validation set and utilized
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the validation set to verify models. In detail, the capacities of models were evaluated
by five indicators, including AUC, Accuracy (ACC), Sensitivity (SEN), Specificity (SPE),
and F1-Measure [66]. AUC considers both Precision and Recall, thus comprehensively
reflecting the performance of a model. The value of AUC falls into the range 0.5 and 1. A
higher value indicates better performance. SEN represents the proportion of all positive
examples that are correctly classified and measures the ability of classifiers to recognize
positive examples, whereas SPE evaluates the ability of algorithms to recognize negative
ones. Like the AUC, the F1-Measure considers Precision and Recall and is calculated by
the weighted average of Precision and Recall. All indicators are calculated based on four
fundamental indicators: True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN). The specific calculation processes are shown in Equations (3)–(6).

ACC =
TP + TN

TP + FP + TN + FN
(3)

SEN =
TP

TP + FN
(4)

SPE =
TN

TN + FP
(5)

Fmeasure =
2TP

2TP + FN + FP
(6)

4.8. Implementation Details

Our method is built on the EfficientNet-B3 model and implemented based on the
PyTorch DL framework using Python [67]. Four pieces of GTX 2080Ti GPUs were employed
to accelerate the training. All models were trained for 30 epochs. The gradient optimizer
was Adam. Before being fed into the network, images were normalized according to
the mean and standard deviation on their RGB-channels. In addition to the RCC, we
also employed random horizontal and vertical flipping in the training time to enrich the
datasets. During the training, the initial learning rate was 0.003, which was decayed by
a factor of 10 at the 15th and 23rd epochs. The batch size was 256. The parameters of
the boosted EfficientNet and other comparable models were placed as close as possible
to enhance the credibility of the comparison experiment. In detail, the parameter sizes of
these three models were increased in turn from the boosted EfficientNet, DenseNet121,
and ResNet50.

5. Conclusions

The purpose of this project was to facilitate the development of digital diagnosis in
MBCs and explore the applicability of a novel CNN architecture EfficientNet on MBC.
In this paper, we proposed a boosted EfficientNet CNN architecture to automatically
diagnose the presence of cancer cells in the pathological tissue of breast cancers. This
boosted EfficientNet alleviates the small image resolution problem, which frequently
occurs in medical imaging. Particularly, we developed a data augmentation method, RCC,
to retain the most informative parts of images and maintain the original image resolution.
Experimental results demonstrate that this method significantly enhances the performance
of EfficentNet-B3. Furthermore, RDS was designed to reduce the downsampling scale of
the basic EfficientNet by adjusting the architecture of EfficientNet-B3. It further facilitates
the training on small resolution images. Moreover, two mechanisms were employed to
enrich the semantic information of features. As shown in the ablation studies, both of
these methods boost the basic EfficientNet-B3, and more remarkable improvements can
be obtained by combining some of them. Boosted-EfficientNet-B3 was also compared
with another two state-of-the-art CNN architectures, ResNet50 and DenseNet121, and
shows superior performance. It can be expected that our methods can be utilized in other
models and lead to improved performance of other disease diagnoses in the near future.
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In summary, our boosted EfficientNet-B3 obtains an accuracy of 97.96% ± 0.03% and an
AUC value of 99.68% ± 0.01%, respectively. Hence, it may provide an efficient, reliable,
and economical alternative for medical institutions in relevant areas.
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