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Simple Summary: In the present study, we assessed the association of RAS mutation status and
radiomics derived data by Contrast Enhanced Magnetic Resonance Imaging (CE-MRI) in liver metas-
tases by CRC. We performed the evaluation extracting by CE-MRI both texture and morphological
metrics in a 3D setting. We demonstrated that radiomics with texture parameters could add value to
qualitative assessment of MR studies and with better results compared to morphological metrics,
providing individualized evaluation of CRLM. Texture parameters derived by CE-MRI and combined
using multivariate analysis and patter recognition approaches could allow stratifying the patients
according to RAS mutation status.

Abstract: Purpose: To assess the association of RAS mutation status and radiomics-derived data by
Contrast Enhanced-Magnetic Resonance Imaging (CE-MRI) in liver metastases. Materials and Methods:
76 patients (36 women and 40 men; 59 years of mean age and 36-80 years as range) were included
in this retrospective study. Texture metrics and parameters based on lesion morphology were
calculated. Per-patient univariate and multivariate analysis were made. Wilcoxon-Mann-Whitney U
test, receiver operating characteristic (ROC) analysis, pattern recognition approaches with features
selection approaches were considered. Results: Significant results were obtained for texture features
while morphological parameters had not significant results to classify RAS mutation. The results
showed that using a univariate analysis was not possible to discriminate accurately the RAS mutation
status. Instead, considering a multivariate analysis and classification approaches, a KNN exclusively
with texture parameters as predictors reached the best results (AUC of 0.84 and an accuracy of 76.9%
with 90.0% of sensitivity and 67.8% of specificity on training set and an accuracy of 87.5% with 91.7%
of sensitivity and 83.3% of specificity on external validation cohort). Conclusions: Texture parameters
derived by CE-MRI and combined using multivariate analysis and patter recognition approaches
could allow stratifying the patients according to RAS mutation status.

Keywords: radiomics; contrast enhanced magnetic resonance imaging; RAS mutation; colorectal
liver metastases

1. Introduction

Radiomics consists of the extraction of several parameters by radiological data that
can provide information about tumor phenotype as well as the cancer microenvironment.
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Radiomics, when combined with other data linked to patient outcome, can produce precise
evidence-based clinical-decision support systems (CDSS) [1]. The main task is to combine
and to collect diverse multimodal quantitative data with a mathematical method in order
to provide clear and robust clinical parameters and to allow outcome prediction [2]. The
idea of radiomics is that the quantitative variables are more sensitively correlated with
various clinical end-points compared with qualitative radiologic and clinical data [3]. Ra-
diomic variables offer outstanding benefits over qualitative imaging assessment, since this
is clearly limited by the resolution of radiologist” eyes. A radiomic information extension
can be obtained by adding genomics data (radiogenomics); in fact, genomic markers such
as microRNA expression, have been shown associated with treatment response, metastatic
spread and prognosis that could offer personalized and precision medicine [4-6]. Radio-
genomics could perform patient selection for different cancer therapy, predict therapy,
address potential therapy resistance (chemotherapy and/or radiation-therapy) and select
patients with poor prognosis [3,7]. Various biomarkers have been individuated for ad-
vanced colorectal cancer (CRC) chemotherapy such as RAS and BRAF mutation status and
microsatellite instability (MSI) status. RAS mutations are predictive of resistance towards
anti-EGFR monoclonal antibodies [4,7]. BRAF mutant patients are correlated with a worse
prognosis [4,7]. MSI-high status showed the immunotherapy efficacy in chemorefractory
patients [4,7]. Moreover, based on literature results, RAS mutation (KRAS and NRAS)
analysis is significant for anti-EGFR therapy selection and is deemed mandatory before
beginning treatment in advanced CRC. In addition, CRC with wild-type RAS status is not
always sensitive to anti-EGFR antibodies due to the less frequent mutations in the EGFR
signaling pathway. BRAF-mutant CRC has a poor prognosis due to lower chemotherapy
sensitivity and to clinical conditions that seriously affect the patients performance sta-
tus [8,9]. A recent pooled analysis suggested that RAS mutation (including KRAS and
NRAS) prevalence in metastatic CRC patients was about 55.9% [10].

The possibility to correlate radiomic parameters to RAS status offers notable advan-
tages over qualitative imaging assessment, allowing one to tailor cancer therapy to the
patient, to predict response to treatment, to dsitinguish favorable subsets of patients from
those with poor prognosis, to select patients that may benefit of surgical treatment. In the
present study, we assessed the association of RAS mutation status and radiomics derived
data by Contrast Enhanced Magnetic Resonance Imaging (CE-MRI) in liver metastases by
CRC. We performed the evaluation extracting by CE-MRI both texture and morphological
metrics in a 3D setting.

2. Materials and Methods
2.1. Dataset Characteristics

All protocols were carried out in accordance with relevant guidelines and regulations.
National Cancer Institute of Naples Ethical Committee board accepted this retrospective
study. Patient informed consent was renounced.

Radiological databases were interrogated from 7 January 2018 to 17 December 2020
in order to select patients with liver metastases and underwent MR study and hepatic
resection. The inclusion criteria were: (1) patients who had liver metastases with patho-
logical proof; (2) patients with MR imaging at baseline before starting any chemotherapy
treatment (for details on the chemotherapy regimen we refer to [11]); (3) availability of MR
images of high quality. The exclusion criteria were: (1) discordance among the imaging
diagnosis and the pathologically ones, (2) no baseline MR images and (c) no contrast MR
images. The external validation patient dataset was provided by the University of Molise.

In total, 90 patients with pathologically confirmed liver metastases were found.
Among them, 14 patients were excluded for the following reasons: (a) eight patients
had no available diagnostic quality MR study images; (b) six patients had no contrast
studies. Therefore, 76 patients (36 women and 40 men; 59 years of mean age and 36-80
years as range) with 130 liver metastases were included in the analysis. The validation
cohort consisted of a total of 24 patients among 76 patients.
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All liver metastases with confirmed RAS mutation status (KRAS and NRAS) were
analyzed (among them 65 metastases with RAS mutation). The prevalence of RAS mutation
frequency in this study agreed with the value for metastatic CRC patients reported in [10].
In our population there were patients with multiple liver lesions, however there were
no patients with metastasis with different RAS mutation status. A consensus between
radiologist and pathologist was considered to assess the correspondence between analyzed
lesions.

Median time between magnetic resonance imagery acquisition and surgical resection
was 12 days (range 7-21 days). The characteristics of the patients and their metastases are
summarized in Table 1.

Table 1. Characteristics of the study population.

Numbers (%)/Range
Men 40 (52.6%)
Women 36 (47.4%)

Patient Description

Gender

Age 59 y; range: 36-80 y

Primary cancer site

Colon 41 (53.9%)
Rectum 35 (46.1%)

Hepatic metastases description
Patients with single nodule 44 (57.9%)

Patients with multiple nodules

32 (42.1%)/range: 2-15 metastases

Nodule size (mm)

mean size 34.9 mm; range 18-54 mm

RAS mutation

41 (53.9%)

Wild Type

35 (46.1%)

2.2. MR Imaging Protocol

MR examinations were performed with two 1.5 T MR scanners: a Magnetom Sym-
phony (Siemens, Erlangen, Germany) and Magnetom Aera (Siemens) equipped with an
8-element body and phased array coils. The MRI study included basal images before
intravenous (IV) contrast agent (CA) injection and dynamic sequences obtained after IV CA
injection. Trufisp T2-weighted free breathing sequence was used for baseline images before
IV CA injection while volumetric interpolated breath-hold examination (VIBE) T1-weighted
SPAIR sequence was used to acquire dynamic images after IV CA injection with controlled
respiration. As liver-specific CA, the Gd-EOB-BPTA (Primovist, Bayer Schering Pharma,
Berlin, Germany) was employed. All patients received 0.1 mL/kg of Gd-EOB-BPTA by
means of a power injector (Spectris Solaris® EP MR, MEDRAD Inc., Indianola, IA, USA)
at an infusion rate of 2 mL/s. Sequence parameters details of were reported in Table 2 as
previously described in [12,13].

Table 2. MR Sequence parameters.

Sequence Orientation TR/TE/FA AT Acquisition Slice Thickness/Gap Fat
1 (ms/ms/deg.) (min.) Matrix (mm) Suppression
TRUFISPT2-W Coronal 4.30/2.15/80 0.46 512 x 512 4/0 without
VIBET1-W Axial 4.80/1.76/12 0.18 320 x 260 3/0 with (SPAIR)

Note. W = Weighted, TR = Repetition time, TE = Echo time, FA = Flip angle, AT = Acquisition time, SPAIR = Spectral Adiabatic Inversion
Recovery, VIBE = Volumetric interpolated breath hold examination.
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Figure 1 displays MR images with hepato-specific contrast of a case of liver metastasis
with RAS mutation; by simple qualitative visual evaluation of the magnetic resonance
images it was not possible to identify the RAS mutation state.

Figure 1. 63 year-old man with rectal cancer. Liver metastasis on I hepatic segment. In (A) (TRUFISP T2-W fat sat) the
lesion (arrow) is hyperintense. Contrast study with Gd-EOB-DTPA: the lesion (arrow) shows a peripheral rim enhancement
with a hypointense core, in arterial phase (B). In the portal (C) and transitional phase (D), the lesion is hypointense. In the

HPB phase (E,F), the lesion is hypointense, with a target appearance.

2.3. Data Analysis

Manual slice by slice segmentation was performed by two radiologists with 15 years
of experience on MR liver images using an in-house program realized with Matlab R2007a
(MathWorks, Natick, USA). The segmentation was performed on each phase of VIBE T1-W
images. The metrics were obtained for each phase and then were calculated the median
values of both texture and morphological parameters. For patients with multiple liver
lesions, each metastasis was segmented: multiple nodules in the same patient range among
2-15 metastases (Table 1). Radiomics analysis were performed blinded to the clinical and
pathological data. Moreover, radiomics analysis were performed on baseline MR before
any chemotherapy treatment that patients have undergone. No registration techniques to
reduce movements artefacts were applied, however the use of median value of extracted
metrics on segmented volume of interest (VOI) allows to reduce the influence by artefacts.

2.3.1. Texture Features

We considered a features set including 48 texture features. Texture features were
obtained from VOIs manually segmented by CE-MRI for each time and then consid-
ering the median value among nine series. The texture metrics included both first or-
der features (mean, mode, median, standard deviation (std), median absolute devia-
tion (MAD), range, kurtosis, skewness, and the interquartile range (IQR)) and second
order features. For these letters was used the “Texture Toolbox” of MATLAB. The tex-
ture analysis package implements wavelet band-pass filtering, isotropic resampling, dis-
cretization length corrections and different quantization tools [14]. An exhaustive ex-
planation has been provided in Vallieres et al. [14]. The toolbox can be downloaded at
https:/ /it mathworks.com/matlabcentral / fileexchange /51948-radiomics. The package of
texture features is adherent to Image biomarker standardization initiative [15]. A detailed
description has been provided in the Supplementary File S1.


https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics
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2.3.2. Morphological Features

We considered a features set including 15 morphological features [16-18] calculated
using an in-house MATLAB script. A detailed description of the morphological features

has been provided in Table 3.

Table 3. Morphological parameters description and formula.

Features Description Formula
Radial lengths average quantification obtained measuring R 1 bror
Radial length average for each point on the ROI border the Euclidean distance “Ebror j=1
from the mass centroid bror the number of boundary voxels in the ROI
Radial length entropy Quantification of the entropy of radial length _ bRZOI P (P)); P, = R;
S il )T T e R
=1 j
V = nrordxdydz
Volume Quantification of the entire volume of segmented lesion ngop be the total number of voxel in region
dx dy d represent size of voxel
. R LYY bro1(x,y, ) vsizesliceg,
Surface Quantification of the surface of segmented lesion Xy z
Vsize 18 the voxel size, slicey, is the slice thickness
Vpn (effective diameter)
Circularity 3D evaluation of the lesion conformity to a sphere v v
effective diameter = 27/ ——
4m
2
Compactness Evaluation of the relationship between surface and volume s
\%
. Evaluation of the lesion volume respect to the smallest \Y
Rectangularity S
rectangular that would contain it vV
rec
. ) 4/ 1  yDkROI (r- _R )4 _/_1 kROl (r- _R )2
Roughness Quantification of the roughness of the lesion NROI Z:]':1 j avg nROI Ej:l j avg
Ravg
S ")
b eR,i€{0, ..., N-1}
D(b') =
-1 _ — i+l _ . —
Smoothness Calculation of the lesion contours irregularities I b — |- Il <l —; Il <l
¢ represents the center of mass of the lesion in two
dimensions and b' the points on the border of the
lesion
Irregularity Calculation of the surface roughness of the lesion _ Viph (effective diameter)
\
- . - . Ratio between the average radial length and the
Sphericity Evaluation of the Sphericity of the lesion standard deviation of the rays
R
Measure of the ratio between the minimum area with Ra Ve
i i sd
Convexity convex curvature that connects Fhe voxels to the edge with where Ry represents the standard deviation of the
respect to the original ROI area .
radial lengths
- Measure of the ratio of the larger rope and the largest = (lesion largest diameter)/(the largest diameter
Eccentricity i
among the orthogonal ropes orthogonal to the previous one)
. Estimation of how much the lesion is pronounced along s (!ength)/(v\'lldth) of the smallest rec.tan'gle
Elogation containing the lesion averaged per each slice in three

one direction than along the other

orthogonal directions

Note. ROI = region of interest.

2.4. Statistical Analysis

Statistical analysis includes both univariate and multivariate approaches performed

considering a per-patient analysis.
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2.4.1. Univariate Analysis

The calculation of inter-observer variability between two readers and the evaluation of
unstable features were performed. The assessment of observer variability was performed
by calculating the intraclass correlation coefficient [19].

For each metric, median, range or confident interval (CI) values were calculated on
segmented VOI. Receiver operating characteristic (ROC) analyses were obtained and the
optimal cut-off value for each feature was calculated using the Youden index. Area under
ROC curve (AUC), sensitivity (SEN), specificity (SPEC), positive predictive value (PPV),
negative predictive value (NPV) and accuracy (ACC) were calculated using the optimal
threshold identified with the Youden index. Non-parametric Wilcoxon-Mann-Whitney U
test for two-groups comparisons was used.

A p value < 0.05 was considered as significant. However, false discovery rate (FDR)
adjustment according to Benjamini and Hochberg [20] for multiple testing was considered.
The statistical analysis was performed using the Statistics Toolbox of Matlab R2007a.

2.4.2. Multivariate Analysis

Pattern recognition methods (linear discrimination analysis (LDA), support vector
machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision
tree (DT)) were considered to assess the diagnostic accuracy in a multivariate analysis [21].
The best model was chosen considering the highest area under ROC curve and highest
accuracy.

The analysis was made before and after a feature selection method. The least ab-
solute shrinkage and selection operator (LASSO) method was used to detect the robust
features [22]. A 10-fold cross-validation was used to select the optimal regularization
parameter alpha in the LASSO method, as the average of mean square error of each pa-
tient was the smallest. Considering the identified optimal alpha, only the features having
nonzero coefficient were reserved.

A 10-k fold cross validation approach was used to individuate the best classifier on
the training set; therefore, median and 95% confidence interval values of AUC, accuracy,
sensitivity and specificity were calculated. However, an external validation cohort was
used to validate the findings of the best classifier. Multivariate analysis was performed
using the statistics and Machine Learning Toolbox of Matlab R2007a.

3. Results
3.1. Univariate Analysis Findings

There were 17 stable features (identified as intraclass correlation coefficient value > 0.8)
were (14 texture features and three morphological ones): variance, contrast, dissimilarity,
short run emphasis (SRE), run-length nonuniformity (RLN), run percentage (RP), small
zone emphasis (SZE), zone-size non-uniformity (ZSN), zone percentage (ZP), small zone
low gray-level emphasis (SZLGE), gray-level variance (GLV), coarseness, entropy, strength,
circularity, compactness, convexity. The median value of intraclass correlation coefficients
for stable features was 0.9 (range 0.85-0.96). The size of the lesion did not affect the stable
metrics (p-value > 0.05 at the Wilcoxon-Mann-Whitney U test performed between the
groups obtained by dividing patients with lesions <2 cm and patients with lesions > 2cm).

Table 4 reports median and range values for the radiomic metrics that obtained signif-
icant results by Wilcoxon-Mann-Whitney U test to differentiate patients with and without
RAS mutation. Significant results were obtained for the following texture parameters: con-
trast, dissimilarity and entropy (Figure 2 and Table 5), also considering the FDR adjustment.
No morphological feature had significant results to differentiate patients with and without
RAS mutation.
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Table 4. Median and range values for the radiomic extracted metrics.

Patient Value CONTRAST DISSIMILARITY ENTROPY
Median 179.42 10.36 0.70
Without RAS mutation
_ Range 251.48 7.88 0.75
(minimum-maximum)
Median 231.71 11.72 0.90
With RAS mutation
_ Range 453.41 10.83 1.02
(minimum-maximum)
Median 212.26 10.93 0.75
Total
. Range 474.47 11.81 112
(minimum-maximum)
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Figure 2. Boxplot for texture features to detect RAS mutation.
Table 5. Diagnostic accuracy for the individuated significant features to detect RAS mutation.
Feature AUC (95% Confidence Interval) SEN SPEC PPV NPV  ACC CUT-OFF p Value
CONTRAST 0.69 (0.47-0.75) 0.71 0.63 0.69 0.65 0.67 192.86 0.00
DISSIMILARITY 0.69 (0.46-0.76) 0.36 1.00 1.00 0.57 0.65 13.30 0.00
ENTROPY 0.68 (0.42-0.72) 0.32 1.00 1.00 0.56 0.63 1.01 0.00

Note. AUC = are under curve; SEN = sensitivity; SPEC = specificity; PPV = positive predictive value; NPV = negative predictive value;
ACC = accuracy; p Value obtained by Wilcoxon-Mann-Whitney U test. In bold were reported the significant p values considering FDR

adjustment.

Figure 2 shows a boxplot for the significant texture features to detect RAS mutations.
Table 5 reports the diagnostic accuracy for the individuated significant texture features to
detect RAS mutation. Figure 3 shows the ROC curves for significant textual features to

detect RAS mutation.
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Figure 3. ROC curves for significant textual features to detect RAS mutation.

The results showed that using a univariate analysis was not possible to discriminate
accurately the RAS mutation status.

3.2. Multivariate Analysis Findings
3.2.1. Traing Set Results

The training set included 52 patients 28 with RAS mutation and 24 wild type. Consid-
ering stable texture and morphological metrics tested with pattern recognition approaches,
the best performance to detect RAS mutation was reached using a SVM with AUC of 0.79
(0.70-0.85 95% confidence interval (CI)), an accuracy of 76.1% (72-82% 95% CI) with 74.2%
(70-84% 95% CI) of sensitivity and 78.0% (75-89% 95% CI) of specificity.

Considering LASSO results, the robust features to use as predictors were contrast,
dissimilarity, RLN, RP, and entropy.

A KNN trained with these predictors achieved the best results with an AUC of 0.84
(0.8-0.91 95% CI), an accuracy of 76.9% (71-82% 95% CI) with 90.0% (85-99% 95% CI) of
sensitivity and 67.8% (60-75% 95% CI) of specificity (Figure 4).

3.2.2. External Validation Results

External validation cohort included 24 patients, 13 with RAS mutation and 11 wild
type. Considering all stable texture and morphological metrics, the SVM obtained an
accuracy of 79.2% with 83.3% of sensitivity and 75.0% of specificity (10 positive trues, nine
negative trues, three false positive and two false negative). Considering the robust features,
the KNN obtained an accuracy of 87.5% with 91.7% of sensitivity and 83.3% of specificity
(11 positive trues, 10 negative trues, two false positive and one false negative).
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Figure 4. ROC curve, confusion matrix and graphical view of the decision tree considering the robust features by LASSO

method to use as predictors.

4. Discussion

Literature data has reported the potential role of radiomics to realize personalized
medicine in different diseases such as cancer and to select more appropriate therapy
correlated to the different tumour subtype [18]. Literature data underlines the role of
RAS mutations as a strong prognostic and predictive biomarker in patients subjected to
hepatic resection for CRLM [19]. RAS mutations were strongly associated with worse
overall survival (OS) and recurrence-free survival (RFS) in patients with CRLM [23]. The
possibility to correlate radiomic parameters to RAS status offers notable advantages over
qualitative imaging assessment allowing one to tailor cancer therapy at the patient, to
predict response to treatment, to detect favorable subsets of patients from those with poor
prognosis and to select patients that may benefit of surgical treatment.

In this study we assessed radiomics derived data by contrast enhanced magnetic
resonance imaging in association with RAS mutation status in liver metastases, showing
significant results exclusively for texture parameters. At the best of our knowledge, this is
the first paper that evaluates the correlation between radiomics data and RAS mutations
in liver metastases using features extracted by contrast enhanced magnetic resonance
imaging.

However, using univariate analysis, the accuracy achieved was not satisfactory to
stratify RAS mutation status. Promising, instead, were in this study the results of multi-
variate analysis. In fact, considering a per-patient multivariate analysis and classification
approaches, a KNN exclusively with texture parameters as predictors achieved the best
results with an AUC of 0.84, an accuracy of 76.9% with 90.0% of sensitivity and 67.8% of
specificity on training set. The KNN method, on the test set, obtained an accuracy of 87.5%
with 91.7% of sensitivity and 83.3% of specificity on external validation cohort.

Several studies have assessed the role of radiomics parameters as a precision medicine
tool that may affect treatment strategies. Zhang et al. [24] assessed radiomics parameters
extracted by contrast enhanced MRI T1 weighted images and T2 weighted morphological
MR images as prognostic factors in patients with advanced nasopharyngeal carcinoma
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(NPC), showing a significant improvement over the TNM staging system in terms of
progression-free survival (PFS) evaluation. Cui et al. [25] assessed a radiomics model
of multiparametric MRI features and clinical features to predict a pathological complete
response (pCR) in patients with locally advanced rectal cancer (LARC) after neoadjuvant
chemo-radiotherapy (CRT), demonstrating that the radiomics model can predict pCR and
can select patients for a “wait-and-see” strategy. Although liver metastases are a leading
cause of colorectal cancer, the molecular genetic basis of the advanced disease stages
remains poorly understood. Whether the metastatic lesions are genetically homogeneous or
heterogeneous may determine the response to therapy [26-29]. Sung et al. [28] investigated
whether synchronously-occurring, multi-focal colon cancer liver metastases were of multi-
clonal origin by using genome-scale microarray analysis. They concluded that genetic
profiling of multiple liver metastases using genome scale profiling suggests that colon
cancer metastases are muti-clonal in origin.

The current study had some limits: the monocentric nature of the study; the small size
of the patient sample, the time consuming manual segmentation of lesions, that fact that in
this study we did not consider combining radiomics features with other clinical prognostic
factors that can be considered as a future end-point and the research is retrospective.
Therefore, further prospective multicenter analyses including more patients are needed to
validate the prognostic significance of these results.

5. Conclusions

Radiomics with texture parameters could add value to qualitative assessment of MR
studies and with better results compared to morphological metrics, providing individu-
alized evaluation of CRLM. Texture parameters derived by CE-MRI and combined using
multivariate analysis and patter recognition approaches could allow stratifying the patients
according to RAS mutation status.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2072-669
4/13/3/453/s1, Supplementary File S1: Definition of textural features.

Author Contributions: V.G. and R.F. wrote the main manuscript text and prepared figures. R.F.
performed the statistical analysis. V.G., R.F,, A.A,, AD.S., AO. CS., LB, Fl and A.P. performed
the investigations and reviewed the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding,.

Institutional Review Board Statement: All protocols are carried out in accordance with relevant
guidelines and regulations. National Cancer Institute of Naples Ethical Committee board accepted
this retrospective study.

Informed Consent Statement: Patient informed consent was renounced.
Data Availability Statement: The data presented in this study are available in the manuscript.

Acknowledgments: The authors are grateful to Alessandra Trocino, librarian at the National Cancer
Institute of Naples, Italy. Moreover, the authors are grateful to Antonio Daniele and Assunta Zazzaro
for the collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

1. Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; LaRue, RTH.M.; Even, AJ;
Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14,
749-762. [CrossRef] [PubMed]

2. Limkin, EJ; Sun, R,; Dercle, L.; Zacharaki, E.I; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C.
Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28,
1191-1206. [CrossRef] [PubMed]


https://www.mdpi.com/2072-6694/13/3/453/s1
https://www.mdpi.com/2072-6694/13/3/453/s1
http://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://doi.org/10.1093/annonc/mdx034
http://www.ncbi.nlm.nih.gov/pubmed/28168275

Cancers 2021, 13, 453 11 of 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Verma, V.; Simone, C.B.; Krishnan, S.; Lin, S.H.; Yang, J.; Hahn, S.M. The Rise of Radiomics and Implications for Oncologic
Man-agement. J. Natl. Cancer Inst. 2017, 109, djx055. [CrossRef] [PubMed]

Calin, G.A.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Rev. Cancer 2006, 6, 857-866. [CrossRef]

Campbell, PJ.; Yachida, S.; Mudie, L.J.; Stephens, P.J.; Pleasance, E.D.; Stebbings, L.A.; Morsberger, L.A.; Latimer, C.; McLaren, S.;
Lin, M.-L.; et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nat. Cell Biol. 2010, 467,
1109-1113. [CrossRef] [PubMed]

Verma, V.; Lautenschlaeger, T. MicroRNAs in non-small cell lung cancer inva- sion and metastasis: From the perspective of the
radiation oncologist. Expert Rev. Anticancer Ther. 2016, 16, 767-774. [CrossRef]

Shi, L.; He, Y;; Yuan, Z.; Benedict, S.; Valicenti, R.; Qiu, J.; Rong, Y. Radiomics for Response and Outcome Assessment for
Non-Small Cell Lung Cancer. Technol. Cancer Res. Treat. 2018, 17, 1533033818782788. [CrossRef]

Fujiyoshi, K.; Yamamoto, G.; Takahashi, A.; Arai, Y.; Yamada, M.; Kakuta, M.; Yamaguchi, K.; Akagi, Y.; Nishimura, Y,;
Sakamoto, H.; et al. High concordance rate of KRAS/BRAF mutations and MSI-H between primary colorectal cancer and
corresponding metastases. Oncol. Rep. 2016, 37, 785-792. [CrossRef]

Nakayama, I.; Shinozaki, E.; Matsushima, T.; Wakatsuki, T.; Ogura, M.; Ichimura, T.; Ozaka, M.; Takahari, D.; Suenaga, M.;
Chin, K,; et al. Retrospective study of RAS/PIK3CA /BRAF tumor mutations as predictors of response to first-line chemotherapy
with bevacizumab in metastatic colorectal cancer patients. BMC Cancer 2017, 17, 38. [CrossRef]

Peeters, M.; Kafatos, G.; Taylor, A.; Gastanaga, V.M.; Oliner, K.S.; Hechmati, G.; Terwey, ].H.; van Krieken, ].H. Prevalence of RAS
mu-tations and individual variation patterns among patients with metastatic colorectal cancer: A pooled analysis of randomised
controlled trials. Eur. J. Cancer 2015, 51, 1704-1713. [CrossRef]

Avallone, A.; Nasti, G.; Rosati, G.; Carlomagno, C.; Romano, C.; Bilancia, D.; De Stefano, A.; Ottaiano, A.; Cassata, A.; Bianco,
E; et al. Optimization of the combination of bevacizumab with FOLFOX/OXXEL in patients with metastatic colorectal cancer
(mCRC): The multicentre, randomized phase 3 study OBELICS. Ann. Oncol. 2017, 28, vi5. [CrossRef]

Granata, V.; Fusco, R.; Catalano, O.; Avallone, A.; Palaia, R.; Botti, G.; Tatangelo, F.; Granata, F.; Cascella, M.; Izzo, F,; et al. Diag-
nostic accuracy of magnetic resonance, computed tomography and contrast enhanced ultrasound in radiological multimo-dality
assessment of peribiliary liver metastases. PLoS ONE 2017, 12, e0179951. [CrossRef] [PubMed]

Granata, V.; Fusco, R.; Catalano, O.; Filice, S.; Amato, D.M.; Nasti, G.; Avallone, A.; Izzo, F; Petrillo, A. Early Assessment of
Colorectal Cancer Patients with Liver Metastases Treated with Antiangiogenic Drugs: The Role of Intravoxel Incoherent Motion
in Dif-fusion-Weighted Imaging. PLoS ONE 2015, 10, e0142876. [CrossRef] [PubMed]

Vallieres, M.; Freeman, C.R.; Skamene, S.; E1 Naqa, I. A radiomics model from joint FDG-PET and MRI texture features for the
prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 2015, 60, 5471-5496. [CrossRef]
Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328-338. [CrossRef] [PubMed]

Fusco, R.; Sansone, C.; Granata, V.; Di Bonito, M.; Avino, E; Catalano, O.; Botti, G.; Petrillo, A. Use of Quantitative Morphological
and Functional Features for Assessment of Axillary Lymph Node in Breast Dynamic Contrast-Enhanced Magnetic Resonance
Imaging. BioMed Res. Int. 2018, 2018, 1-8. [CrossRef]

Fusco, R.; Di Marzo, M.; Sansone, C.; Sansone, M.; Petrillo, A. Breast DCE-MRI: Lesion classification using dynamic and
morpho-logical features by means of a multiple classifier system. Eur. Radiol. Exp. 2017, 1, 10. [CrossRef]

Zhang, Y.; Oikonomou, A.; Wong, A.; Haider, M.A.; Khalvati, F. Radiomics-based Prognosis Analysis for Non-Small Cell Lung
Cancer. Sci. Rep. 2017, 7, srep46349. [CrossRef]

McGraw, K.O.; Wong, S.P. Forming Inferences About Some Intraclass Correlation Coefficients. Psychol. Methods 1996, 1, 30.
[CrossRef]

Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. B Methodol. 1995, 57, 289-300. [CrossRef]

Fusco, R.; Sansone, M.; Filice, S.; Carone, G.; Amato, D.M.; Sansone, C.; Petrillo, A. Pattern Recognition Approaches for Breast
Cancer DCE-MRI Classification: A Systematic Review. ]. Med. Biol. Eng. 2016, 36, 449-459. [CrossRef] [PubMed]

Tibshirani, R. The lasso Method for Variable Selection in the Cox Model. Stat. Med. 1997, 16, 385-395. [CrossRef]

Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Bagante, F.; Moris, D.; Cloyd, ].M.; Spartalis, E.; Pawlik, T.M. Clinical significance and
prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver
metastases: A systematic review of the current evidence. Surg. Oncol. 2018, 27, 280-288. [CrossRef] [PubMed]

Zhang, B; Tian, J.; Dong, D.; Gu, D.; Dong, Y.; Zhang, L.; Lian, Z; Liu, J.; Luo, X,; Pei, S.; et al. Radiomics Features of
Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2017, 23, 4259-4269.
[CrossRef]

Cui, Y;; Yang, X,; Shi, Z.; Yang, Z.; Du, X.; Zhao, Z.; Cheng, X. Radiomics analysis of multiparametric MRI for prediction of
patho-logical complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur. Radiol. 2019, 29,
1211-1220. [CrossRef]

Becker, A.; Schneider, M.A.; Wurnig, M.C.; Wagner, M.; Clavien, P.A.; Boss, A. Radiomics of liver MRI predict metastases in mice.
Eur. Radiol. Exp. 2018, 2, 1-10. [CrossRef]


http://doi.org/10.1093/jnci/djx055
http://www.ncbi.nlm.nih.gov/pubmed/28423406
http://doi.org/10.1038/nrc1997
http://doi.org/10.1038/nature09460
http://www.ncbi.nlm.nih.gov/pubmed/20981101
http://doi.org/10.1080/14737140.2016.1191950
http://doi.org/10.1177/1533033818782788
http://doi.org/10.3892/or.2016.5323
http://doi.org/10.1186/s12885-016-2994-6
http://doi.org/10.1016/j.ejca.2015.05.017
http://doi.org/10.1093/annonc/mdx422.007
http://doi.org/10.1371/journal.pone.0179951
http://www.ncbi.nlm.nih.gov/pubmed/28632786
http://doi.org/10.1371/journal.pone.0142876
http://www.ncbi.nlm.nih.gov/pubmed/26566221
http://doi.org/10.1088/0031-9155/60/14/5471
http://doi.org/10.1148/radiol.2020191145
http://www.ncbi.nlm.nih.gov/pubmed/32154773
http://doi.org/10.1155/2018/2610801
http://doi.org/10.1186/s41747-017-0007-4
http://doi.org/10.1038/srep46349
http://doi.org/10.1037/1082-989X.1.1.30
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1007/s40846-016-0163-7
http://www.ncbi.nlm.nih.gov/pubmed/27656117
http://doi.org/10.1002/(SICI)1097-0258(19970228)16:4&lt;385::AID-SIM380&gt;3.0.CO;2-3
http://doi.org/10.1016/j.suronc.2018.05.012
http://www.ncbi.nlm.nih.gov/pubmed/29937183
http://doi.org/10.1158/1078-0432.CCR-16-2910
http://doi.org/10.1007/s00330-018-5683-9
http://doi.org/10.1186/s41747-018-0044-7

Cancers 2021, 13, 453 12 of 12

27.  Renzulli, M,; Brocchi, S.; Cucchetti, A.; Mazzotti, F; Mosconi, C.; Sportoletti, C.; Brandi, G.; Pinna, A.D.; Golfieri, R. Can Current
Pre-operative Imaging Be Used to Detect Microvascular Invasion of Hepatocellular Carcinoma? Radiology 2016, 279, 432-442.
[CrossRef]

28. Sung,].C.; Boulware, D.; Eschrich, S.; Gonzalez, F,; Yeatman, T.].; Lee, H. Genetic heterogeneity of colorectal cancer liver metastase.
J. Surg. Res. 2003, 114, 251. [CrossRef]

29. Walter, D.; Harter, PN.; Battke, F.; Winkelmann, R.; Schneider, M.; Holzer, K.; Koch, C.; Bojunga, J.; Zeuzem, S.; Hansmann, M.L.;
et al. Genetic heterogeneity of primary lesion and metastasis in small intestine neuroendocrine tumors. Sci. Rep. 2018, 8, 3811.
[CrossRef]


http://doi.org/10.1148/radiol.2015150998
http://doi.org/10.1016/j.jss.2003.08.165
http://doi.org/10.1038/s41598-018-22115-0

	Introduction 
	Materials and Methods 
	Dataset Characteristics 
	MR Imaging Protocol 
	Data Analysis 
	Texture Features 
	Morphological Features 

	Statistical Analysis 
	Univariate Analysis 
	Multivariate Analysis 


	Results 
	Univariate Analysis Findings 
	Multivariate Analysis Findings 
	Traing Set Results 
	External Validation Results 


	Discussion 
	Conclusions 
	References

