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Simple Summary: In view of the recent advances in immunoncology, we want to reevaluate and
summarize the role of the immune system in malignant pleural mesothelioma (MPM). MPM is an
aggressive disease with limited treatment options and devastating prognosis. Exposure to asbestos
and chronic inflammation have long been acknowledged as main risk factors. In this review, we
summarize the current knowledge about local and systemic inflammation promoting pathogenesis
and progression of MPM. We focus on the prognostic and predictive value of infiltrating immune
cells within the tumor and its microenvironment as local inflammation on the one hand and systemic
inflammatory parameters on the other. We found that suppression of the specific and activation
of the unspecific immune system are essential drivers of MPM, resulting in poor patient outcome.
Numerous local and systemic inflammatory parameters are promising potential biomarkers for MPM,
worth further research.

Abstract: Malignant pleural mesothelioma (MPM) is an aggressive disease with limited treatment
response and devastating prognosis. Exposure to asbestos and chronic inflammation are acknowl-
edged as main risk factors. Since immune therapy evolved as a promising novel treatment modality,
we want to reevaluate and summarize the role of the inflammatory system in MPM. This review
focuses on local tumor associated inflammation on the one hand and systemic inflammatory markers,
and their impact on MPM outcome, on the other hand. Identification of new biomarkers helps to
select optimal patient tailored therapy, avoid ineffective treatment with its related side effects and
consequently improves patient’s outcome in this rare disease. Additionally, a better understanding of
the tumor promoting and tumor suppressing inflammatory processes, influencing MPM pathogenesis
and progression, might also reveal possible new targets for MPM treatment. After reviewing the
currently available literature and according to our own research, it is concluded that the suppression
of the specific immune system and the activation of its innate counterpart are crucial drivers of MPM
aggressiveness translating to poor patient outcome.

Keywords: malignant pleural mesothelioma; inflammation; infiltrating immune cells; prognostic
biomarker; predictive biomarker; immune therapy

1. Introduction

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm of mesothelial
origin. Patients face a devastating prognosis of 12 months median survival only after diag-
nosis [1]. Despite recent—and, in part, promising—developments regarding both systemic
therapy and cytoreductive surgery, MPM remains a clinical challenge, especially when
it comes to treatment allocation [2,3]. Furthermore, the optimal (multimodal) treatment
regimens still remain to be defined from the available arsenal of immune therapy, surgery,
radiation and systemic treatment [4].
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The pathogenesis of MPM was already associated with chronic inflammation, induced
by asbestos exposure, sixty years ago by Wagner et al. [5]. Asbestos remains the main
risk factor for developing this rare disease with a latency period of up to 40 years from
time of exposure to diagnosis [1,6]. When inhaled, the long and thin asbestos fibers
penetrate the lung parenchyma and deposit in the pleura, causing irritation and chronic
inflammation. Consequently, the activation of surrounding immune cells leads to the
secretion of cytokines, formation of reactive oxygen and nitrogen species, tumor necrosis
factor α (TNF-α) release and nuclear factor ‘kappa-light-chain-enhancer’ of activated B-
cells (NFκ-B) expression, in the end resulting in the accumulation of DNA damage and
thus malignant evolution as reviewed before [6,7].

The activated immune system—especially with regard to its innate blood derived
components—proved to be associated with worse patient outcome, late stage of disease,
high Ki67 expression and poor treatment response in MPM as shown before by the authors
and other research groups [8–13]. Not only for MPM but generally in oncology, the tumor
promoting role of the immune system has been increasingly recognized as reflected in the
latest version of the hallmarks of cancer by Hanahan and Weinberg [14]. Most recently, the
immune system also evolved as a promising treatment target and modern immune therapy
revealed as effective treatment modality in many solid tumors including MPM [15–19].

In light of the past and recent insights regarding the role of inflammation in the
development and progression of MPM, inflammatory parameters are currently considered
promising biomarkers [20]. In this review, we provide an overview about up to date
knowledge of local inflammation in MPM and its involved immune cells as well as the
tumor induced systemic inflammatory response. Special focus lies on the use of local and
systemic inflammatory parameters as biomarkers for prognostic and predictive purposes
in hope to facilitate and optimize treatment decisions and highlight new therapeutic targets
for the future management of MPM. Predictive biomarkers might help to answer these
crucial questions and are therefore desperately needed [21]. Despite the urgent need, to date
there are no biomarkers recommended for MPM in daily practice in the current European
guidelines since most studies failed to show sufficient reproducibility, sensitivity and
specificity to justify the use of any suggested diagnostic biomarker so far. Unfortunately,
the same holds true when it comes to prognostic, predictive or follow up biomarkers and
thus further research is requested to better personalize treatment for MPM patients [22].

For this review we performed literature research in PubMed including English litera-
ture only. The following search terms were used: mesothelioma combined with prognostic
and predictive biomarker, inflammation, inflammatory markers, C-reactive protein, fib-
rinogen, neutrophil to lymphocyte ratio, monocyte to lymphocyte ratio, thrombocyte to
lymphocyte ratio, neutrophils, leukocytes, monocytes, albumin, Glasgow prognostic score,
IL-6, ferritin, tumor microenvironment, tumor infiltrating lymphocytes, tumor associated
macrophages/monocytes, PD-L1 and PD1, CTLA-4, immune therapy, and complement
system. Since mesothelioma is a very rare disease and research regarding inflammatory
biomarkers is limited, we included all available studies regarding biomarkers and only
excluded case reports

Literature from the very early days of mesothelioma research ranging back to Wag-
ner et al. from 1960 were included [5] as well as the most recent MPM literature from the
beginning of 2021, resulting in 194 included references.

2. Findings
2.1. The Role of Local Inflammation in MPM

Several studies proved that (pre)malignant cells of various origins induce an inflam-
matory response with a paradox tumor promoting effect [23]. Local inflammation and
immune cell infiltration within the tumor nests as well as the surrounding tumor mi-
croenvironment (TME) strongly influence the development and progression of numerous
malignant diseases [23,24] including MPM as reviewed by Hendry et al. [25].



Cancers 2021, 13, 658 3 of 24

On the other hand, the immune system and its cellular components also play a
protective role, especially with regard to acquired immunity as Leigh et al. observed
already in 1986 correlating high lymphoid infiltration in mesothelioma specimens to a
better prognosis [26]. In the past, the role of different infiltrating immune cells within MPM
and the stroma has, therefore, become of increasing research interest since the immune
system seems to be characterized here by a—not yet fully understood—duality [12]. Our
adaptive immune system is protective against cancer development and spread [27], but it
is also well documented that the immune system plays a crucial tumor promoting role in
eventually all steps of malignant evolution by contributing to carcinogenesis, proliferation,
angiogenesis, local infiltration and finally metastatic progression as reviewed by Coussens
and Werb [28].

Very heterogenic immune cell infiltration in MPM tumor specimens and its TME has
been described [29–33], with most studies reporting a predominant infiltration of tumor-
associated macrophages (TAM) and tumor infiltrating lymphocytes (TIL), in particular
CD4+ and CD8+ T-lymphocytes as reviewed by Chu et al. [34]. These cells are assumed to
be the key players in the tumor associated immunoreaction. However, also rarer detectable
myeloid derived suppressor cells (MDSC) [35,36], natural killer (NK) cells [28,31,32] and
regulatory T cells (Treg) [29,36,37] have been studied before. These different immune cells
infiltrating the tumor tissue but also contributing to the TME will be summarized in the
following paragraphs as well as in Table 1 with regard to their role on MPM outcome and
treatment response.

Table 1. Potential local inflammatory biomarkers.

Biomarker Unfavorable Univariate
Value

Multivariate
Value Impact Design Number of

Patients/Range References

B-TIL Low HR: N.R. HR: 0.7 Prog R 217 [37]

CD8+ TIL Low HR: N.S.-N.R. HR: N.S.-0.4 All prog All R 16–32 [30,31,38,39]

CD8+ TIL High HR: N.R. HR: N.R. Prog R 93 [38]

M2/CD8+
TIL high HR: N.R. HR: 1.6 Prog R 210 [37]

M2/B-TIL Low HR: N.R. HR: 1.6 Prog R 210 [37]

CD4+ TIL Low HR: N.S.-N.R. HR: N.S.-N.R. All prog All R 27–218 [30–32,37,38]

COX-2 High HR: N.R.-2.9 HR: N.S.-4.6 All prog R/R/P 29–77 [39–41]

COX-2 Low HR: N.R. HR: N.R. Prog R 86 [42]

M2 High HR: N.S.-1.7 HR: N.S. All prog All R 4–210 [38,39,43]

M2/TAM High HR: N.R. HR: N.S. Prog R 8 [44]

IL-34 High HR: N.R. HR: N.R. Prog R 74 [45] *

M-CSF High HR: N.R. HR: N.S. Prog R 74 [45] *

PD-L1 High HR: N.S.-N.R HR: N.S.-2.3 All prog All R 33–106 [17,30,43,46,47]

TIL tumor infiltrating lymphocyte, M2 macrophage subtype 2, Treg regulatory T cell, FGF fibroblast growth factor, TGF-β transforming
growth factor β, COX-2 cyclooxygenase 2, TAM tumor associated macrophages, IL-34 interleukin 34, M-CSF macrophage colony stimulating
factor, NK cells natural killer cells, PD-L1 Programmed cell death ligand 1, HR hazard ratio, N.R. not reported, N.S. not significant, Prog
prognostic biomarker, Pred predictive biomarker, R retrospective, P prospective.* measured in pleural effusion.

2.2. Tumor Infiltrating Lymphocytes (TIL)

TIL comprise T- and B-lymphocytes that have left the blood stream and infiltrated
the tumor itself as well as the tumor stroma. Invading CD4+ T cells and proinflammatory
cytokines prime CD8+ T cells to become effector cytotoxic T-lymphocytes (CTL), which
then play a key role in eliminating cancer cells as reviewed before [48]. During tumor
progression, cancer cells can avoid this effect by overexpression of programmed death
ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) (compare corresponding
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subchapter). Simultaneously, TIL release cytokines, thereby influencing various other
immune cells, including the differentiation of TAM towards the immune suppressive type
2 macrophages (M2). This mechanism represents a negative feedback loop to avoid an
over activated immune response. However, both aforementioned—in principal protective—
immunosuppressive mechanisms (PD-L1/CLA-4 on the intercellular signaling level and
type 2 macrophage differentiation on the cellular level) might lead to tumor immune
evasion and thus uncontrolled tumor growth and progression [28,49,50].

For MPM, a predominant infiltration of CD8+ and CD4+ T-lymphocytes has been
described by various researchers [30–32,51], but also the role of B lymphocytes [29] and
Treg [51] is under investigation as described below.

The influence of B lymphocytes, key players in adaptive humoral immunity, is not fully
understood and controversial results have been published so far for mesothelioma. Several
studies reported low numbers of infiltrating B lymphocytes as reviewed by Minnema-
Luiting [29]. Nevertheless, others discovered high CD 20+ B lymphocytes infiltration as
well as the ratio CD163+ macrophages/CD20+ B lymphocytes as independent prognostic
factors indicating better prognosis [37].

The prognostic value of CD8+ T lymphocytes, likewise part of the adaptive immunity,
is better investigated and thus better understood for different MPM patient populations:

A number of studies investigated tumor samples of patients receiving trimodal therapy
including cytoreductive surgery. Some reported an independent favorable prognostic
value of high levels of CD8+ TIL [31,32], others found the ratio M2 count/CD8+ TIL count
independently indicating negative prognosis [37], also suggesting that patients with low
M2 and high CD8+ count have better outcomes. One other study found a correlation of local
tumor overgrowth and low levels of CD8+ TIL in surgical patients [49] suggesting again an
association with worse prognosis when the adapted immune system is underrepresented
in the tumor compared to its innate counterpart.

On the contrary, Pasello et al. found high levels of CD8+ TIL in treatment naïve
patients correlating not only with poor prognosis and aggressiveness of the tumor, but also
a predictive value of high CD8+ TIL count for low response to chemotherapy. However,
high levels of CD8 + TIL correlated additionally with high PD-L1 expression, which the
authors speculate to be causal for the observed poor prognosis [38].

Additionally, high CD4+ T cell count in the tumor correlated with better outcome.
Yamada et al. showed a tendency for better survival if CD4 + TIL and NK levels were high
but did not reach level significance [32]. Marcq et al. compared treatment of naïve patients
with those pretreated with chemotherapy and found high count of CD4+ TIL in the TME
to be an independent positive prognostic marker for both therapy subgroups [30].

Treg, the immunosuppressive subset of CD4+ T cells, physiologically regulates im-
mune tolerance, but also plays a major role in tumor development. Whereas only scarcely
present in healthy tissue, a strong infiltration of Treg has been shown for many tumor
entities [50] including MPM [51].

First data suggested that Treg and their deactivation via depletion of the surface
marker CD25+ influenced survival in a murine model in a positive way [51]. Additionally,
it was hypothesized that response to chemotherapy might be influenced by T effector cells
and Treg [30].

While only a few studies analyzed the prognostic and predictive potential of Treg
count in MPM, others investigated the cytokines responsible for Treg recruitment and
activation, such as transforming growth factor (TGF-β) [6,52–54] and cyclooxygenase-2
(COX-2)/prostaglandin E2 (PGE2) [39–42,55,56], which are released by cancer cells directly
or indirectly by cancer associated fibroblasts [50].

2.3. Cancer-Associated Fibroblasts (CAF)

CAF are abundantly present in numerous tumor entities and play a key role in the
immunosuppressive effect of TME via cross-talk with Treg. High numbers of CAF are
hence often associated with tumor promotion and poor prognosis. In turn, Treg stimulate
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resident fibroblasts to differentiate into CAF, which emphasizes the tight cross-talk between
Tregs and CAFs [50].

A number of studies confirmed high numbers of CAF in TME from MPM samples [29].
As mentioned above, the major cytokines mediating CAF and Treg function have been
under thorough investigation. Latest studies suggested a correlation between fibroblast
growth factor (FGF) overexpression and high numbers of CAF with tumor aggressiveness
and worse prognosis; however, the prognostic or predictive value is currently unknown
and further research is obligatory [57,58]. Schelch et al. analyzed the role of different FGFs
and their receptors in MPM in vitro and in vivo and proved that the FGF axis promotes
cell proliferation, epithelial to mesenchymal transition, migration, invasion and clinical
tumor aggressiveness. Inhibition of FGF receptor not only showed anti-proliferative effects
itself but also a synergism with radiation and cisplatin and might, therefore, serve as a
novel therapeutic target in MPM [58–60]. Furthermore, Li et al. also proved that FGF-2—
besides platelet derived growth factor (PDGF) and hepatocyte growth factor (HGF)—is
expressed by MPM. In addition, this study showed that MPM cell lines stimulate fibroblast
motility and growth on the one hand and fibroblasts vice versa stimulate MPM growth
and motility by HGF on the other hand, indicating an important cross-talk and tumor
promoting symbiosis of CAFs and MPM cells [57].

2.4. Transforming Growth Factor-β (TGF-β)

TGF-β is known as an important inducer of CAFs and thus supporter of the immuno-
suppressive TME. Besides this tumor promoting characteristic, TGF-β can directly induce
proliferation and epithelial to mesenchymal transition. In addition, TGF-β expression
was associated with resistance to immune therapy as summarized recently [61]. With
regard to MPM, TGF-β and its subtype activin A have been shown to be overexpressed
in MPM cells with tumorigenic effects and thus inhibition or silencing was suggested as
possible therapeutic target—first clinical results, however, were unsatisfactory with regard
to fresolimumab, a TGF-β targeting antibody [6,53,54]. In addition, activin A blood levels
were increased in MPM patients when compared to healthy controls and high activin A
levels correlated with advanced tumor stage, high tumor volume and histological subtype
translating to poor patient survival [54].

2.5. COX-2

Overexpression of COX-2 is detectable in various tumor cells and mostly associated
with worse prognosis [62,63]. Nuvoli et al. reviewed the tumor promoting effects of
proinflammatory prostaglandins, synthesized by COX-2 in general and for MPM in par-
ticular [55]. COX-2 overexpression was also found in MPM specimens [56]. Although
some authors described controversial results regarding the prognostic value of COX-2, the
majority reports a negative prognostic value of high tumor COX-2 expression [39–42].

In addition, the therapeutic effect of COX-2-inhibitors such as celecoxib has already
been studied in other cancer types extensively [63]. However, COX-2 is not a routine
target in modern oncology due to controversial results, e.g., for colorectal [64–66] and
lung cancer [67,68]. For MPM on the contrary COX-2-inhibitors achieved promising
results in vitro [35,57,69,70] and in vivo [36,71]. Unfortunately, neither NSAIDs nor COX-2
inhibitors prevented MPM development in an asbestos exposed risk group and in murine
models [69]. The currently ongoing phase III randomized INFINITE trial assesses the effect
of systemic celecoxib and chemotherapy combined with intrapleural INF-α (NCT03710876)
and might answer the question whether COX-2 is an eligible treatment target in MPM.

2.6. M2 Macrophages

Under normal conditions, macrophages of the subtype M1 are part of the early in-
flammatory response enhancing the immune reaction while the immunosuppressive M2
macrophages limit a possible inflammatory overreaction [28,49,50]. A large proportion
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of M2 of total TAM consequently enforces tumor-promoting and immunosuppressive
conditions and has been shown to indicate poor survival for different malignancies [70].

Additionally, for MPM specimens, various studies described strong infiltration of
macrophages, predominantly of immunosuppressive M2, as prognostic marker [46,50,72].
High count of infiltrating M2 not only correlated significantly with poor prognosis [73]
and increased proliferation rate but also reduced response to chemotherapy [74]. Others
found no correlation between prognosis and absolute count of TAM or M2 but reported
that high percentage of M2 of total TAM correlates significantly with local overgrowth [49]
and negative prognosis [44].

In conclusion, current scarce data indicate that tumor infiltrating M2 might have prog-
nostic and predictive potential. Interestingly, there is abundant research on M2 promoting
cytokines and their impact on prognosis and treatment response.

Hematopoietic cytokines, including granulocyte macrophage colony stimulating factor
(GM-CSF), were shown to be released by MPM cells especially when exposed to inflamma-
tory cytokines but also autonomously [72,75] promoting the release of monocytes to the
peripheral blood.

Additionally, cytokines promoting the M2 differentiation, namely IL-34 [45], macrophage
colony stimulating factor (M-CSF) [74] and C-C motif chemokine ligand 2 (CCL2) [76,77] have
been found to be elevated in tumor specimens or pleural effusion of MPM patients. High
pleural levels of IL-34 correlated with worse prognosis [45], as well as high serum M-CSF,
the latter also with response to chemotherapy [78]. Furthermore CCL2, a proinflammatory
chemokine for monocyte recruitment, has been investigated over the past years. MPM
patients showed significant higher serum levels of CCL2 than an asbestos exposed cohort
without evidence of disease [79]. Similar results have been published by Gueugnon et al.
as well as Blanquart et al. who found significant higher concentrations of CCL2 in pleural
effusion of MPM patients compared to benign effusion or metastatic adenocarcinomas [76,77].
CCL2 released by MPM cells directly plays an important role in monocyte recruitment. CCL2
inhibition is also a potential treatment target and currently under investigation [50,78,80].

2.7. Myeloid-Derived Suppressor Cells (MDSCs)

The immune-suppressive MDSC are immature myeloid cells stimulated by tumor-
derived cytokines. Abundantly detectable in MPM TME [35,36] they activate tumor-
promoting Treg and inhibit tumor-suppressing CD4+ and CD8+ T cells [36]. A negative
prognostic potential of MDSC can, therefore, be assumed; however, to our knowledge, no
data regarding the prognostic or predictive value is currently available for MPM.

2.8. Natural Killer Cells and Dendritic Cells (DC)

The majority of studies reported low proportion of DC and NK in MPM speci-
mens [28,31,32]. Yamada et al. additionally investigated the prognostic potential of NK
infiltration and found no correlation with outcome [32]. Hegmans et al. confirmed a weak
infiltration of DC, although they found a strong infiltration by NK. As possible explanation
for low DC numbers they suggest the high levels of Interleukin-6 (IL-6) produced by MPM
cells, since IL-6 inhibits the differentiation of progenitor cells to DC [51].

Summarizing these findings, DC and NK—both part of the innate immune system—
are currently suspected to play a subordinate role in MPM and are, therefore, underrep-
resented in medical literature when compared to the aforementioned more prominent
cellular players in the tumor and its TME.

2.9. Programmed Death Ligand 1 (PD-L1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)

PD-L1 is expressed on the surface of various tumor cells and has the ability to bind
to PD-1 receptors of CD4+ and CD8+ T Cells thus altering proliferation and cytokine
production, leading to T cell inactivation and apoptosis of these important cellular players
of adaptive immunity. As reviewed before by Zielinski et al. both PD-1/PD-L1 and CTLA-4
act as similar pathways downregulating lymphocyte response and accordingly adaptive
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immunity [80]. This tumor immune evasion results in progression and poor prognosis
of various solid tumors [81]. With regard to thoracic oncology, the PD-L1 axis and its
prognostic role were already analyzed in malignant pleural effusion [82] and stage IV lung
cancer [83,84]. Furthermore, PD-L1 expression showed also prognostic potential in MPM
as summarized in a recent meta-analysis [85].

PD-L1 positivity in MPM tumor cells was reported at heterogeneous levels ranging
from 16 to 68% [29,47,86]. According to Marcq et al., PD-L1 and PD-1 are decreased
after chemotherapy [30]. However, for peritoneal mesothelioma, controversial effects
of chemotherapy on PD-L1 expression were reported [87]. PD-1 expression on TIL was
furthermore described as a negative predictive factor for response to chemotherapy [30].
Additionally, PD-L1 was found to correlate with the sarcomatoid and biphasic histology
of MPM [86]. Our study group recently showed that tumor PD-L1 expression is not only
prognostic in an international cohort suffering from malignant pleural effusion (in part
also caused by MPM) but was significantly interacting with CRP, thus suggesting that the
prognostic values of both markers influence each other. This observation translated to
the poorest survival in the patient group characterized by high CRP in the patient blood
and high PD-L1 expression in the corresponding tumor specimen [82]. Inaguma et al.
demonstrated the independent prognostic impact of PD-L1 and activated leukocyte cell
adhesion molecule (ALCAM, CD166) in MPM. Expression of both led to the shortest overall
survival (OS). Additionally, a significant association between PD-L1 and ALCAM was
drawn [46]. Similar prognostic results have been shown previously [43,47].

To reverse the tumor promoting effect of a downregulated specific immune system,
checkpoint inhibitors like humanized monoclonal antibodies against PD-1 or PD-L1 have
been developed. Immune evasion can be stopped to increase tumor defense [16,81]. The
therapeutic benefit of targeting PD-1 with pembrolizumab [16] or nivolumab [17], and
PD-L1 with avelumab [18], in pre-treated MPM patients with PD-L1 positive tumors was
demonstrated.

The aforementioned other—by malignant disease misused—pathway of adapted
immunity downregulation, namely CLTA-4 has also been investigated and proved to be an
interesting treatment target to reactivate the immune system against MPM progression as
reviewed before [88]. More recently, the combination of nivolumab with ipilimumab was
approved by the FDA for unresectable MPM as first line therapy according to promising
results documented during the CHECKMATE 743 trial, indicating that the combination of
PD-1 and CLTA-4 targeting immune therapy is effective in MPM [19].

Finally, soluble PD-L1 (sPD-L1) from the sera of patients before and during immune
therapy was suggested as a predictive biomarker, indicating poor treatment response
when elevated before and during immune therapy. Additionally, sPD-L1 levels were
also correlating to the inflammatory parameters NLR, neutrophil count and CRP, blood
parameters that will be described later on in more detail [15]. Most recently, the role of sPD-
L1 was also investigated in pleural effusions [89]. Both serum as well as pleural effusion
derived PD-L1 status might represent an easily available method for clinical monitoring of
the treatment target during immune therapy in the future.

Although there is great hope for a more personalized immune therapy, the exact
background of the heterogeneity in PD-L1 expression and in treatment response is not
yet fully understood. The interplay of tumor immunology, immunotherapy and somatic
mutations is currently intensively researched [87,90–92]. Yang et al. recently reviewed the
complex interactions of molecular characteristics of MPM cells and TME with histological
subtype and genomic mutations [93] underlining the need for a deeper understanding of
the pathobiological processes in MPM in order to optimize personalized biomarker-guided
immunotherapy.

The complex interactions of tumor infiltrating immune cells with MPM cells as well
as the resulting systemic inflammatory processes—which will be discussed in the next
chapter—are also graphically shown in Figure 1.
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In summary, the role of local inflammation and the components of TME in MPM have
been investigated by various researchers. We encountered promising data regarding the
prognostic potential of the different tumor infiltrating immune cells and also first results for
predictive potential of some of these biomarkers. However, most interestingly, we noticed
that generally low numbers of specific immune cells as well as high numbers of unspecific
immune cells seem to be unfavorable, suggesting a controversial impact of the innate and
adaptive immune cells on local tumor progression.

2.10. The Role of Systemic Inflammatory Response in MPM

Systemic inflammation is becoming an increasingly acknowledged factor in the devel-
opment and progression of different solid tumors, including MPM. Consequently, periph-
eral blood derived inflammatory markers, which are determined routinely in daily practice
for almost all patients, have been extensively examined regarding their applicability as
biomarkers in MPM as reviewed before [12].

Since systemic inflammatory parameters can indicate inflammatory and infectious
processes in the patient’s body as well as malignancy, they are highly unspecific for
diagnostic or screening purposes. However, after exclusion of acute inflammation or
infection, some of the established and widely available inflammatory markers have been
identified as prognostic or predictive markers in various solid tumors [94–99] including
MPM [100–102].

As mentioned before, the current European guidelines for MPM management do not
recommend any prognostic biomarkers for clinical use [4]. Nevertheless, two prognostic
scores have been developed that are widely accepted and well established, namely the
EORTC score (European Organization for Research and Treatment of Cancer) [103] and
the CALGB score (Cancer and Leukemia Group B) [104]. Both scores have been validated
for MPM by different researchers and proved their reproducibility [105–108]. Interestingly,
these two scores not only integrate clinical, pathological and epidemiological factors, but
also acknowledge systemic inflammation as tumor aggressiveness criteria by including the
blood characteristics leukocytosis, thrombocytosis and elevated C-reactive protein (CRP)
as negative prognostic factors [103,104]. The following paragraphs discuss the current
literature on systemic inflammatory markers in MPM as also summarized in Table 2.
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Table 2. Potential Systemic Inflammatory Biomarkers.

Biomarker Unfavorable Univariate Value Multivariate
Value Impact Design Number of

Patients/Range Cut-Off Value References

WBC count High HR: N.S.-1.9 HR: N.S.-2.3 All prog All R 84–363 8.1–15.6 109/L/8.3 109/L
*

[102,103,107,109–117]

Lymphocytes Low N.S.-N.R. N.S. All prog All R 105–285 1.27–2.0 109/L [102,114,117]

Monocyte count High HR: N.R.-4.0 HR: N.S.-2.7 All prog All R 105–667 0.55 109/L [43,102,114]

M-CSF High HR: 1.6 HR: N.S Prog R 36 1120 [79]

Neutrophil count High HR: N.S.-N.R. HR: N.S. All prog All R 105–285 5.3–5.89 109/L [102,114,117]

Platelet count High HR: N.S-2.1 HR: N.S.-2.1 All prog All R 84–363 300–450 g/L, 400 109/L * [102,103,107,109–118]

NLR High HR: N.S.-2.3 HR: N.S.-2.7 All prog All R 30–285 3 and 5/5 * [102–104,109–113,119–121]

NLR
normalization
after treatment

No HR: N.R.-2.2 All prog All R 66–69 Decline to <5 [109,111]

LMR Low HR: N.R. HR: N.S.-1.8 All prog All R 105–283 2.36–2.74 [102,114,122]

PLR High HR: N.R.-1.5 HR: N.S. All prog All R 105–285 144–300 [102,103,114]

CRP High HR: N.S-2.8 HR: N.S.-2.7 All prog and [11] pred All R 115–363 10–50 mg/L/10 mg/L* [11,102,103,115,116,123]

CAR High HR: N.S.-2.6 HR: N.S.-2.1 All prog All R 100–201 0.58 and 7.5, >0.58 * [102,104,124]

mGPS High HR: N.R. HR: 2.6 Prog R 132 1 [103]

Fibrinogen High HR: 2.1 HR: 1.8 Prog and pred R 176 750 mg/dL [10]

Albumin Low HR: N.R.-1.5 HR: N.S.-1.8 All prog All R 97–278 35–40 g/L, 35 g/L * [102,103,114,125]

C4d High HR: 7.3 high vs.
low

HR: 0.3 low vs.
high Prog R 30 1.5 µg/mL [8]

Activin A High HR: 0.4 HR: 0.4 Prog R 119 574.0 pg/mL [55]

sPD-L1 High HR: N.R. H.R.: N.S. Prog P 40
0.07–1.83 ng/mL

measured at 4 timepoints
during therapy

[15]

BC white blood cell, M-CSF macrophage colony stimulating factor, NLR neutrophil-to-lymphocyte ratio, LMR lympho-cyte-to-monocyte ratio, PLR platelet-to-lymphocyte ratio, IL-6 interleukin 6, CRP C-reactive
protein, CAP CRP-to-Albumin ratio, mGPS modified Glasgow prognostic score, C4d Circulating complement component 4d, sPD-L1 soluble programmed cell death ligand 1, HR hazard ratio, N.R. not reported,
N.S. not significant, Prog prognostic bi-omarker, Pred predictive biomarker, R retrospective, P prospective, * most frequently used cut-off value.
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Leukocytosis, a well-known biomarker of acute inflammation, has been widely in-
vestigated as biomarker for MPM and a number of studies reported a negative prognostic
value of elevated pretreatment white blood cell count after uni- [103,111,112,116] and
multivariate [102,110,115] survival analyses. Absolute lymphocyte count, as sign of an
activated specific immune system, was studied by fewer researchers as single biomarker,
but an association with poor prognosis and reduced clinical response to chemotherapy has
been reported so far [109]. However, the role of lymphocyte count on MPM outcome has
been investigated more intensively with regard to different ratios, especially the neutrophil
to lymphocyte ratio (NLR) which will be later described more in detail.

Monocyte count on the contrary has been studied more extensively as single prognostic
marker in MPM. Burt et al. found an independent negative prognostic value of pretreatment
monocytosis for patients undergoing cytoreductive surgery [73] and Zhang et al. and
Tanrikulu et al. confirmed these findings for patients receiving different therapies [100,110].
Monocytes, as part of the unspecific immune system, are the procurer cells of tissue
specific macrophages [73] including TAM who play an important role in the TME and thus
contribute to local immune modulation as mentioned before.

Interestingly, neutrophil count, likewise representing the unspecific immune response,
is rarely reported as single blood marker. Few studies describe controversial results,
reporting adverse prognostic value of high neutrophil count in univariate analysis [100] or
no correlation with prognosis [109,110]. Nevertheless, the neutrophil count compared to
the lymphocyte count is more intensively studied when it comes to the NLR.

Thrombocytosis, a known unspecific systemic phenomenon in response to inflam-
mation [126], has long been suggested as independent prognostic factor. Already in 1989,
first data suggested an independent negative prognostic value of high platelet count [111],
which has been confirmed by others in the following decades [109–111,116,117]. Other
studies could not validate the prognostic value at all [112], or found, instead of platelet
count, the platelet to lymphocyte ratio (PLR) to be prognostic, as explained more in detail
below [102–114].

Next to single blood parameters, special focus has lately been laid on ratios between
some blood markers, such as the neutrophil to lymphocyte ratio (NLR), lymphocyte to
monocyte ratio (LMR) or platelet to lymphocyte ratio (PLR). These markers are easily
accessible and calculated from routine blood cell count and reflect the relation between
specific and unspecific systemic immune response.

With increasing knowledge of the role of specific and unspecific immune response
in cancer, these ratios have become of rising interest as possible biomarkers in numerous
malignancies with promising prognostic potential [94,113–119].

As for other solid tumors [94,113–120], a negative prognostic value of high NLR has
been shown for MPM in numerous studies analyzing cohorts of patients receiving different
therapy concepts [102,103,112,119,121] including systemic therapy [121]. Furthermore, two
studies found in a subgroup analysis that normalization of pretreatment elevated NLR
under chemotherapy was predictive for better OS [106,121]. Additionally, for surgical
patients undergoing cytoreductive surgery, high NLR was found to correlate with worse
prognosis [122].

Low LMR, displaying a domination of unspecific monocytes, has been found to be
a negative prognostic marker for numerous malignancies as reviewed by Gu et al. [123].
For MPM, comparable results have been published [102,114,122] showing that low LMR is
associated with adverse prognosis in line with the reported negative prognostic value of
elevated monocyte count as mentioned before. Of note, Yin et al. published comparable
results for peritoneal mesothelioma [124].

Furthermore, high PLR has been studied and reported as a negative prognostic marker
for multiple malignancies [119,125,127–129], also including MPM. As already indicated
above, of the four named studies with no correlation between platelet count and survival,
three, however, did find PLR to be associated with poor prognosis after univariate analy-
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ses [102,103,114]. Thus, one might speculate that even if absolute platelet count alone is
not prognostic, a relative increase in platelets compared to low lymphocytes might be.

2.11. Acute-Phase Proteins

Already in 1998, Nakano et al. observed significantly elevated serum levels of some
acute phase response proteins (APP) and cytokines—namely fibrinogen, IL-6, alpha1-acid
glycoprotein and CRP levels—in MPM patients compared to patients with adenocarcinoma
of the lung. They also reported significantly higher levels of IL-6 in the pleural fluid of
MPM patients and concluded that the pleural IL-6, when entering systemic circulation,
enhances the systemic acute phase response (APR) [130].

The APR, as part of the unspecific immune response, is the physiological and bio-
chemical systemic reaction to inflammation, infection, tissue damage due to, for example
burn injuries or trauma and malignancies. The process is mediated by proinflammatory
cytokines, causing fever, leukocytosis and the release of APP. Gabay et al. provide a de-
tailed list of well-known APP, some of which have been under investigation with regard to
applicability as inflammatory biomarkers in MPM—particularly IL-6, CRP, fibrinogen [126].

2.12. Interleukin 6

The proinflammatory cytokine IL-6 is released by various immune cells triggered
by IL-1β and TNF, but also produced by tumor cells directly as also proven for MPM
with tumor-promoting effects [75,131]. The (patho)physiological functions of IL-6 are
reviewed by Hunter in general [132] and by Abdul Rahim et al. for mesothelioma in
particular—emphasizing the promoting effect of IL-6 on cell proliferation, angiogenesis
via stimulation of VEGF expression, resistance to chemotherapy and physical symptoms
negatively influencing wellbeing of the patient [133].

In contrast to other malignancies [134–144] current data does not support the prog-
nostic or predictive value of IL-6 serum concentration for MPM [130]. However, IL-6
levels have been reported to correlate significantly with other markers [130,133] of verified
prognostic impact for MPM such as VEGF [145–147], thrombocytosis [107,111,142] and
CRP levels [11,116,142]. Adachi et al. found that IL-6 encouraged cell proliferation as
autocrine growth factor and the expression of VEGF [148] and accordingly investigated an
IL-6 inhibitor as VEGF targeting therapeutic approach in a subsequent study [149].

Antiangiogenic therapeutic approaches have been widely investigated as reviewed re-
cently by Novak et al. [150]. Thus, the clinical use of the VEGF inhibitor bevacizumab is now
also regarded as promising improvement of the almost 20 year old standard chemotherapy
regimen published by Vogelzang et al. [151] according to the promising results of the MAPS
trial [152].

From the current point of view, IL-6 does not seem to be applicable as prognostic
or predictive marker for MPM; however, it can be assumed that it plays a major role in
promotion of systemic inflammation with release of other proinflammatory cytokines as
already suggested two decades ago by Nakano et al. [130].

2.13. C-Reactive Protein (CRP)

CRP, first described in 1930, is one of the earliest discovered and most established
acute-phase response proteins [153]. The CRP synthesis in hepatocytes is mainly stimulated
by IL-6, IL-1β and tumor necrosis factor α (TNF-α) [126]. Clinical use for inflammation
and treatment response is currently well established since elevated CRP levels correlate
with the course of chronic and acute infections but also inflammatory (autoimmune) dis-
orders, general tissue injury and various malignancies [154,155]. Lately, elevated serum
CRP levels were found to be associated with poor prognosis for multiple tumor enti-
ties [82,94,95,97,156–158]. Consequently, this potentially interesting biomarker has also
been investigated in MPM. Elevated CRP levels were reported to be associated with shorter
survival—regardless of different applied treatment modalities [103,116,123], specifically
for patients receiving systemic treatment [112], as well as patients undergoing trimodal
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therapy including surgery [11]. Some groups even described a level dependent negative
prognostic potential of pretreatment CRP serum concentration [112,159].

Furthermore, the predictive potential of CRP for MPM has been explored by the study
group of the authors before. It was proven that of patients undergoing aggressive multi-
modality treatment including cytoreductive surgery only those with normal pretreatment
CRP levels benefit from this type of therapy. Thus, patients with normal CRP values
before therapy receiving multimodality therapy survived 36 months in median. In contrast
to these findings, patients with elevated pretreatment CRP only had 10 months overall
survival despite multimodality therapy indicating, that indeed this subgroup of MPM
is of distinct treatment responsiveness [11]. Of note, Kao et al. additionally described a
correlation between elevated inflammatory markers—specifically elevated CRP and NLR—
and advanced clinical symptoms such as fatigue and anorexia in course of an engraved
systemic inflammatory response and consequently compromised health-related quality of
life [160].

2.14. Fibrinogen

Fibrinogen, a well-known clotting factor, is also an important positive acute phase
protein. Its synthesis is increasing significantly when stimulated by proinflammatory
cytokines, mainly IL-6 [161]. Fibrinogen as biomarker has been investigated for several dis-
eases including chronic obstructive pulmonary disease and coronary heart disease [161,162].
Additionally, a negative prognostic value of high pretreatment fibrinogen has been found
for numerous tumor entities [98,114,163–168]. So far, only the previous study of the authors
reported not only a prognostic but also predictive value for pretreatment fibrinogen in
MPM. Patients with high fibrinogen plasma levels were shown to have significantly shorter
OS. Additionally, of patients receiving trimodal treatment with cytoreductive surgery, those
with high pretreatment fibrinogen did not benefit from multimodality treatment [10].

2.15. Albumin—A Negative Acute Phase Protein

Serum albumin not only reflects nutritional status but also inflammatory response as
negative acute phase protein mediated by cytokines including IL-6, IL-1β and TNF-α [169].
Hypoalbuminemia has long been acknowledged to impair wound healing and outcome
after interventions and surgeries [170–174]. In addition, it was described to indicate short
survival in different malignancies [169]. For MPM, hypoalbuminemia has been associated
with poor survival for patients receiving different treatment modalities [102,103,114], but
also selectively for chemotherapy patients [175] and surgical patients [176].

In a classification and regression tree analysis, Brims et al. found the best survival for
patients with no weight loss, a high hemoglobin level and a high serum albumin level [177].
Harris et al. validated these findings for surgical patients undergoing cytoreductive
surgery [176].

Hypoalbuminemia and elevated CRP concentration have been integrated in a systemic
inflammation based prognostic score, the so-called modified Glasgow Prognostic Score
(mGPS). Its prognostic value has also been confirmed for multiple cancer types as reviewed
in detail by McMillan [178] and has been acknowledged for mesothelioma in univariate
analysis [101].

Furthermore, the prognostic value of elevated CRP/Albumin ratio (CAR), reflecting
increased CRP values and decreased albumin concentration as indicator of poor nutritional
and activated acute phase response, has been widely explored. Elevated CAR has been
shown to predict poor outcome in acute diseases including sepsis [179,180] as well as in
various malignant diseases [96,99,181–184]. Takamori et al. investigated CAR for MPM
patients and found a high CAR to be independently prognostic [185]. Otoshi et al. con-
firmed these results for inoperable MPM patients [102] whereas Tanrikulu et al. could not
reproduce these results [100].
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2.16. Ferritin

The positive APP ferritin is up-regulated under inflammatory or infectious condi-
tions to reduce the iron accessibility of pathogenic organisms [186,187]. For numerous
malignancies elevated serum ferritin concentrations have been reported as well, in part
with prognostic impact [188]. Healthy human cells, foreign organisms but also cancer
cells depend on iron supply for a number of cellular metabolic processes. The role of
iron metabolism and its regulation—partially by cells of the TME—have been reviewed
excellently by Hsu et al. for cancer in general [188] and by Toyokuni et al. for MPM in
particular, especially in context of asbestos-induced oxidative stress [189]. MPM has been
associated with elevated ferritin serum levels [190–192], but to our knowledge the prognos-
tic or predictive impact of ferritin has not been investigated so far. However, correlations
of ferritin with TAM and modulated lymphocyte function has been suggested [187,188] so
in context of the APR as well as the importance of iron metabolism in MPM the study of
ferritin as biomarker might reveal interesting new results. Of note, also reduction of iron
storage was suggested as possible treatment target after promising preclinical results from
a rat model [192,193].

2.17. The Complement System

With regard to the innate immune system and its systemic circulating compartments,
the complement component 4d (C4d) was also found to be of prognostic relevance in
MPM patients. High plasma C4d levels were associated with high tumor volume, worse
response to induction therapy, high acute phase response proteins and shorter survival
after multivariate analyses as reported by Klikovits et al. [8]. Furthermore, Agnostinis et al.
investigated the role of complement protein C1q in MPM. It was shown that C1q did not
activate the classic complement pathway in MPM as one might expect, but instead bound
to hyaluronic acid and thereby induced cell adhesion and proliferation of mesothelioma
cells. Interestingly, the activation of the classic complement pathway was abandoned by
hyaluronic acid [194]. These findings are in line with Klikovits et al., where high C4d (as
downstream target of C1q during the classic complement pathway) was not correlating
with high C1q [8]. Thus, the activation and exact role of the complement system and its
subunits is yet not fully understood and might be of future interest in MPM.

Taken together, many common systemic inflammatory parameters have been studied
regarding their prognostic potential for MPM and some additionally for their predictive
impact. It is remarkable—compatible with our conclusions on local inflammation—that
high unspecific inflammatory markers seem to be adverse whereas high specific inflam-
matory markers appear to be beneficial reflecting the tumor-promoting influence of the
innate immune system and the tumor-suppressing impact of the adaptive immune system,
respectively.

3. Conclusions

While preparing the present review and summarizing the established as well as most
recent knowledge, it became fairly clear that a large amount of research considering this
topic has been performed within the past few decades. Despite the fact that a lot of data
is based on retrospective studies—which is most likely explainable by the rare incidence
of MPM—high quality research supports the important role of inflammation in MPM.
Not only in the setting of pathogenesis, tumor promotion, poor prognosis or treatment
response inflammatory processes play a decisive role but inflammation and immune
response are also under investigation as promising treatment targets. Most markers and
key findings were not only published once but have been validated in the past, thus
resulting in several inflammatory related biomarkers characterized by reproducibility and
accordingly reliability. Furthermore, comparable results have been documented in other
malignancies thus indicating, that some of the above mentioned findings have a universal
impact in (immune-) oncology.
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In the clinical management of MPM, physicians are confronted with multiple—yet
not fully standardized—treatment modalities on the one hand, opposed to poor outcome
and treatment resistance on the other hand. Consequently, MPM in general is the ideal
candidate for biomarker research especially when it comes to treatment guiding predictive
parameters [22].

The immune system plays a key role in MPM, since this rare disease has already been
associated with inflammation several decades ago [5]. This theory is supported by many
more recent studies summarized in this review. During the past few decades and especially
within the last years, it was shown that an upregulated unspecific immune response on
the one hand translates to poor outcome. On the one hand, a downregulated specific
immune system results in tumor progression, tumor immune evasion and finally poor
prognosis, regardless if investigating the inflammatory status in patient blood, pleural
effusion, tumor tissue or its associated TME. Thus, the tumor suppressive characteristics of
the specific immune system get obvious when the—through MPM suppressed—specific
immune response gets reactivated by immune therapy resulting in prolonged survival.

This above-described duality of the immune system in MPM has been analyzed and
described before by Linton et al. [12]. However, today we would reply to the question
“Inflammation in malignant mesothelioma—friend or foe?” that it is both friend and foe.
More precisely, and to simplify the key message from this review, the specific immune
system is our friend and its unspecific counterpart the foe which is also reflected in the
prognostic value of the corresponding biomarkers—both on a local as well as systemic level.

Further research on the immune system in MPM might help in treating this therapy
refractory disease and reveal modern insights in the complex interaction of our immune
system with the tumor thus resulting in a better biological understanding, new treatment
approaches and finally improved clinical management and patient outcome. There is still
need for future studies to gain detailed knowledge about this topic and, thus, we look
forward to learning more about the interaction of our immune system with malignant
disease in general and MPM in particular.
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