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 v (nmol/(106cell volume·h)) 

Cell line SW480 SW620 LiM2 

 Amino acid Mean SD Mean SD Mean SD 

Alanine 17,39 2,9 24,64 0,59 24,86 0,88 

Glycine 7,31 2,56 6,54 1,99 6,32 2,76 

Serine -6,04 3,02 -15,31 0,55 -13,02 0,70 

Proline 2,72 0,18 5,00 0,36 5,18 0,37 

Arginine 3,42 5,63 -4,36 0,43 -2,57 1,35 

Asparagine 2,79 0,30 0,49 0,04 0,42 0,02 

Aspartate 1,24 0,24 0,48 0,03 0,55 0,04 

Glutamine -59,89 23,48 -86,01 5,35 -77,2 9,16 

Glutamate 9,13 1,10 8,76 0,97 5,64 0,78 

Methionine -0,92 0,88 0,53 0,44 -1,32 1,02 

Histidine -1,51 1,17 -0,03 0,13 -1,09 0,74 

Isoleucine -3,04 4,89 -0,08 2,05 -4,93 3,06 

Leucine -3,30 2,09 -2,63 1,62 -6,43 2,26 

Threonine -3,31 5,37 1,67 2,23 -1,14 3,41 

Tyrosine 4,03 1,11 1,49 0,77 -0,47 1,67 

Valine 5,80 2,91 2,99 3,08 -4,08 1,66 

Phenylalanine 1,30 1,05 0,82 0,25 -2,09 1,05 

Lysine 3,51 3,96 -0,07 0,47 -2,69 1,69 

Tryptophan 1,52 1,08 -0,08 0,06 -0,93 0,29 

Taurine -0,4606 0,0234 -0,2269 0,0053 -0,1621 0,0179 



 
 

 

Table S1. Amino acids uptake and production upon metastatic progression. Amino 

acids and other biogenic amines (in bold) uptake and production rates obtained by 

measuring the cell culture medium with an Absolute IDQ p180 kit (Biocrates Life 

Sciences AG) before and after 24 hours of incubation with DMEM 12.5 mM glucose and 

4 mM glutamine, 5% FBS and 1% S/P, normalised by cell volume for each cell line (in 

bold). Mean and standard deviation (SD) are represented (in bold). 

  

Spermidine 0,0012 0,0006 0,0004 0,0002 0,0148 0,0019 

Putrescine 0,0019 0,0003 0,0086 0,0011 0,0075 0,0001 



 
 

Gene symbols 
The predicted fraction of growth compared to wild type 

SW480 SW620 LiM2 

Single Targets 

MTHFD1 100.0% 0.0% 0.0% 

GSR 99.0% 0.0% 0.0% 

SCD 25.4% 0.0% 0.0% 

DLD 5.5% 0.0% 3.5% 

PKM 2.3% 0.0% 0.0% 

PRODH 0.0% 0.0% 0.0% 

GAPDH 0.0% 0.0% 0.0% 

GPT 0.0% 0.0% 0.0% 

RRM1 0.0% 0.0% 0.0% 

GUK1 0.0% 0.0% 0.0% 

Target pairs 

SLC7A9, SLC3A2 86% 0% 0% 

SLC3A1, SLC3A2 86% 0% 0% 

SLC7A9, SLC7A11 85% 0% 0% 

SLC7A11, SLC3A1 85% 0% 0% 

ETFA, GPI 49% 10% 9% 

ETFB, GPI 49% 10% 9% 

AGXT, GPI 49% 9% 8% 

GPI, GRHPR 49% 9% 8% 

CTH, GPI 42% 4% 7% 

DLST, GPI 40% 5% 7% 

GPI, OGDH 40% 5% 7% 



 
 

GPI, SUCLG1 35% 1% 1% 

G6PD, GPI 24% 2% 2% 

PGLS, GPI 24% 2% 2% 

FH, GPI 19% 2% 7% 

PPA2, GPI 18% 0% 0% 

GPI, PGD 16% 0% 0% 

GPI, SDHD 14% 0% 0% 

GPI, SDHC 14% 0% 0% 

GPI, SDHA 14% 0% 0% 

GPI, SDHB 14% 0% 0% 

GPI, UQCRH 12% 0% 0% 

UQCRQ, GPI 12% 0% 0% 

GPI, UQCRFS1 12% 0% 0% 

UQCR11, GPI 12% 0% 0% 

GPI, UQCR10 12% 0% 0% 

GPI, MT-CYB 12% 0% 0% 

CYC1, GPI 12% 0% 0% 

GPI, UQCRC1 12% 0% 0% 

GPI, UQCRB 12% 0% 0% 

GPI, UQCRC2 12% 0% 0% 

FH, PDHB 6% 8% 9% 

DLAT, FH 6% 8% 9% 

FH, ATP5J 0% 0% 0% 



 
 

MT-CO1, SDHA 0% 4% 0% 

COX4I1, SDHA 0% 4% 0% 

CYC1, ACOX1 0% 0% 0% 

SDHD, COX5A 0% 4% 0% 

NSF, SDHD 0% 0% 0% 

COX4I1, SDHD 0% 4% 0% 

COX7B2, SDHA 0% 4% 0% 

COX4I1, SDHC 0% 4% 0% 

COX7B, SDHC 0% 4% 0% 

ATP5B, SDHA 0% 0% 0% 

SDHC, COX4I2 0% 4% 0% 

COX6B2, SDHD 0% 4% 0% 

COX8A, ACOX1 0% 0% 0% 

ATP5C1, SDHA 0% 0% 0% 

GPI, SORD 0% 0% 0% 

MT-CYB, ACOX1 0% 0% 0% 

COX7B, GPI 0% 0% 0% 

MT-CO2, ACOX1 0% 0% 0% 

COX5B, SDHD 0% 4% 0% 

ATP5H, SDHC 0% 0% 0% 

COX7C, ACOX1 0% 0% 0% 

UQCRQ, ACOX1 0% 0% 0% 

ACOX1, UQCRH 0% 0% 0% 



 
 

GPI, COX8C 0% 0% 0% 

ATP5H, GPI 0% 0% 0% 

GPI, ATP5C1 0% 0% 0% 

ATP5L, SDHA 0% 0% 0% 

GPI, ATP5F1 0% 0% 0% 

COX7B, ACOX1 0% 0% 0% 

ATP5D, SDHB 0% 0% 0% 

GPI, ATP5D 0% 0% 0% 

SDHC, COX5A 0% 4% 0% 

ATP5E, SDHC 0% 0% 0% 

COX7A2, GPI 0% 0% 0% 

COX7B2, ACOX1 0% 0% 0% 

SDHA, ATP5J2 0% 0% 0% 

COX7A2, SDHB 0% 4% 0% 

COX7C, SDHC 0% 4% 0% 

COX6B1, SDHD 0% 4% 0% 

COX6B1, SDHB 0% 4% 0% 

COX6B2, SDHC 0% 4% 0% 

GPI, COX5A 0% 0% 0% 

COX7A2, ACOX1 0% 0% 0% 

GPI, ATP5A1 0% 0% 0% 

MT-CO2, SDHD 0% 4% 0% 

ATP5I, SDHC 0% 0% 0% 



 
 

GPI, MT-CO2 0% 0% 0% 

COX7A1, SDHD 0% 4% 0% 

FH, ATP5D 0% 0% 0% 

FH, ATP5C1 0% 0% 0% 

COX5B, SDHC 0% 4% 0% 

GPI, ATP5J 0% 0% 0% 

ACOX1, UQCRB 0% 0% 0% 

COX7B2, SDHD 0% 4% 0% 

COX6C, SDHB 0% 4% 0% 

SDHD, COX7A2L 0% 4% 0% 

SDHC, ATP5J2 0% 0% 0% 

ACOX1, UQCRC1 0% 0% 0% 

ATP5L, SDHB 0% 0% 0% 

ACOX1, UQCRC2 0% 0% 0% 

ATP5J, SDHC 0% 0% 0% 

ATP5E, SDHA 0% 0% 0% 

COX7A2, SDHC 0% 4% 0% 

COX6A1, SDHC 0% 4% 0% 

COX7C, SDHD 0% 4% 0% 

ATP5D, SDHD 0% 0% 0% 

COX6A1, GPI 0% 0% 0% 

COX7B, SDHA 0% 4% 0% 

COX6A2, GPI 0% 0% 0% 



 
 

ATP5A1, SDHD 0% 0% 0% 

GPI, NSF 0% 0% 0% 

ACOX1, COX7A2L 0% 0% 0% 

UQCR11, ACOX1 0% 0% 0% 

COX6A1, ACOX1 0% 0% 0% 

SDHB, COX4I2 0% 4% 0% 

COX8C, SDHC 0% 4% 0% 

ATP5H, SDHA 0% 0% 0% 

COX7A1, SDHC 0% 4% 0% 

ATP5I, SDHA 0% 0% 0% 

MT-CO2, SDHB 0% 4% 0% 

SDHC, COX7A2L 0% 4% 0% 

FH, ATP5I 0% 0% 0% 

COX7A1, GPI 0% 0% 0% 

ATP5D, SDHA 0% 0% 0% 

FH, ATP5F1 0% 0% 0% 

COX7B2, SDHB 0% 4% 0% 

MT-CO3, SDHC 0% 4% 0% 

ATP5F1, SDHC 0% 0% 0% 

 COX6A1, SDHA 0% 4% 0% 

COX6C, GPI 0% 0% 0% 

COX6C, ACOX1 0% 0% 0% 

NSF, SDHC 0% 0% 0% 



 
 

ATP5J, SDHA 0% 0% 0% 

COX8A, GPI 0% 0% 0% 

COX6A2, SDHC 0% 4% 0% 

ATP5F1, SDHA 0% 0% 0% 

COX6B1, SDHA 0% 4% 0% 

MT-CO1, SDHD 0% 4% 0% 

ATP5A1, SDHB 0% 0% 0% 

COX5B, GPI 0% 0% 0% 

MT-CO1, SDHB 0% 4% 0% 

ATP5C1, SDHD 0% 0% 0% 

FH, ATP5E 0% 0% 0% 

MT-CO2, SDHA 0% 4% 0% 

SDHA, COX5A 0% 4% 0% 

COX7A2, SDHD 0% 4% 0% 

COX8C, ACOX1 0% 0% 0% 

MT-CO3, SDHA 0% 4% 0% 

GPI, ATP5B 0% 0% 0% 

GPI, COX7A2L 0% 0% 0% 

NSF, SDHA 0% 0% 0% 

ATP5L, FH 0% 0% 0% 

MT-CO3, ACOX1 0% 0% 0% 

COX4I1, ACOX1 0% 0% 0% 

ATP5C1, SDHC 0% 0% 0% 



 
 

SDHA, COX7A2L 0% 4% 0% 

COX7B, SDHD 0% 4% 0% 

COX8A, SDHC 0% 4% 0% 

SDHD, ATP5J2 0% 0% 0% 

COX7A1, ACOX1 0% 0% 0% 

COX6B2, SDHA 0% 4% 0% 

COX7C, GPI 0% 0% 0% 

COX8C, SDHA 0% 4% 0% 

FH, ATP5B 0% 0% 0% 

ATP5H, SDHD 0% 0% 0% 

GPI, COX4I2 0% 0% 0% 

ATP5L, SDHD 0% 0% 0% 

ATP5H, SDHB 0% 0% 0% 

COX6C, SDHD 0% 4% 0% 

ACOX1, COX4I2 0% 0% 0% 

GPI, ATP5E 0% 0% 0% 

COX6A1, SDHD 0% 4% 0% 

COX6B2, ACOX1 0% 0% 0% 

ACOX1, COX5A 0% 0% 0% 

ATP5D, SDHC 0% 0% 0% 

GPI, ATP5J2 0% 0% 0% 

COX6B1, ACOX1 0% 0% 0% 

SDHB, COX7A2L 0% 4% 0% 



 
 

ATP5E, SDHB 0% 0% 0% 

COX7B, SDHB 0% 4% 0% 

COX7C, SDHB 0% 4% 0% 

COX6B1, SDHC 0% 4% 0% 

COX6A2, SDHA 0% 4% 0% 

ATP5B, SDHC 0% 0% 0% 

FH, ATP5J2 0% 0% 0% 

COX7A1, SDHA 0% 4% 0% 

ATP5I, SDHB 0% 0% 0% 

MT-CO2, SDHC 0% 4% 0% 

GPI, MT-CO1 0% 0% 0% 

FH, ATP5A1 0% 0% 0% 

COX5B, SDHB 0% 4% 0% 

GPI, ATP5I 0% 0% 0% 

ACOX1, UQCRFS1 0% 0% 0% 

COX7A2, SDHA 0% 4% 0% 

COX4I1, GPI 0% 0% 0% 

COX6C, SDHC 0% 4% 0% 

ATP5H, FH 0% 0% 0% 

SDHD, COX4I2 0% 4% 0% 

MT-CO3, SDHD 0% 4% 0% 

ATP5F1, SDHD 0% 0% 0% 

ATP5L, SDHC 0% 0% 0% 



 
 

SDHB, COX5A 0% 4% 0% 

ATP5J, SDHB 0% 0% 0% 

FH, NSF 0% 0% 0% 

COX6A1, SDHB 0% 4% 0% 

ATP5B, SDHD 0% 0% 0% 

UQCR10, ACOX1 0% 0% 0% 

COX5B, SDHA 0% 4% 0% 

ATP5A1, SDHA 0% 0% 0% 

COX8A, SDHA 0% 4% 0% 

COX5B, ACOX1 0% 0% 0% 

COX8C, SDHD 0% 4% 0% 

COX8C, SDHB 0% 4% 0% 

COX6A2, ACOX1 0% 0% 0% 

SDHB, ATP5J2 0% 0% 0% 

COX7A1, SDHB 0% 4% 0% 

COX6B2, SDHB 0% 4% 0% 

ATP5I, SDHD 0% 0% 0% 

ATP5C1, SDHB 0% 0% 0% 

COX6C, SDHA 0% 4% 0% 

COX7B2, SDHC 0% 4% 0% 

COX7B2, GPI 0% 0% 0% 

MT-CO3, SDHB 0% 4% 0% 

NSF, SDHB 0% 0% 0% 



 
 

COX4I1, SDHB 0% 4% 0% 

ATP5F1, SDHB 0% 0% 0% 

ATP5L, GPI 0% 0% 0% 

ATP5J, SDHD 0% 0% 0% 

COX7C, SDHA 0% 4% 0% 

ATP5E, SDHD 0% 0% 0% 

SDHA, COX4I2 0% 4% 0% 

COX6B1, GPI 0% 0% 0% 

COX6A2, SDHD 0% 4% 0% 

COX6A2, SDHB 0% 4% 0% 

ATP5B, SDHB 0% 0% 0% 

MT-CO1, SDHC 0% 4% 0% 

COX8A, SDHB 0% 4% 0% 

COX8A, SDHD 0% 4% 0% 

ATP5A1, SDHC 0% 0% 0% 

COX6B2, GPI 0% 0% 0% 

MT-CO1, ACOX1 0% 0% 0% 

GPI, MT-CO3 0% 0% 0% 

 

Table S2. Putative metabolic targets. List of the individual or targets pairs (in bold) 

identified in the model that can impair SW620 and LiM2 proliferation (cell lines in 

bold). 

  



 
 

 

Inhibitor 
IC50 values  

NCM460 SW480 SW620 LiM2 

Sulfasalazine (μM) 518 ± 43a 534 ± 58a 429 ± 66b 415 ± 56b 

Erastin (μM) 1.35 ± 0.32a 1.00 ± 0.05b 0.86 ± 0.27c 0.52 ± 0.13d 

2-AAPA (μM) 175 ± 76a 61 ± 38b 28 ± 10c 20 ± 2c 

LY345899 (μM) 191.1 ± 9.9a 178.3 ± 45.3b 57.5 ± 9.2c 58.1 ± 12.7c 

SHIN2 (μM) 55.9 ± 5.7a 19.8 ± 3.5b 19.7 ± 3.3b 20.8 ± 4.2b 

Methotrexate (nM) 72.8 ± 5.2a 14.9 ± 2.5b 10.9 ± 3.4c 9.7 ± 2.3c 

 

Table S3. IC50 values for the tested inhibitors. List of tested inhibitors (in bold) and the 

IC50 values for NCM460, SW480, SW620 and LiM2 cell lines (in bold). The IC50 curves 

were performed assessing cell proliferation by staining DNA with HO33342 under 

various concentrations of the inhibitors. Sulfasalazine and erastin are specific inhibitor 

of system xCT, 2-AAPA is an specific inhibitor of GSR (glutathione reductase), LY345899 

is an specific inhibitor of MTHFD1/2 (methylenetetrahydrofolate dehydrogenase, 

cyclohydrolase and formyltetrahydrofolate synthetase 1/2), SHIN2 is an specific 

inhibitor of SHMT1/2 (serine hydroxymethyltransferase 1/2), methotrexate is an 

inhibitor of DHFR (dihydrofolate reductase). a,b,c,d A one-way ANOVA and Scheffe’s test 

for multiple comparisons was performed for the factor “cell line”. 

  



 
 

 

Cell line CI values [Erastin] + [2-AAPA] 

Dose (μM) 0.125 + 5 0.25 + 10 0.38 + 15 0.88 + 35 

NCM460 1.43 1.17 1.46 1.56 

SW480 0.91 0.81 0.36 1.24 

SW620 1.21 1.36 1.24 0.06 

LiM2 1.28 2.56 0.56 0.52 

Cell line CI values [Erastin] + [LY345899] 

Dose (μM) 0.25 + 10 0.5 + 20 1.25 + 50 1.88 + 75 

NCM460 1.21 1.42 1.07 1.14 

SW480 1.18 1.93 1.46 1.27 

SW620 1.35 1.19 0.43 0.31 

LiM2 1.41 0.63 0.45 0.22 



 
 

Table S4. Combination index values for the tested combinations. List of the combination 

index (CI) values calculated with CompuSyn, Inc, software (Chou-Talalay’s CI method) 

of the following combinations (in bold): Erastin + 2AAPA at 120h, adding 2AAPA after 

72h of Erastin treatment alone, erastin + LY345899 at 72h,. Combinations were tested in 

cell lines (in bold) NCM460, SW480, SW620 and LiM2. Erastin is an specific inhibitor of 

system xCT, 2-AAPA is an specific inhibitor of GSR (glutathione reductase), LY345899 

is an specific inhibitor of MTHFD1/2 (methylenetetrahydrofolate dehydrogenase, 

cyclohydrolase and formyltetrahydrofolate synthetase 1/2). CI<1, CI=1 and CI>1 

indicates synergy, additive effect and antagonism, respectively. 

  



 
 

Isobaric species Most probable 
acyl chains  

SW480 

 (nmol/mg prot) 

SW620 

(nmol/mg prot) 

LiM2 

(nmol/mg prot) 

PC aa C34:1 C16:0 + C18:1 207.886 345.588 293.647 

PC aa C34:2 C16:1 + C18:1 56.178 90.967 79.069 

PC aa C36:1 C:18 + C18:1 30.288 44.433 40.421 

PC aa C36:2 C18:1 + C18:1 97.877 168.484 145.409 

 

Table S5. Levels of the most abundant phosphatidylcholines (PC AA) and the most 

probable acyl chain for each of the most abundant phosphatidylcholines. PC AA were 

obtained by measuring the intracellular content by an Absolute IDQ p180 kit (Biocrates 

Life Sciences AG) after incubation with DMEM 12.5 mM Glc and 4 mM Gln, 5% FBS and 

1% S/P, normalized by protein content for each cell line (in bold). 

  



 
 

Acyl chain SW480 SW620 LiM2 

C16:0 30.5% 30.3% 29.9% 

C16:1 14.3% 13.8% 13.6% 

C18:0 3.0% 2.9% 3.1% 

C18:1 52.2% 53.0% 53.4% 

 

Table S6. Predicted relative abundance of each acyl chain in each cell line. These 

abundances were inferred from the relative abundance of phosphatidylcholines (Table 

S5) and used to define the acyl-CoA requirements for biomass synthesis in each cell line.  

 

 

  



 
 

Supplementary Figures 
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Figure S1. Characterisation of the metastatic phenotype. Related to Figure 1. (a) Average

doubling time from multiple growth curves. (b) P-AKT / AKT ratio from the experiment in

Figure 1b. (c) MYC protein level quantification normalised by TATA box protein levels. (d)

Protein content measured by BCA assay related to cell number. (e) P-mTOR / mTOR ratio from

the experiment in Fig. 1B normalised by TATA box protein levels. (f) Images of the cells at

maximum confluence with contrast-phase microscope (40X). (g) Wound healing assay images

with contrast-phase microscope (40X). (h) Protein level quantification from the experiment in Fig.

1G normalised by TATA box protein levels. (i) Protein level quantification from the experiment

in Fig. 1H normalised by TATA box protein levels. a,b,c A one-way ANOVA was performed for

the factor “cell line”, and Scheffe’s test was used for multiple comparisons. Groups sharing the

same letter do not show a significant difference with α=0.05.
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Figure S2.Metabolic changes under metastatic progression. Related to Figure 2. (a) P-PDH / PDH

ratio from the experiment in Fig. 2D. (b) GLS and GLUD1 protein level western blotting

quantification normalised by TATA box protein levels. (c) Oxygen Consumption Rate (OCR)

values at a baseline condition of 12.5 mM glucose and 4 mM glutamine. (d) Oxygen Consumption

Rate (OCR) after glucose titration under a baseline of 4 mM glutamine or (e) after glutamine

titration under a baseline of 3 mM glucose or (f) after palmitate titration with a baseline of 3 mM

glucose. (g) Mito fuel assay for glucose, glutamine (h) and palmitate (i) for each cell line.

Percentage of oxygen consumption rate (OCR) with respect to basal OCR in c. All parameters were

assessed with the injections of 2 μM UK5099, 3 μM BPTES and 4 μM etomoxir. a,b,cA one-way

ANOVA was performed for the factor “cell line” except for the panel M, which was “condition”,

and Scheffe’s test was used for multiple comparisons. Groups sharing the same letter do not show

a significant difference with α=0.05.
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Figure S3. Metabolic changes under metastatic progression, intracellular metabolites

measurement. Related to Figure 2. Heatmap for intracellular content of amino acid, biogenic

amines, and acyl-carnitines, obtained by the Absolute IDQ p180 kit (Biocrates Life Sciences AG)

after 24 h incubation with DMEM 12.5 mM Glc and 4 mM Gln, 5% FBS and 1% S/P. Metabolite

concentrations were normalised by protein concentration, mean-centred and scaled. Hierarchical

clustering for samples and features was performed using the Ward algorithm and using

Euclidian distance as a measure of similarity. ANOVA was used to determine statistically

significant features, and Fisher’s least significant difference method was used to evaluate

statistically significant differences (a: SW480-SW620, b: SW480-LiM1, c: SW480-LiM2, d: SW620-

LiM1, e: SW620- LiM2, f:LiM1 – LiM2, g: NCM460-SW480, h: NCM460-SW620). Cx:y denotes an

acylcarnitine carrying fatty acids with x carbons and y unsaturations.
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Figure S4. The metabolic adaptation of the metastatic cell lines observed in vitro is maintained in

an in vivo scenario. Related to Figure 3. (a) Haematoxylin and eosin staining of paraffin-

embedded tissues (tumour, liver, lung, spleen) (40X). (b) Quantification of immunohistochemical

staining using ImageJ software from the images in Figure 3B. (c) P-PDH / PDH ratio from the

experiment in Figure 3c. 1 – 14 are extracts from different mice that were injected with SW480 (1-

4), SW620 (5-10) or LiM2 (11-14). a,b,c A one-way ANOVA was performed for the factor “cell line”

in case of panel b, and “mouse” in case of panel c, and Scheffe’s test was used for multiple

comparisons. Groups sharing the same letter do not show a significant difference with α=0.05.
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Figure S5. Fluxes relative to biomass production. Related to Figure 4. Fluxes through HEX1

(hexokinase), LDH-L (lactate dehydrogenase), PDH (pyruvate dehydrogenase), CS (citrate

synthase) and GLS (glutaminase) relative to the flux of the biomass reaction. The biomass

reaction represents the demand of building blocks, ATP and reductive power for growth and

proliferation and it’s flux is proportional to the experimentally determined growth rate. a,b,c

denote cell lines with an overlap of the sampled relative flux values for a given reaction.
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Figure S6. Metastatic cells are dependent on cystine uptake and vulnerable to system xCT and

glutathione reductase inhibition. Related to Figure 5. (a) Spheroid formation assay for NCM460,

SW480, SW620 and LiM2 cell lines. Images of contrast-phase microscope (40X) and quantification

of spheroid area using ImageJ software from scanned images. (b) Percentage of early apoptotic

cells measured by flow cytometry using Annexin V-PI under a concentration of 0.5 μM of erastin

or control conditions after 72h incubation. (c) Spheroid formation assay adding the inhibitors

erastin (0.5 μM) and 2-AAPA (40 μM) for one week. Images of contrast-phase microscope (40X)

and quantification of spheroid area using ImageJ software from scanned images.* Student’s t test

for erastin or 2-AAPA vs control conditions, p<0.05. (d) Percentage of early apoptotic cells

measured by flow cytometry using Annexin V-PI under a concentration 40 μM of 2-AAPA or

control conditions after 72h incubation. (e) Cell proliferation measured by DNA content using

HO33342 under control conditions (Ctrl), under 2-AAPA treatments and adding N-acetylcysteine

to 2-AAPA treatments (-CYS+NAC). (f) – (i) IC50 curve for erastin alone (120h), 2-AAPA alone

(120h) and the combination of both inhibitors (erastin 72h and erastin+2AAPA until 120h) for (f)

NCM460, (g) SW480, (h) SW620 and (i) LiM2 assessed by cell proliferation measured by DNA

content using HO33342. * Student’s t test for “2-AAPA 20 μM + NAC 0.8 mM” vs “2-AAPA 20

μM” conditions, p<0.05. a,b,c,d A one-way ANOVA was performed for the factor “cell line”, and

Scheffe’s test was used for multiple comparisons. Groups sharing the same letter do not show a

significant difference with α=0.05.
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Figure S7. The metastatic cell lines are dependent on the cytosolic branch of folate metabolism.

Related to Figure 6. (a) Percentage of early apoptotic cells measured by flow cytometry using

Annexin V-PI under a concentration of 50 μM of LY345899 or control conditions after 72h

incubation. (b) and (c) Spheroid formation assay adding the inhibitors LY345899 (50 μM) and

SHIN2 (40 μM) for one week. (b) Images of contrast-phase microscope (40X) and (c) quantification

of spheroid area using ImageJ software from scanner images. * Student’s t test for LY345899 or

SHIN2 vs control conditions, p<0.05. (d) Cell viability curve of the DHFR inhibitor methotrexate

measured by DNA content using HO33342 after 72h incubation. (e) Percentage of apoptotic cells

measured by flow cytometry using Annexin V-PI under a concentration of 0.2 μM of methotrexate

or control conditions after 72h incubation. (f) and (g) Spheroid formation assay adding the

inhibitor methotrexate (0.2 μM) for one week. (f) Images of contrast-phase microscope (40X) and

(g) quantification of spheroid area using ImageJ software from scanner images. * Student’s t test

for methotrexate vs control conditions, p<0.05. a,b,c A one-way ANOVA was performed for the

factor “cell line”, and Scheffe’s test was used for multiple comparisons. Groups sharing the same

letter do not show a significant difference with α=0.05. (h) Predicted flux values for different

reactions of cytosolic and mitochondrial folate metabolism relative to the flux through the

biomass reaction. a,b,c denote cell lines with an overlap of the sampled flux values for a given

reaction.
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Figure S8. Integrating known gene dependencies using MCS analysis. Reactions catalysed by

genes described as essential can be assumed to be part of a MCS where the other reactions are

already inactive. In this example, because R3 is catalysed by a gene described as essential, R2 and

R4 can be assumed to be inactive.



 
 

Supplementary Methods 

Western blotting 

Equal amounts of protein extracts were separated by SDS-PAGE gel (10%) and transferred 
to polyvinylidene fluoride transfer membranes. Membranes were blocked with 5% non-fat milk 
in PBS-0.1% Tween 20 and incubated with a specific primary antibody followed by an incubation 
with the appropriate Horse radish peroxidase (HRP)-labelled secondary antibody. HRP activity 
was assessed with Immobilon ECL Western Blotting Detection Kit Reagent and detected by 
exposition with photographic film. Antibodies used in the study included rabbit anti-E-cadherin 
(ab1416, Abcam, UK) diluted at 1:1000, mouse anti-N-cadherin (610920 BD Transductions 
Laboratories, USA) diluted at 1:1000, mouse anti-vimentin (MS-129, Thermo Fisher Scientific, 
USA) diluted at 1:1000, rabbit anti-ZEB2 (AV33694, Sigma-Aldrich, USA) diluted at 1:1000, rabbit 
anti-Twist ½ (GTX127310, Genetex, USA) diluted at 1:1000, rabbit anti-SNAI1 (GTX125918, 
Genetex, USA) diluted at 1:1000, rabbit anti-NF-κB (sc-103, Santa Cruz Biotechnology, USA) 
diluted at 1:2000, rabbit anti-AKT (9272S, Cell Signalling Technology) diluted at 1:500, rabbit anti-
P-AKT (9271, Cell Signaling Technology, USA) diluted at 1:1000, rabbit anti-cMyc (Y69) (ab32072, 
Abcam, UK) diluted at 1:10000, mouse anti-PDH (sub E1) (ab110330, Abcam, UK) diluted at 
1:1000, rabbit anti-P-PDH (sub E1-A) (S293) (ABS204, Merck Millipore, USA) diluted at 1:10000, 
rabbit anti-PC (ab126707, Abcam, UK) diluted at 1:10000), rabbit anti-GLUD1 (ab166618, Abcam, 
UK) diluted at 1:1000, rabbit anti-GLS (ab93434, Abcam, UK) diluted at 1:1000 and rabbit anti-
TATA (TBS) (ab63766, Abcam, UK) diluted at 1:1000. The TATA antibody was used as a loading 
control. Secondary antibodies included Anti-Mouse (GR304350-1, Abcam, UK) diluted at 1:20000 
and Anti-Rabbit (GR297013-4, Abcam, UK) diluted at 1:20000 and Anti-Goat (sc-2020, Santa Cruz 
Biotechnology, USA) diluted at 1:10000.  

Immunohistochemistry 

After fixation in 4% paraformaldehyde the tissues were paraffin-embedded and slides were 
obtained. Then, deparaffination was achieved by washes with xylene and decreasing ethanol 
concentrations until rehydration of the slides. Then, antigen unmasking was performed in 95-
100ºC bath for 20 minutes with high pH retrieval solution (from Dako kit EnVision dual Link 
System-HRP DAB+ K4065, Agilent Technologies, USA). Then, the slides were blocked with the 
Dual Endogenous Enzyme Block solution from the kit, washed with the wash buffer from the kit 
and incubated O/N at 4ºC in a humidified chamber with the corresponding antibodies (rabbit 
anti-GLS (ab93434, Abcam, UK) diluted at 1:100 with antibody diluent solution, rabbit anti-E-
cadherin (GTX629691, Genetex, USA) diluted at 1:500, rabbit anti-Vimentin (GTX629744, Genetex, 
USA) diluted at 1:500). After washing, the slides were incubated with the labelled polymer (-
HRP) from the kit and antibody binding was stained by the DAB+ chromogen solution. The slides 
were dehydrated and mounted with Dako Mounting Medium CS703. 

Spectrophotometric measurements 

Determination of glucose was performed using the Hexokinase and D-glucose-6-phosphate 
Dehydrogenase reactions (ABX Pentra Glucose HK CP, Horiba ABX, Japan) and NADPH release 
was measured at 340 nm in a COBAS Mira Plus spectrophotometer (Horiba ABX, Japan). Lactate 
was measured using Lactate Dehydrogenase at 87.7 U/mL, 1.55 mg/mL NAD+ in 0.2 M hydrazine, 
12 mM EDTA pH 9 buffer and NADH release was measured at 340nm. Glutamate was quantified 
by glutamate dehydrogenase at 39 U/mL, 2.41 mM ADP, 3.9 mM NAD+ in 0.5 M hydrazine, 0.5 
M glycine pH 9 buffer and NADH release was measured at 340 nm. Glutamine was measured 
indirectly by first transforming it to glutamate by glutaminase in 125 mM acetate pH 5 buffer for 
30 minutes at 37ºC and then performing the same reaction as for glutamate concentration 
determination. 



 
 

OCR measurements, Mito Stress and Mito Fuel Assays 

Plating technique involved 100 µL seeding of cell suspension and 100 µL extra addition of 
medium 3 hours later once cells had attached to the surface. After overnight growth, medium 
was replaced with Seahorse medium (buffer-free DMEM supplemented with glucose, glutamine 
and antibiotics). The plates were equilibrated in a 37ºC-incubator without CO2 for 60 minutes. 
The cartridge with the sensors was hydrated with calibration solution (Seahorse Bioscience, USA) 
overnight at 37ºC and loaded into the Seahorse Analyser at least 30 minutes before starting the 
experiment to calibrate the sensors. For glucose, glutamine and fatty acids Mito-Fuel Assay, 
baseline conditions were used (12.5 mM glucose, 4 mM glutamine and 1% streptomycin and 
penicillin). The capacity, dependency and flexibility for each substrate were assessed with the 
injections of 2 µM UK5099 (inhibitor of pyruvate carrier) 3 µM BPTES (inhibitor of glutaminase) 
and 4 µM etomoxir (inhibitor of CPT1A). 

Targeted metabolomics 

For the quantification of intracellular metabolites, 5 x 106 cells in 100 mm plates (SW480, 
SW620 and LiM2 cell lines) were trypsinised and centrifuged at 500g for 5 minutes and 
metabolites were extracted from cell pellets. Pellet was resuspended in 70 µL of 85:15 EtOH:PBS 
buffer and sonicated 3 times for 5 seconds each, then submerged in liquid nitrogen for 30 seconds 
and thawed at 95ºC. Then, it was centrifuged 20,000 g, 5 minutes at 4ºC, supernatant was 
collected, and protein content was measured. For the determination of metabolites uptake and 
production, metabolites were extracted from cell media taken from the beginning and the end of 
a 24 h incubation in exponential growth and high confluence conditions and cell number was 
determined. Both extracts from pellets and media were plated in the Biocrates plate together with 
the calibration standards, and derivatised to be ready for UHPLC-MS reading (for amino acids 
and biogenic amines) and FIA-MS/MS (for lipids, sugars and acylcarnitines) according to the 
manufacturer’s instructions. A total of 21 amino acids, 19 biogenic amines, 90 
glycerophospholipids, 15 sphingolipids, 40 acylcarnitines and hexose sugars were analysed.  

Stable-isotope resolved metabolomics in vitro 

For polar intracellular metabolites analysis, the cells were washed with ice-cold PBS and 
scrapped with 1:1 metanol:water (adding first 1 mL of methanol, waiting for 1 minute and adding 
1 mL of milliQ water afterwards). Then, the samples were sonicated (3 cycles of 5 seconds) and 2 
mL of cold chloroform were added. After gentle shaking (30 minutes at 4ºC) the samples were 
centrifuged (20000 g, 15 minutes at 4ºC) and supernatant was completely dried under air flow. 
The extracted metabolites were derivatised by adding 50 µL of 2% methoxamine hydrochloride 
in pyridine for 90 minutes at 37ºC and (N-methyl-N-tert-butyldimethylsilyl) trifluoroacetamide 
+ 1% tertbutyldimethylchlorosilate) for 60 minutes at 55ºC before GC-MS analysis (Agilent 7890A 
gas chromatograph coupled to a Agilent 5975C mass spectrometer, Agilent Technologies, Santa 
Clara, CA, USA) using electron impact mode. 

For intracellular ribose analysis, RNA was isolated from cell pellets using Trizol reagent, 
mixing it with chloroform. The aqueous phase was obtained, and cold isopropanol was added 
and centrifuged at 12000 g, 15 minutes at 4ºC. The samples were washed several times using cold 
75% ethanol and isolated RNA was quantified using a Nanodrop spectrophotometer (ND 1000 
V3.1.0, Thermo Fisher Scientific). The samples of purified RNA were hydrolysed in 2 mL of 2 M 
HCl at 100ºC for 2 hours, dried under air flow and derivatised using 100 µL of 2% hydroxylamine 
hydrochloride in pyridine at 100ºC for 30 minutes and 75 µL of acetic anhydride at 100ºC for 1 
hour. Then, samples were dried under N2 flow and resuspended in ethyl acetate before GC-MS 
analysis using chemical ionisation mode. 

For extracellular glucose analysis, glucose from cell culture media was isolated using 
Dowex-1X8/Dowex-50WX8 ion-exchange columns and samples were dried under air flow. 



 
 

Purified glucose was derivatised by incubation with 100 µL of 2% hydroxylamine hydrochloride 
in pyridine at 100ºC for 30 minutes and 75 µL of acetic anhydride at 100ºC for 1 hour. Then, 
samples were dried under N2 flow and resuspended in ethyl acetate before GC-MS analysis using 
chemical ionisation mode. 

For extracellular lactate analysis, lactate from cell culture media was isolated adding HCl 
and 1 mL of ethyl acetate previous to air flow drying. Derivatisation was performed by incubation 
with 200 µL of 2,2-dimethoxypropane and 50 µL of 0.5 N methanolic HCl at 75ºC for 1 hour and 
then adding 60 µL of n-propylamine at 100ºC for 1 additional hour. After drying under N2 flow, 
samples were filtered using glass wool through a Pasteur pipette and dried again under N2 flow. 
Then, samples were resuspended and incubated with 200 µL of dichloromethane and 15 µL of 
heptafluorobutyric anhydride at room temperature for 10 minutes, dried under N2 and 
resuspended under ethyl acetate before GC-MS analysis under chemical ionisation mode.  

Isotopologue (mass isotopomer) fractions for each metabolite were measured from raw data 
using MSD5975C Data Analysis (Agilent Technologies), integrating peak areas and then 
correcting for natural heavy isotope enrichment using the Midcor software package [1]. 

Stable-isotope resolved metabolomics in vivo 

Metabolites were extracted from 10 mg of dry tissue with methanol:chloroform 1:2. First, 600 
µL of cold methanol containing 5 nmols of scyllo-inositol, 10 nmols of N-norleucine and 1.5 nmols 
of 15N13C-valine were added as internal standards. Then, 1200 µL of chloroform was added and 
after extensive vortexing, the tubes were sonicated (3 times, 8 minutes, 4ºC) and centrifugated (20 
minutes, 4ºC, 20000g). The supernatant was dried in speed-vacuum machine and 500 µL of 
methanol:water was added to the pellet for a second extraction following the same steps as before, 
adding it to the first dried supernatant and drying it as well. Separation of polar and apolar phase 
was performed by addition of 3:3:1 methanol:water:chloroform (150:150:50 µL) and vortexing 
and centrifugating (30 minutes, 4ºC , 20000g). The extracted metabolites in the polar phase were 
derivatised by adding 50 µL of 2% methoxamine hydrochloride in pyridine for 90 minutes at 37ºC 
and (N-methyl-N-tert-butyldimethylsilyl) trifluoroacetamide + 1% 
tertbutyldimethylchlorosilate) for 60 minutes at 55ºC before GC-MS analysis (Agilent 7890A gas 
chromatograph coupled to a Agilent 7890A mass spectrometer, Agilent Technologies, Santa 
Clara, CA, USA) using electron impact mode. 

Statistical analyses 

All experiments were performed at least in triplicates and repeated two or more times. 
Statistical analyses of experimental measures were performed using the Agricolae package for R. 
More in detail, for comparisons that are between the cell lines (SW480 – SW620 – LiM2) we used 
a one-way ANOVA for the factor “cell line”, and Scheffe’s test for multiple comparisons. Groups 
that are indicated with the same letter are not significantly different (p>0.05). For comparisons 
between two conditions (e.g., before and after drug administration), we used Student’s t test with 
p<0.05, and we used asterisks to indicate significant differences. We used the Shapiro-Wilk test 
to assess normal distribution of the experimental data and Dixon’s Q-test to identify outliers and 
Levene’s test to test homogeneity of variances. Differential gene expression between cell lines in 
the batch corrected gene expression data was determined using the Linear Models for Microarray 
Data (limma) package for R, defining “cell line” as a factor [2]. Targeted intracellular 
metabolomics data was analysed using the Metaboanlyst web server [3]. Concentrations were 
normalised by protein and transformed into a Log2 scale. Significant features were determined 
using a one-way (ANOVA) with a cut-off of 0.05 false discovery rate (FDR). This was followed 
by a post-hoc analyses using Fisher's least significant difference method (Fisher's LSD) to identify 
potential significant differences between cell line pairs. To build a heatmap, metabolite 
concentrations were mean-centred and scaled; Hierarchical clustering for samples and features 
was performed using the Ward algorithm and Euclidian distance as measure of similarity. The 



 
 

Combination Index for drug combinations, was computed with the CompuSyn software 
(ComboSyn, Inc., USA) as described by Chou and Talalay [4]. With that software, CI<1, CI=1 and 
CI>1 indicates synergy, additive effect and antagonism, respectively. 

Multiomics data integration 

Integrating extracellular flux measurements 

Measures of extracellular metabolite concentrations (measured either through 
spectrophotometric methods or targeted metabolomics) were used to compute the rate of 
metabolite uptake or secretion normalised by cellular volume using the following equation [5]: 

 
 𝑣!!" =

!#"!$
##"#$

· 𝜇 · $
%&'

       (1) 

Where,  
𝑣!!" is the estimated rate at which the metabolite M is produced/consumed per cell volume 
(µmol·h-1·(µl cell volume)-1) 
𝑀$ and 𝑀( are metabolite abundances (µmol) measured at time points t1 and t0, respectively;  
𝜇 is the growth rate (h-1) 
𝑁$ and 𝑁( are the cell numbers measured at time points t1 and t0, respectively.  
𝑣𝑜𝑙 is the cellular volume per cell (µl·cell-1).  
Exchange reactions in the cell line specific metabolic models were constrained to the 99.5% 
confidence intervals for 𝑣!!" of the corresponding metabolites.  

Integrating OCR measurements, Mito Stress and Mito Fuel Assays  

Seahorse measurements were integrated to cell line specific metabolic models to constraint 
the oxidative metabolism. Firstly, OCR measurements were used to constrain the rate of oxygen 
consumption in the cell line specific models. Next, the percentage of OCR associated with ATP 
synthase, measured in the Mito Stress Assay, was used to constrain the flux through ATP 
synthase. Finally, from the Mito Fuel Assay, the dependency and capacity for fatty acid oxidation 
were used to define the lower and upper bound, respectively, for the transport of palmitate into 
the mitochondria. 

Integrating intracellular amino acid and biogenic amines measurements 

Metabolomics measured in the cellular pellet were integrated with the proliferation rate to 
account for the dilution associated with proliferation. This was represented by adding a sink 
reaction to measured metabolites that represented the requirements of metabolite synthesis to 
maintain the concentrations of such metabolite in steady state[6].  

 
 𝑣!%&'( = [𝑀] · 𝑝 · 𝜇     (2) 

                                                     
Where:  
[𝑀] is the concentration of metabolite M (µmol/mg prot)  
𝑝 is the protein per cellular volume (mg prot/µl cell volume) 
𝜇: is the proliferation rate in h-1 

𝑣!%&'( is the estimated flux through the sink reaction 
 
To account for uncertainty, the 99.5% confidence intervals for 𝑣!%&'( were used as flux boundaries 
in the model.  

Using lipidomic measurements to personalise the biomass function 



 
 

Across the analysed conditions, the most abundant phospholipids were the 
phosphatidylcholines (PC aa) PC aa C34:1, PC aa C34:2, PC aa C36:1 and PC aa C36:2 (Table S5). 
Such species represent isomeric phosphatidylcholines C x:y where x is the total carbon number 
of both chains and y is the total number of unsaturations. The relative abundance of such species 
in each cell line was used to customise the biomass function in each cell line specific model. 

Due to the large number of potential fatty acid chain combinations, Recon 2 [7] does not 
simulate individual phospholipid species. Instead, it simulates the fatty acid chains in 
phospholipids through an artificial “Rtotalcoa” metabolite that is synthesised from a combination 
of acyls-CoA with stoichiometric coefficients representing the relative abundance of each fatty 
acid chain in phospholipids.  

The most abundant fatty acids in mammals are reported to be oleic (C18:1), palmitate (C16:0), 
stearic acid (18:0) and palmitoleic (16:1), in that order [8] (Table S5). Hence, we assumed that the 
side chains of the phosphatidylcholines primarily consisted of such fatty acids and their relative 
abundance was used as coefficients for “Rtotalcoa” synthesis (Table S6).  

It is worth noting, that even if other combinations of acyl-CoA can give rise to the measured 
isobaric phosphatidylcholines, the metabolic cost (i.e., NADPH, ATP and Acetyl-CoA) of 
producing any given phosphatidylcholine will depend primarily on the total length of the fatty 
acid chains and the number of unsaturations. Hence, the assumption that oleic, palmitate, stearic 
acid and palmitoleic, are the components of “Rtotalcoa” it is a valid approximation. 

Integrating growth rates 

The proliferation rates for each cell line were integrated to reflect the different proliferation 
rates of the cell lines of study. First maximum biomass production in SW620(𝑣)*&+,--./01( ) was 
computed using flux balance analysis (FBA) [9]. Then the biomass production of the remaining 
cell lines was set as follows:  

𝑣)*&+,--23''	'*53 = 𝑣)*&+,--./01( · 6
)!**	*&'!	
6,-./$            (3) 

𝑣)*&+,--23''	'*53  was then set as the upper bound for the biomass reaction allowing the models to 
accurately reflect the different growth rates of the different cell lines.  

13C MFA and GSMM integration  

The central metabolism flux maps consistent with the measured 13C propagation and the 
measured rates of uptake and secretion for glucose, lactate and amino acids, and respiration data 
were computed in the framework of 13C MFA [10].  

13C MFA was performed in a metabolic network of central carbon metabolism built from 
Recon2 [7]. The network comprised 347 reactions including, glycolysis, TCA cycle, pentose 
phosphate pathway, energy and redox metabolism and the main pathways of amino acid 
metabolism and biomass components synthesis.  

Using the software INCA (isotopomer network compartmental analysis) [11], 95% 
confidence intervals for flux values were computed for all reactions in the network. Such 
confidence intervals were added as flux boundaries in the cell line specific GSMMs. While most 
reactions could be directly mapped, some reactions that were defined as single reactions in the 
13C MFA network were defined as multiple reactions in Recon 2 (e.g., a reaction that can occur in 
multiple compartments or a reaction that can take either NAD or NAPD as a cofactor). In such 
instances, the 13C MFA confidence intervals were used to constraint the summation of the flux 
through the equivalent reactions in Recon 2. 

Transcriptomics 

Transcriptomics data were obtained from the gene expression omnibus repository [12]. Data 
was taken from GSE1323 (SW480-SW620) [13] and GSE33350 (SW620-LIM1-LIM2) [14]. Batch 
effect was corrected using the sva package for R[15].  



 
 

Transcriptomics were mapped to reactions using the gene protein reaction rules (GPR) 
defined in Recon 2 [7]. In detail, first OR operators were replaced by “MAX()” operators and 
AND operators by “MIN()” in the GPR expressions. Then, GPR expressions for each reaction 
were evaluated, replacing gene IDs by their respective transcript abundances. Under such a 
system, a reaction catalysed by multiple isoenzymes will be mapped to the transcript abundance 
of the most expressed isoenzymes, while reactions catalysed by protein complexes will be 
mapped to the leas abundant transcript of the complex’s components 

Minimal cut set analysis 

From the project DRIVE database, the list of essential metabolic genes in SW480 and SW620 
was obtained [16]. A gene was considered essential if it’s Redundant siRNA Activity (RSA)[17] 
score was equal or lower than -2. Conversely, a gene was defined as dispensable (i.e., not 
essential) if it had an RSA score larger or equal than -1.  

Minimal cut set (MCS) analysis [18,19] was performed to identify the MCSs containing the 
essential genes identified in Project DRIVE. MCS are minimal sets of genes or reactions whose 
simultaneous removal directly blocks a metabolic task, biomass production in this case. MCS 
analysis was run in Recon 2 [7] assuming an extracellular metabolite availability in the media 
defined from the composition of DMEM. Furthermore, blocked reactions were removed and 
reactions that could only be part of linear pathways were grouped. MCS analysis was set to seek 
8 MCS containing each Project DRIVE essential gene and all reactions were evaluated as possible 
gene set candidates. As reported by Apaolaza et al. [18], in some instances, the MCS algorithm 
can fail to reach optimality and provide a gene set, that although it contains MCS, is not minimal. 
When this occurred, we used FASTL[20] to identify the MCS within the returned set.  

It can be assumed that if a gene metabolic function is essential in a given cell line, then this 
gene will be part of an MCS where the other MCS members have low activity. To integrate this 
information the following workflow was used for each cell line: 
• Rank essential genes based on their RSA score (low to high)  
• For each essential gene in the ranked list:  

o Rank each MCS containing the gene of interest based on the total gene expression evidence of 
the reactions in the set, excluding reactions associated with the gene of interest. This is 
achieved by mapping transcriptomics to reactions using the GPR rules defined in Recon 2 
and adding the gene expression value associated with each reaction in the MCS. MCS with 
more than 8 reactions, not counting reactions associated with the gene of interest, were 
excluded. 

o For each MCS in the ranked list:  
§ Implement the MCS. Force the reactions in the set to be inactive, excluding the 

reactions associated with the essential gene. Following the definition of MCS, the 
gene of interest is now an essential gene.  

§ Use flux variability analysis [21] to evaluate if the MCS is consistent with: 
• Intracellular metabolomics (i.e., all detected metabolites can be produced). 
• All measured rates of uptake and secretion and OCR measurements. 
• 13C MFA flux intervals. 

§ Systematically simulate the effect of gene KO for all metabolic genes defined as 
dispensable in Project DRIVE using FBA. Compute the number of false positives 
(dispensable genes in Project DRIVE that are predicted as essential by the model). 

§ If implementing the MCS a) increases the number of false positives or b) is 
inconsistent with metabolomics, flux measurements or 13C MFA:  

• Revert the MCS implementation.  
• Continue with the next MCS in the ranked list.  

§ Else:  
• Continue to the next essential gene.  



 
 

For LiM2, we implemented the MCSs 1) shared between SW480 and SW620 and 2) the MCSs 
in SW620 where none of the genes associated with the reactions in the MCS were significantly 
overexpressed in LiM2. 

In total, 8 ,7 and 6 MCSs were implemented into SW480, SW620 and LiM2, respectively.  

Gene Inactivation Moderated by Metabolism, and Expression (GIMME) 

GIMME[22,23] was used to integrate transcriptomics together with the aforementioned data 
sets (e.g., extracellular fluxes, metabolomics, 13C MFA and MCS) to build cell line specific 
genome-scale flux maps. GIMME optimises biomass production and then performs a second 
optimisation where fluxes through reactions are minimised with a weight that is a function of the 
gene expression value mapped to each reaction. In our analysis, the minimisation weight (wi) of 
each reaction was defined as follows:  

𝑤* = 1 + 𝑔𝑒+,7 − 𝑔𝑒*         (4) 
where, 
𝑔𝑒* is the gene expression value mapped to reaction i following the GPR rules defined in Recon2.  
𝑔𝑒+,7 is the maximum gene expression value in the set of all metabolic genes. 

 
For each cell line, GIMME was run in a condition-specific GSMM obtained by implementing 

MCS, growth rates, the personalised biomass function, metabolomics, respiration parameters, 
rates of metabolite uptake and secretion, 13C MFA in Recon2 as detailed in the previous sections. 
From the optimal GIMME solution, any inactive reaction with a mapped gene expression value 
under the 25th percentile of metabolic genes expression was removed. This allows pruning 
reactions catalysed by lowly expressed enzymes from the network. Next, Following the GIM3E 
approach [23], each flux was maximised and minimised to identify the ranges of feasible fluxes 
within the optimal GIMME solution with a tolerance of 0.1%. This space of solution represents 
the space of most likely flux distributions in the conditions of study. 

Finally, GIMME was also run with 10% tolerance in a model integrating cell line specific 
MCS and biomass function but no other cell lines specific measurements such as 13C MFA or 
metabolomics. Rather than representing the flux map under the conditions of study, the purpose 
of this model is to represent the metabolic potential of each cell line. Thus, in such model, the flux 
boundaries for each reaction were modified to always include 0 (i.e., no reaction is forced to be 
active). These models, that we termed “base model”, serve as a framework to simulate gene KO 
with MOMA [24].  

Flux sampling and reference flux distribution selection 

From the GIMME algorithm, a space of solutions was identified for each cell line. However, 
such space was still relatively wide and a strategy to select the most representative and accurate 
flux distributions from such space was applied: 

1. Compute 1000 flux samples from within the GIMME solution space. Flux samples were 
computed using the Artificially Centered hit-and-run (ACHR) algorithm implemented 
into COBRApy [25,26]. ACHR was run with a thinning factor of 10000. The thinning 
factor defines the number of iterations between each returned sample and a large 
thinning factor reduces the correlation between samples resulting in a more 
representative set of samples.  

2. Using each flux sample as a wild type flux distribution, systematically simulate the KO 
with MOMA[27] of all metabolic genes analysed in Project DRIVE. Such simulations were 
run in the cell line specific base model. 

3. Use the following equation to give a discrepancy score to each flux sample based on how 
well they encapsulate available gene essentiality/dispensability data:  

  𝑆8 = ∑ 𝑚𝑎𝑥(2 + 𝑅𝑆𝐴* 	,0) · ?1 −
9*&+,--:;&
9*&+,---0

@*	∈=>?@A 		   (5) 



 
 

Where:  
𝑆8 is the discrepancy score for flux sample j 
𝑅𝑆𝐴* is the RSA score for gene i (RSA scores have negative values and more 
negative values indicate more dependency on a gene’s function). For LiM2, the 
DRIVE RSA measurements for SW620 were used as it was the most closely related 
cell line. 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝐾𝑂* 	is the flux through the biomass reaction when the KO of gene i is 
simulated with MOMA [27] using flux sample j as input. 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠/B is the flux through the biomass reaction in the wild type (i.e., with no 
reaction inactivated). 

4. Select the top 100 flux samples with the least discrepancy score. The average of such flux 
samples will be used as reference flux distribution for the cell line of study. 

Such an approach primarily serves to reduce the number of false positives (i.e., genes 
predicted as essential by the model and described as dispensable in DRIVE) that might emerge 
from unrepresentative flux distributions.  
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