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Simple Summary: Cervical lymph node (LN) metastasis in patients with oral squamous cell 
carcinoma is one of the important prognostic factors. Pretreatment cervical nodal staging is 
performed using computed tomography (CT) as the first-line examination. However, imaging 
findings focused on morphology are not specific for detecting cervical LN metastasis. In this study, 
deep learning (DL) analysis of pretreatment contrast-enhanced CT was evaluated and compared 
with radiologists’ assessments at levels I–II, I, and II using the independent test set. The DL model 
achieved higher diagnostic performance in discriminating between benign and metastatic cervical 
LNs at levels I–II, I, and II. Significant difference in the area under the curves of the DL model and 
the radiologists’ assessments at levels I–II and II were observed. Our findings suggest that this 
approach can provide additional value to treatment strategies. 

Abstract: We investigated the value of deep learning (DL) in differentiating between benign and 
metastatic cervical lymph nodes (LNs) using pretreatment contrast-enhanced computed 
tomography (CT). This retrospective study analyzed 86 metastatic and 234 benign (non-metastatic) 
cervical LNs at levels I–V in 39 patients with oral squamous cell carcinoma (OSCC) who underwent 
preoperative CT and neck dissection. LNs were randomly divided into training (70%), validation 
(10%), and test (20%) sets. For the validation and test sets, cervical LNs at levels I–II were evaluated. 
Convolutional neural network analysis was performed using Xception architecture. Two 
radiologists evaluated the possibility of metastasis to cervical LNs using a 4-point scale. The area 
under the curve of the DL model and the radiologists’ assessments were calculated and compared 
at levels I–II, I, and II. In the test set, the area under the curves at levels I–II (0.898) and II (0.967) 
were significantly higher than those of each reader (both, p < 0.05). DL analysis of pretreatment 
contrast-enhanced CT can help classify cervical LNs in patients with OSCC with better diagnostic 
performance than radiologists’ assessments alone. DL may be a valuable diagnostic tool for 
differentiating between benign and metastatic cervical LNs. 
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1. Introduction 
Metastasis to the cervical lymph nodes (LNs) is one of the poor prognostic factors in 

patients with oral squamous cell carcinoma (OSCC). Evaluating whether the cervical LNs 
are benign or metastatic depends on the treatment strategy. Among patients with 
clinically negative LNs, 15–20% are at risk of occult LN metastasis [1]. Unnecessary 
surgical LN dissection without metastatic cervical LNs can lead to increased 
complications, while delayed dissection of LN metastases can result in disease 
progression. Ultrasonography (US), computed tomography (CT), magnetic resonance 
imaging (MRI), and fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission 
tomography (18F-FDG PET) have been widely used for evaluating the cervical LN status 
in head and neck cancer patients [2–4]. However, the subjective nature of the morphologic 
criteria for visually confirming metastatic LNs on US, CT, and MRI results in diminished 
reproducibility and objectivity. Although several studies have recently described the 
usefulness of dual-energy CT to evaluate the cervical LN status in head and neck cancer 
patients, it is not widely used [5,6]. 18F-FDG PET has been known to be the best modality 
for evaluating cervical LN metastasis in these patients. However, the diagnosis of small 
cervical LNs for evaluating the nodal status using 18F-FDG PET is limited, owing to false-
negative findings [7,8]. Additionally, the sensitivity of sentinel LN biopsy and sentinel LN 
imaging techniques using CT or MR lymphography and PET lymphoscintigraphy is 56–
91% [9,10]. Unfortunately, metastatic cervical LNs are not easily detected on a 
pretreatment clinical examination. Therefore, the development of accurate diagnostic 
methods is required. 

With the continued development of artificial intelligence, deep learning (DL) has 
been applied to medical imaging for tissue characterization, outcome prediction, and 
automated detection [11–15]. DL enables the parameters to increase and handle complex 
tasks by increasing the layers of the neural networks that imitate models of brain 
structures connecting a large number of neurons. Convolutional neural network (CNN), 
one of the DL architectures, consists of convolutional and pooling layers. Convolutional 
layers convert some pixels in the grid into one pixel and extract the image features called 
a feature map. Pooling layers decrease the amount of calculation and adapt to the 
misalignment of images by reducing the data of the feature map. CNNs can play an 
important role in interpreting medical imaging without subjective assessment. Previous 
studies have shown how CNN could effectively assess the malignancy of hepatocellular 
carcinoma and prostate cancer lesions [13,14]. Furthermore, DL was able to help 
discriminate between benign and metastatic cervical LNs in patients with OSCC [16]. 
However, its value based on the American Head and Neck Society cervical regional lymph 
node level system, which has been used to determine the extent of LN dissection and 
indication for radiotherapy, has not been evaluated. Although LNs at levels I and II are 
known to drain from the lymphatic tract of the OSCC, identifying metastatic cervical LNs 
remains challenging because of oral and sinonasal inflammation or insufficient malignant 
deposits. In addition, prophylactic cervical neck dissection is frequently performed level-
by-level in clinical practice since cervical LNs metastasis in OSCC can occur even if these 
are clinically diagnosed as benign lesions. Hence, unnecessary neck dissection can be 
prevented if the benign or metastatic LNs can be distinguished for each level. Therefore, 
we aimed to clarify the diagnostic performance of DL in differentiating between benign 
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and metastatic level I–II, I, and II cervical LNs on contrast-enhanced CT in patients with 
OSCC. 

2. Results 

Patient characteristics are summarized in Table 1. Table 2 shows the number of LNs at 
each level in each set. 

Table 1. Patient-based characteristics. 

Characteristics 
Patient-Based 

n = 39 
Age mean ± SD  64.0 ± 14.0 

Gender male/female 23 / 16 
Primary tumor sites Oral tongue 26 

 Gingiva 8 
 Floor of mouse 5 

T stage T1 7 
 T2 17 
 T3 7 
 T4 8 

N stage N0 7 
 N1 11 
 N2a 0 
 N2b 13 
 N2c 6 
 N3a 0 
 N3b 2 

Level Ⅰ  121 
  Ipsilateral Level Ⅰ 84 

Level Ⅱ  132 
  Ipsilateral Level Ⅱ 72 

Level Ⅲ  37 
  Ipsilateral Level Ⅲ 19 

Level Ⅳ  4 
  Ipsilateral Level Ⅳ  4 

Level Ⅴ  26 
  Ipsilateral Level Ⅴ 13 

Table 2. The number of lymph nodes (LN) at each level in train set, validation set, and test set. 

Level 

 LN-Based 
 Train Cohort (n = 224) Validation Cohort (n = 32) Test Cohort (n = 64) 

  Benign  
(n = 169) 

Metastasis (n = 55) Benign  
(n = 22) 

Metastasis  
(n = 10) 

Benign  
(n = 43) 

Metastasis  
(n = 21) 

Level Ⅰ  51 24 10 5 21 10 
 Ipsilateral Level Ⅰ 29 20 7 5 15 8 

Level Ⅱ  64 18 12 5 22 11 
 Ipsilateral Level Ⅱ 26 14 4 5 12 11 

Level Ⅲ  27 10 - - - - 
 Ipsilateral Level Ⅲ 12 7 - - - - 

Level Ⅳ  1 3 - - - - 
 Ipsilateral Level Ⅳ  0 3 - - - - 

Level Ⅴ  26 0 - - - - 
 Ipsilateral Level Ⅴ 13 0 - - - - 

2.1 Diagnostic Performance of the Deep Learning Model in the Validation and Test Sets 
In the validation set, the DL model achieved a diagnostic accuracy rate/area under 

the receiver operating characteristic curve (AUC) of 97.5%/0.964 at levels I–II. A 
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summary of the diagnostic performances of the DL model and the radiologists’ 
assessments in the test set is shown in Table 3. The DL model achieved a diagnostic 
accuracy rate/AUC of 85.9%/0.898 at levels I–II, 83.9%/0.824 at level I, and 90.9%/0.967 at 
level II. 

Table 3. Comparisons of area under the curve (AUC), diagnostic accuracy rate, sensitivity, and specificity 
between deep learning models and radiologists at each level. 

  AUC [95% Confidence Interval] Accuracy Sensitivity Specificity 
Level Ⅰ/Ⅱ 

Deep learning 0.898 [0.778, 0.956] 85.9 66.7 95.4 
Reader 1 0.780 [0.559, 0.864] * 78.1 57.1 88.4 
Reader 2 0.758 [0.587, 0.873] * 78.1 66.7 83.7 

Level Ⅰ 
Deep learning 0.824 [0.600, 0.936] 80.6 60.0 90.5 

Reader 1 0.738 [0.497, 0.889] 77.4 60.0 85.7 
Reader 2 0.707 [0.443, 0.880] 74.2 60.0 81.0 

Level Ⅱ 
Deep learning 0.967 [0.854, 0.993] 90.9 72.7 100.0 

Reader 1 0.771 [0.546, 0.904] * 78.8 54.6 90.9 
Reader 2 0.812 [0.574, 0.933] * 81.8 72.7 86.4 

* Indicates a significant difference between deep learning and radiologists (p < 0.05). 

2.2 Diagnostic Performance of the Readers in the Test Set 
Figure 1 shows the receiver operating characteristic curves of the DL model and the 

radiologists’ assessments. Significant differences in the AUCs at levels I–II (0.898 [DL] vs. 
0.780 [R1] and 0.758 [R2]; both, p < 0.05) and level II (0.967 [DL] vs. 0.771 [R1] and 0.812 
[R2]; both, p < 0.05) between the DL model and the radiologists’ assessments were found. 
The DL model was more accurate at levels I–II (85.9% [DL] vs. 78.1% [R1] and 78.1% [R2]), 
level I (80.6% [DL] vs. 77.4% [R1] and 74.2% [R2]), and level II (90.9% [DL] vs. 78.8% [R1] 
and 81.4% [R2]). The DL model improved 16 diagnostic decisions of the readers. For the 
benign LNs at levels I–II, the DL model accurately diagnosed four and seven LNs that 
were misdiagnosed by R1 and R2, respectively, while one and two LNs that were 
accurately diagnosed by the readers were not accurately diagnosed by the DL model. For 
the metastatic LNs, the DL model improved four and one LNs that were diagnosed as 
benign lesions by R1 and R2, respectively, while two and one LNs that were accurately 
diagnosed by the readers were not accurately diagnosed by the DL model. A 
representative case of different diagnostic decisions between the DL model and 
radiologists is shown in Figure 2. 

 
Figure 1. Areas under the receiver operating characteristic curves showing the deep learning model and radiologists’ 
ability to identify metastatic cervical lymph nodes at levels I–II (A), I (B), and II (C) in the test set. 
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Figure 2. A representative case of cervical LN at level ⅡA on the right in a 56-year-old man with gingival cancer of T4 
classification whose diagnosis differed between the deep learning (DL) model and radiologists’ assessments. The targeted 
LN size was 8.2 mm. The DL model diagnosed it as a metastatic LN, while two radiologists diagnosed it as a benign LN. 

3. Discussion 
In this study, the DL model achieved higher diagnostic performance in 

discriminating between benign and malignant cervical LNs on contrast-enhanced CT in 
patients with OSCC. In the test set, a significant difference in the AUCs of the DL models 
and radiologists was observed. Our results suggest that preoperative cervical nodal status 
at level I and II in patients with OSCC can be evaluated by DL. 

The following CT and MR morphologic criteria have been widely used to determine 
the malignancy of cervical LNs in patients with head and neck cancer: Nodal size, 
peripheral shape, heterogeneous enhancement, and clustering of LNs. The diagnosis of 
LNs has depended on the judgment of radiologists and clinicians. Park et al. have reported 
that the sensitivity/specificity/accuracy of CT/MR for the visual assessment of cervical 
LNs in patients with head and neck SCC were 42/94/85% and 70/91/84 % at the bilateral 
levels I and II, respectively [2]. 

Kann et al. [17] demonstrated that a test set evaluated using DualNet DL achieved a 
sensitivity/specificity/accuracy of 84/87/86%, respectively. Similarly, an AUC of 0.91 for 
the assessment of the overall cervical LNs in head and neck cancer patients was found. 
However, no previous studies have reported the diagnostic performance of DL models at 
each LN level in OSCC patients. Our study can provide useful information about 
preoperative evaluation of cervical LN at levels Ⅰ and Ⅱ. In two studies, the entire LN was 
segmented for the assessment of the cervical LN status using CNNs [17,18]. However, in 
our study, the largest slice of the cervical LNs was used to simplify the workflow and 
avoid unnecessary CNN calculations. The center of the cervical LN can play a key role in 
its evaluation using CNNs. Ariji et al. [16] have described that DL with AlexNet could be 
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useful in distinguishing benign and metastatic LNs from overall cervical LNs in OSCC 
patients. However, no significant difference between the DL model and the radiologists’ 
assessments was found. Segmented CT images using an arbitrary-sized square included 
soft tissue structures around LNs in their study. Meanwhile, segmentation of the border 
of LNs without soft tissue structures was performed in our study. That might lead to 
improvement of the diagnostic performance using the DL model. However, these 
approaches of segmentation are not entirely automated and require human intervention. 
Fully automatic detection and classification of cervical LNs are required to improve the 
reproducibility. The targeted area of the cervical LN dissection should be precisely 
determined to minimize complications and the risk of residual tumor. For level-based 
analysis, especially at level I, small deposits of cancer cells that may not influence the 
appearance of the LN’s internal architecture on CT can lead to false negatives. Thus, while 
CT exhibits high specificity for metastatic LN, it is not particularly sensitive. In our study, 
the accuracy of DL assessment of cervical LNs was superior to those of visual assessments. 
CNNs learn by reducing the differences between input and output data using 
backpropagation and loss function and identifying the useful connections within the 
neural network by itself. A large amount of excellent quality input data would allow high 
CNN performance. We utilized transfer learning using Xception in this study. In transfer 
leaning, the CNN architecture is pretrained from a large dataset, such as ImageNet, as the 
imaging features have already been extracted. Therefore, transfer learning improves the 
model’s performance in limited datasets, and previous studies have utilized this approach 
for medical imaging [19–21]. Regarding showing a higher diagnostic performance of CNN 
compared with radiologists, CNN may have extracted some sort of image features that 
the radiologists could not recognize, which contributed to the discrimination between 
benign and metastatic cervical LNs. 

There were several limitations to this study. First, selection bias was present, because 
patients who were suspected of having metastatic cervical LNs underwent dissection. 
Second, only a small number of LNs were used to create the DL model in this retrospective 
study. The cervical LNs at levels I and II were evaluated in the validation and test sets 
while LNs at levels I to V were included in the training set. Third, the image preprocessing 
protocol and DL model algorithm that we adopted might not be optimally suited for 
discriminating between benign and metastatic LNs since DL models for medical imaging 
are not yet sufficiently developed. Data volume and quality have a key role in improving 
the performance of DL models. Additionally, CT images that were acquired using two CT 
scanners were used. Although image standardization was performed, different image 
intensities originating from two scanners can affect the consistency of our results. For 
future studies, using the same CT scanner and protocol are preferable. Fourth, the 
diagnostic values of DL models have not been compared with those of PET-CT, which has 
widely spread as the best modality for the assessment of cervical LNs in head and neck 
cancers. The comparison leads to confirmation of the clinical significance of the DL 
models. Therefore, further large, multicenter studies are required to investigate the DL 
model with the optimal protocols for each level, compared with PET-CT. Fifth, there were 
seven patients who underwent dissection of their cervical LNs after the primary surgery. 
Postoperative inflammation might influence the LNs since cross sectional imaging for the 
assessment of recurrence is recommended after 2 to 3 months to avoid false lesions [22]. 
Sixth, eight cervical LN metastases were not identified on CT due to rapid growth. Hence, 
shortening the time between the CT examination and surgery is needed. 

4. Materials and Methods 
4.1. Ethical Statement 

This retrospective study was approved by the Bioethics Committee of St. Marianna 
University School of Medicine (ethical code: 4469); the committee waived the requirement 
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for informed consent due to the design of the study. All procedures were conducted 
according to the Declaration of Helsinki. 

4.2. Subjects 
The study flowchart is shown in Figure 3. We reviewed our electronic medical 

records to identify patients with OSCC who underwent neck LN dissection and contrast-
enhanced CT within 1 month before neck dissection between April 2013 and November 
2017. The inclusion criteria were as follows: (1) Histopathologically confirmed OSCC 
(tongue cancer, gingival cancer, and floor of the mouth cancer); (2) histopathologically 
confirmed benign and metastatic cervical LNs at levels I–V; and (3) available preoperative 
CT data. The exclusion criteria were motion artifacts on CT (n = 1), preoperative 
chemotherapy (n = 2), and induction chemotherapy (n = 2). In total, 39 patients were 
enrolled in this study. The mean interval between cervical neck dissection and CT was 
21.3 ± 8.9 days. Among 39 patients, 31 underwent primary resection and neck dissection 
and 7 underwent cervical neck dissection after primary resection based on the suspicion 
of metastatic cervical LNs. For the seven patients, the median interval between initial 
surgery and CT was 181 (range, 44–308) days. 

 
Figure 3. Flowchart of cervical lymph nodes included in the training, validation, and test sets. 

4.3. Computed Tomography 
CT from the base of the skull to the bottom of the neck was performed using 320-row 

scanners (Aquilion ONE; Canon Medical Systems, Otawara, Tochigi, Japan) for 23 
patients and 64-row scanners (LightSpeed VCT; GE Healthcare, Milwaukee, WI, USA) for 
16 patients according to the following protocols: For 320-row CT scanners: Collimation, 
320 × 0.5 mm; tube voltage, 120 kVp; tube current, automatic exposure control; gantry 
rotation time, 0.5 s; and beam pitch, 0.813. For 64-row CT scanners: Collimation, 64 × 0.5 
mm; tube voltage, 120 kVp; tube current, automatic exposure control; gantry rotation 
time, 0.4 s; and beam pitch, 0.984. CT images with a 2-mm slice thickness without any 
overlap of serial sections were used. The imaging field of view was 230 × 230 mm. Iodine 
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contrast material of 100 mL (300 mg I/mL) was intravenously injected at 1.5 mL/s for both 
protocols. 

4.4. Labeling of Cervical Lymph Nodes and Targeted Lymph Node 
 Twenty-five patients underwent bilateral radical neck dissection, 11 underwent 
unilateral radical neck dissection, and 3 underwent unilateral supraomohyoid neck 
dissection. During surgery, the surgeon identified the cervical LNs for dissection using 
preoperative CT images. The operators set aside cervical LNs to determine their relative 
positions with reference to the size and location of LNs, vessels, muscles, salivary 
glands, and bones on these images. The dissected cervical LNs were stained with 
hematoxylin and eosin and evaluated by pathologists. LNs with histopathologically 
proven metastasis were labeled one-by-one at each level (levels I–IV). Initially, 334 
cervical LNs were identified. However, six LNs were excluded because of severe 
metallic artifacts on CT images. Eight metastatic LNs were also excluded because they 
were not detected on CT owing to their rapid enlargement after performing CT. 
Therefore, 320 cervical LNs, comprising 234 benign and 86 metastatic LNs, at levels I–V 
were included in this study. We randomly categorized the cervical LNs into three sets: A 
training set at levels I–V (n = 224 [70%], 169 benign and 55 metastatic), a validation set at 
levels I–II (n = 32 [10%], 22 benign and 10 metastatic), and a test set at levels I–II (n = 64 
[20%], 43 benign and 21 metastatic). In the validation and test sets, cervical LNs at levels 
III–V were not used because the necessary sample sizes for each level, as mentioned in 
the “statistical analysis” section, were unavailable, which could weaken the statistical 
power. 

4.5. Image Preprocessing for Deep Learning 
The study workflow is shown in Figure 4. Three CT images, namely the image 

showing the largest cross-sectional area of the targeted LN and the adjacent images (one 
cranial and one caudal image), were obtained using OsirixMD software (Pixmeo, Bernex, 
Switzerland). The margin of the LNs on the selected images were contoured as close as 
possible by a single radiologist (**blinded** with 9 years of experience). 

 
Figure 4. Workflow of this study. 
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All images were resized to 300 × 300 pixels. All images were normalized and divided 
by 255 before the augmentation. The resized images were augmented by horizontal flip, 
vertical flip, width shift, and height shift. The programming language used for 
augmentation was Python 3.6 (https://www.python.org). 

4.6. Classification with Convolutional Neural Networks and Transfer Learning 
In this study, the network architecture was based on the Xception architecture [23]. 

This network comprised three flows, namely entry flow, middle flow, and exit flow. Each 
flow is composed of several modules called Inception, which is a component of GoogleNet 
[24]. A detailed description of the Xception architecture is given in Appendix 1 (Figure 
A1). For our experiment, we used the Xception architecture pretrained on the ImageNet 
dataset. Only the Exit flow of the network was fine tuned to our dataset to classify benign 
and metastatic cervical LNs. Early stopping was conducted to avoid overfitting in the 
training set. This method stops training without fixing the number of epochs when 
validation loss is confirmed. For the validation and test sets, the performance of the 
trained DL model was evaluated. In the test set, to match the DL model and visual 
assessment findings, the largest slice of the cervical LN was used for the final analysis. 

4.7. Visual Analysis 
The interpretation of CT images was based on visual assessment by two board-

certified radiologists (R1 and R2, with 9 and 19 years of experience reading head and neck 
CT, respectively) who were blinded to patients’ clinical information, including 
histopathological results. Both radiologists evaluated the cervical LNs and graded them 
using a 4-point scale: 1 = definitely benign; 2 = likely benign; 3 = likely metastatic; and 4 = 
definitely metastatic. The following CT characteristics were considered to judge the scale: 
Shortest maximum diameter of more than 11 mm in the jugulo-digastric area and 10 mm 
in other cervical areas, heterogeneous enhancement or central necrosis, or loss of fatty 
hilum [2,3]. 

4.8. Statistical Analysis 
The necessary number of LNs was calculated to evaluate the area under the curve 

(AUC) with a type I error of 5% and power of 80% using the R statistical package (version 
3.6.1; R Project for Statistical Computing, R Foundation, Vienna, Austria). A previous 
study had reported an AUC of 0.801 in quantitative detection of metastatic cervical LNs 
in patients with OSCC [25]. Our training cohort showed a benign to metastatic LN ratio 
of 3:1. We estimated that a sample size of at least 27 was required. 

Statistical analysis was performed using Python 3.6 or JMP pro 14.2.0 software (SAS 
Institute, Cary, NC, USA). In the test set, sensitivities, specificities, diagnostic accuracy 
rates, and AUCs of the DL model and the radiologists’ assessments were analyzed to 
determine their ability to differentiate between benign and metastatic cervical LNs at 
levels I–II, I, and II. The AUCs were compared between the DL model and the radiologists’ 
assessments. p-values <0.05 were considered to indicate a statistically significant 
difference. 

5. Conclusions 
In conclusion, DL can differentiate between benign and metastatic cervical LNs on 

preoperative contrast-enhanced CT of patients with OSCC, which can help guide 
treatment decisions on neck dissection in a reproducible manner. Further investigation 
will be required to establish the optimal diagnostic method for cervical LN status. 
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Appendix 1 

 
Figure A1. The architecture of Xception model. 
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