

Supplementary materials

The Protein Secretome Is Altered in Rectal Cancer Tissue Compared to Normal Rectal Tissue, and Alterations in the Secretome Induce Enhanced Innate Immune Responses

Aisling B. Heeran¹, Margaret R. Dunne¹, Maria E. Morrissey¹, Croí E. Buckley¹, Niamh Clarke¹, Aoife Cannon¹, Noel E. Donlon¹, Timothy S. Nugent¹, Michael Durand², Cara Dunne², John O. Larkin², Brian Mehigan², Paul McCormick², Niamh Lynam-Lennon¹ and Jacintha O'Sullivan^{1,*}

- ¹ Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, D08 W9RT, Ireland; heerana@tcd.ie (A.B.H.); dunnem12@tcd.ie (M.R.D.); miamorrissey@gmail.com (M.E.M.); bucklecr@tcd.ie (C.E.B.); clarken1@tcd.ie (N.C.); cannona@tcd.ie (A.C.); donlonn@tcd.ie (N.E.D.); nugentti@tcd.ie (T.S.N.); lynamlen@tcd.ie (N.L.-L.)
- GEMS, St. James's Hospital, Dublin 8, D08 NHY1, Ireland; durandm@tcd.ie (M.D.); cardunne@stjames.ie (C.D.); jlarkin@stjames.ie (J.O.L.); bmehigan@stjames.ie (B.M.); pmccormick@stjames.ie (P.M.)
- * Correspondence: osullij4@tcd.ie; Fax: +353-(0)18964122

Supplementary materials

Citation: Heeran, A.B.; Dunne, M.R.; Morrissey, M.E.; Buckley, C.E.; Clarke, N.; Cannon, A.; Donlon, N.E.; Nugent, T.S.; Durand, M.; Dunne, C.; et al. The Protein Secretome is Altered in Rectal Cancer Tissue Compared to Normal Rectal Tissue and Alterations in the Secretome Induce Enhanced Innate Immune Responses. *Cancers* **2021**, *13*, 571. https://doi.org/10.3390/cancers 13030571

Received: 12 January 2021 Accepted: 25 January 2021 Published: 2 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S1. The effect of NCM and TCM on unstimulated dendritic cells. (**A**) Expression levels of CD80 were significantly inhibited by NCM and TCM from both mock-irradiated and irradiated biopsies compared to LPS-induced expression of CD80. (**B**) Expression of CD86 was significantly elevated on DCs treated with TCM from irradiated rectal cancer biopsies compared to LPS-induced expression of CD86. TCM from irradiated rectal cancer biopsies induced significantly higher expression of CD86 compared to NCM from irradiated normal rectal biopsies. (**C**) TCM from irradiated rectal cancer tissue induced higher expression of CD83 compared to LPS-induced expression of CD83. (**D**) PD-L1 expression was significantly elevated on DCs treated with TCM from irradiated rectal cancer tissue on DCs treated with TCM from irradiated rectal cancer tissue enhanced expression of PD-L1 compared to LPS-induced expression of PD-L1. TCM from irradiated rectal cancer tissue enhanced expression of PD-L1 compared to TCM from mock-irradiated rectal cancer tissue or NCM from irradiated normal rectal tissue. (**E**) CD11c levels were significantly elevated on DCs treated with TCM from irradiated rectal cancer tissue and NCM from mock-irradiated rectal cancer tissue compared to LPS-induced expression of CD11c. TCM from irradiated rectal cancer tissue induced greater expression of CD11c compared to NCM from irradiated normal rectal tissue. All data expressed as mean ± SEM. Statistical analysis was performed using a Wilcoxon signed-rank test when comparing the same tissue type i.e. Cancer 0 Gy vs Cancer 1.8 Gy and Mann Whitney Utest when comparing different tissue types and comparing to media control. n=14 for cMedia, n=8 for normal and cancer, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

Figure S2. Correlations between secreted factors from mock-irradiated rectal cancer tissue (Cancer 0 Gy) and body composition parameter. (A) There was a significant inverse correlation between skeletal muscle and Flt-1 (R=-0.6273, p=0.04). (B) There was a significant correlation between skeletal muscle and IL-12/IL-23p40 (R=0.6573, p=0.02). (C) IL-1 α was significantly correlated with skeletal muscle (R=0.5874, p=0.04). (D) VEGF-A was significantly correlated with skeletal muscle (R=0.6224, p=0.03). (E) Visceral fat area was correlated with CCL20 (R=0.6783, p=0.01). Correlation analysis was performed using Spearman correlation coefficient. n=12, n=11 for Flt-1.

Figure S3. Correlations between secreted factors from irradiated rectal cancer tissue (Cancer 1.8 Gy) and body composition parameters (**A**) There was a significant inverse correlation between skeletal muscle and Flt-1 (R=-0.7182, p=0.01). (**B**) There was a significant inverse correlation between skeletal muscle and VEGF-D (R=-1, p=0.01). (**C**) CCL20 was significantly correlated with intermuscular fat (R=0.7133, p=0.01). (**D**) VEGF-A was significantly correlated with intermuscular fat (R=0.6084, p=0.03). (**E**) Intermuscular fat was correlated with IL-1RA (R=0.6084, p=0.03). (**F**) CCL20 correlated with visceral fat area (R=0.6643, p=0.02) and (**G**) There was a significant correlation between IL-1RA and visceral fat area (R=0.6503, p=0.02). Correlation analysis was performed using Spearman correlation coefficient. n=12, n=11 for Flt-1.

			Percent (%)
Age (rectal cancer patients)	Mean ± SD	65.16 ± 10.14	
	Range	53-89	
Age (control patients)	Mean ± SD	58.75 ± 11.42	
	Range	44-76	
Gender (rectal cancer patients)	Male (n)	8	66.67
	Female (n)	4	33.33
Gender (control patients)	Male (n)	3	37.5
	Female (n)	5	62.5
Obesity status (visceral fat area)	Obese	8	66.67
	Non obese	4	33.33
Histology	Adenocarcinoma (n)	12	100
Stage of differentiation	Moderate (n)	12	100
T stage	T1 (n)	1	8.33
	T2 (n)	2	16.67
	T3 (n)	8	66.67
	T4 (n)	1	8.33
N stage	N0 (n)	6	50
	N1 (n)	5	41.67
	N2 (n)	1	8.33
M stage	M0 (n)	11	91.67
	M1 (n)	1	8.33
Neoadjuvant CRT	Received neo-CRT (n)	6	50
Neoadjuvant CT	Received neo-CT only (n)	1	8.33
Neoadjuvant RT	Received neo-RT only (n)	1	8.33
Surgery ^a	Received surgery (n)	11	91.67
TRS ^b	0 (m)	2	28.57
	0(n)	2	42.85
	$\frac{1}{2}$ (n)	С 1	14.28
	2(11)	1	14.28
	3 (n)	1	

Table S1. Patient characteristics.

Abbreviations; CRT; chemoradiotherapy, CT; chemotherapy, RT; radiotherapy, TRS; tumour regression score ^a One patient was unsuitable for surgery ^b TRS available for 7 patients, percent expressed as total with TRS score.