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Simple Summary: Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent cancer
affecting children in developed societies. Here, we review the role of diet in control of the incidence
and progression of childhood ALL. Prenatally, ALL risk is associated with higher birthweights of
newborns, suggesting that ALL begins to evolve in-utero. Indeed, maternal diet influences the fetal
genome and immune development. Postnatally, breastfeeding associates with decreased risk of ALL
development. Finally, for the ALL-affected child, certain dietary regimens that impact the hormonal
environment may impede disease progression. Improved understanding of the dietary regulation
of hormones and immunity may inform better approaches to predict, protect, and ultimately save
children afflicted with pediatric leukemia.

Abstract: Pediatric leukemias are the most prevalent cancers affecting children in developed societies,
with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is
a likely modulator of many diseases, this review focuses on the potential for diet to influence the
incidence and progression of childhood ALL. In particular, the potential effect of diets on genome
stability and immunity during the prenatal and postnatal stages of early childhood development are
discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn,
and thus may influence fetal genome stability and immune system development. Indeed, higher
birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology
may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both
nourishes the infant, and provides essential components that strengthen and educate the developing
immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For
children already suffering from ALL, certain dietary regimens have been proposed. These regimens,
which have been validated in both animals and humans, alter the internal hormonal environment.
Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that
is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.

Keywords: diet; pediatric leukemia; genome; immune response

1. Introduction

Diet and nutrition are the most critical determinants of human cancer risk [1]. In
1981, a landmark report estimated that one-third of cancers are attributable to diet [2].
Since that time, many investigations have linked improper nutrition with the process
of tumorigenesis, including epidemiology observations, clinical trials, animal research,
molecular mechanism studies, and genetic and epigenetic research [3–5]. Unsurprisingly,
these associations also exist in childhood tissues.

Pediatric leukemias are blood cancers arising in children that involve the abnormal
development of leukocytes, which then excessively accumulate in the bone marrow and
blood and cause a host of pathologies. The most common leukemias in children are
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acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic
leukemia (CLL), and chronic myeloid leukemia (CML). The incidence for each of these
diseases is quite low, but pediatric ALL is by far the most prevalent, making up approx-
imately 75% of all childhood leukemia patients [6]. Indeed, pediatric ALL is a leading
cause of non-accidental deaths among children in developed countries [7]. Fortunately,
patients suffering from pediatric leukemia have high cure rates. However, the incidence
of the disease has been consistently increasing, and it is proposed that a combination
of prenatal and postnatal factors contribute to this increasing risk [8]. This review will
discuss the associations between diet and nutrition with childhood leukemia risk and
prognosis, the maintenance of genome stability, the generation of immune responses, and
the management or surveillance of preleukemic and leukemic clones.

2. Associations between Nutrition and the Development of Childhood Leukemia

Some childhood cancers have embryonic or pre-natal origins. In B-cell acute lym-
phoblastic leukemia (B-ALL), for example, pre-cancerous embryonic cells exist prenatally,
and their survival and ability to initiate tumorigenesis depend on genetic events and acqui-
sition of mutational load [9]. Primitive fetal hematopoiesis begins in the yolk sac, followed
by definitive hematopoiesis (fetal and adult lineages) in the aorta-gonad-mesonephros
region [10], before localizing to the fetal liver prenatally and bone marrow postnatally [11].
The first oncogenic event leading to partial transformation in-utero is proposed to occur as
development progresses through these stages [11]. Transformation and cell susceptibility
are attributed to developmental errors, cell-intrinsic factors, and cell-extrinsic factors in
the environment, including maternal regulation of fetal development [11]. The fetus is
affected by subtle changes in maternal nutrition with effects that carry over to adult life.
Thus, maternal health is crucial to fetal development and the regulation of developmental
origins of disease and disease predisposition [12].

The connections between diet and disease are extremely complex, and variations in
study designs and research subjects may explain conflicting associations. However, some
dietary associations with risk of developing childhood leukemia are now well-defined,
including a balanced maternal diet. Regular consumption of vegetables and fruits/fruit
juices by mothers during pregnancy [13,14] and by children up to the age of two, could
reduce the risk of leukemia development between 2 and 14 years of age [15]. In a study
on the Han Chinese population, a diet rich in bean curds and vegetables was protective,
whereas cured/smoked meat was associated with increased risk [16]. A similar increase in
risk was associated with a maternal diet rich in sugars, syrups, and meats, and a decreased
risk with consumption of vegetables, fruits, legumes, and seafood [13,17,18]. Surprisingly,
these associations can be made with diet quality up to a year before pregnancy. That is,
an overall healthy diet in women prior to pregnancy could lower the risk of leukemia in
offspring; there is a stronger association with children diagnosed before the age of five [19].

Folate supplementation and low maternal intake of alcohol and caffeine are also asso-
ciated with lower risk for childhood leukemia. Adequate folic acid and other micronutrient
supplementation during pregnancy is associated with lower risk of childhood leukemia,
over various populations and backgrounds, possibly through epigenetic modifications that
drive oncogenesis [17,20,21]. Conversely, maternal alcohol intake both during and prior to
pregnancy can increase the risk of childhood leukemia, and the risk increases even further
with increased frequency of alcohol intake [22,23]. A comprehensive analysis that com-
bined reports from multiple case studies reported a potential adverse effect of consuming
more than a cup of coffee a day in a dose response manner during pregnancy [24]. Previous
meta-analysis of over 3500 cases, observed a correlation between childhood leukemia and
high coffee and any cola consumption in pregnant mothers, and inversely, a protective
effect of tea consumption [25]. No such associations with tea consumption were made in
the more recent analysis [24]. Although the analysis did not go into specifics of causation, it
alluded to probable mechanisms from previous studies—caffeine has been known to cause
inhibition of ATM kinase [26], tumor suppressor p53 [27], and DNA topoisomerase II [28],
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all of which play roles in leukemia [24]. Topoisomerase II inhibition through maternal
dietary sources in close to 100 mothers was significantly associated with increased AML
risk in infants with a mixed lineage leukemia (MLL) gene translocation [29]. Although the
associations with alcohol, caffeine, and smoking are most frequently observed in childhood
ALL, they are also seen in other types of childhood leukemia, lymphoma, Wilms’ tumor,
and brain cancer with transplacental exposures to these factors [30].

Breastfeeding has been promoted for its protective health benefits, access, and low-cost
impact. Multiple studies measured childhood leukemia outcome in response to breastfeed-
ing exposure, summarized in a meta-analysis by Amitay and Keinan-Boker [31]. Using
stringent selection criteria to narrow down on high quality studies, 17 different case studies
conducted between 1960 and 2014 were analyzed. Breastfeeding for more than 6 months
was found to be protective and decreased risk of leukemia by 20%, and breastfeeding ever
compared to no breastfeeding at all was enough to lower risk by 9% [31]. Breastmilk is rich
in maternal antibodies, maternal cells (breast-derived early-stage stem/progenitor cells
and blood-derived immune and hematopoietic cells), anti-inflammatory molecules, and
enzymes [32]. Maternal cells and signaling molecules in breastmilk have been found to
survive long term in the offspring, enabling them to reach various organs and tissues and
imparting immunity and a healthy gut microbiome to infants, thereby offering protection
against diseases. Breastmilk constituents are known to modulate immune regulation,
tolerance, tissue-repair, and overall infant development [32,33]. Thus, it would be fair to
hypothesize that breastmilk also impacts disease susceptibility, especially in a disease of
the immune system, such as leukemia. Indeed, a recent metabolomics analysis on neonatal
blood spots found that patients that went on to develop early (ages 1–5) and late (ages 6–14)
leukemia, had distinct metabolomic profiles [34]. The study revealed that the presence
of certain fatty acids, several of which were related to breastmilk, breastfeeding duration
(reduced risk), and maternal body mass index (BMI) (increased risk), could influence risk
of early and late leukemia incidence [34].

It is also worth considering environmental exposures to chemicals indirectly through
food consumption or packaging, such as pesticides, solvents, and other pollutants [35].
A meta-analysis by Heindel et.al. [36] summarizes 425 epidemiological studies between
1988 to 2014 that report disease outcomes correlated with exposure to environmental pollu-
tants. The most common exposures were to industrial chemical polychlorinated biphenyls,
organochlorine pesticides, mercury, and lead [36]. Health outcomes of neurological deficits
and cancer were among the highest. Interestingly, most of the reported exposures occur
in-utero and/or during early development. Fetal exposure to chemicals has been linked to
leukemia diagnosis outcomes in infancy and childhood [36]. While associations with ma-
ternal exposures are more frequently reported, there is also an association between paternal
occupational exposure to pesticides and other industrial solvents to increased childhood
cancer risk [37]. In addition to chemical exposures, exposure to low dose radiation has
potential long-term health effects. Nuclear workers exposed to low dose radiation over a
long period of time, children exposed to natural background radiation in-utero and infancy,
and those exposed to medical imaging technology, all point to some degree of association
with increased cancer incidence [38–40]. In fact, leukemia was the most frequently reported
cancer among the survivors of the atomic bomb, with a much higher risk in children under
the age of 10 [41]. This is not surprising, given that bone marrow is highly sensitive to
ionizing radiation, which then causes damage to hematopoietic stem cells [42]. Finally,
other environmental cues such as stress can also induce epigenetic modifications in-utero
that are responsible for development of adult health defects and disease [43].

Adult and childhood cancers are frequently characterized as genetic diseases. While
the connection between genetic mutations and cancer is unquestionable, it is equally clear
that the expression and consequences of harmful or pathogenic mutations can exist on a
continuum that can be modified and overseen by the tumor or tissue microenvironment.
Additionally, while genetic mutations may be heritable and hard-wired, the tumor or tissue
microenvironment is likely to be more pliable and responsive to exogenous factors, such as
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diet and nutrition. It is, therefore, worthwhile to closely examine the impact of nutrition on
childhood leukemia development (Figure 1) and prognosis.
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3. Nutrition and the Prognosis or Treatment of Childhood Leukemia

Inadequate nutrition, often due to socio-economic forces, can increase predisposition
to diseases, and/or reduce survival in pediatric cancer patients. For example, malnour-
ished patients at diagnosis had poor prognosis and overall survival rates to treatment,
which worsened with time [44]. In a 2017 study in Nicaragua, about 70% of patients of
ages 6 months to 18 years were malnourished with increased treatment-related morbidity
and reduced event-free survival [45]. In addition, malnutrition reduced patient immunity
and increased susceptibility to infections, thereby affecting treatment response and mor-
tality [46]. Not only is malnutrition a poor prognostic factor for leukemia, but it is also a
common side-effect in pediatric patients undergoing cancer treatment. Treatment-induced
malnutrition can differ among pediatric patients, with some patients suffering malnutrition
during treatment, but a few patients are at a higher risk of gaining weight [47]. While mal-
nutrition is often observed in children living in low-income and middle-income countries,
obesity is prevalent in high-income countries; both malnutrition and obesity are associated
with poor prognosis [48].

Obesity and being overweight are among the five global risks for increased cancer
incidence in the world [49]. Patient diet and nutrient intake seem to vary significantly over
the course of cancer treatment, leading to changes in BMI and potentially leading to an obe-
sogenic effect [50]. In fact, fetal embryo cord blood from obese mothers had different gene
expression profiles, including changes in immune and inflammatory signaling, compared
to controls [51]. In a population of about 5000 ALL patients between the ages of 2 and
20, obesity before treatment was identified to associate with high risk B-ALL, in Hispanic
and male populations more than others [52]. These associations also hold in some animal
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models of ALL. For instance, obese mouse models of ALL displayed increased levels of
insulin, leptin, and inflammatory cytokines, leading to increased oxidative stress [53].

Overnutrition or undernutrition, in addition to already varied diets among patients,
can cause large fluctuations in BMI and thus in drug response [50]. It is therefore critical to
develop specific nutritional plans and interventions that address toxic effects and identify
essential supplementation during treatment. The European Society for Clinical Nutrition
and Metabolism and the Spanish Society of Medical Oncology guidelines are two examples
of nutrition recommendations developed for cancer patients. These include pre-treatment
screenings; strategies for nutrition and physical activity, specialized for treatment type and
stage of disease; and finally, recommendations for cancer survivors who are at higher risk
for additional health conditions, especially obesity and relapse after treatment [54–56].

Nutrient supplementation may improve treatment outcomes for childhood leukemia.
For example, glutamine supplementation was performed in ALL patients with low to
moderate disease undergoing chemotherapy over four weeks [57]. Physical, biochemi-
cal, and immunological indicators were observed, and the addition of glutamine to diet
improved nutritional status and reduced edema in the treatment group [57]. The overall
amounts of T-cell subsets and natural killer cells significantly decreased after chemother-
apy, and glutamine-fed patients had improved numbers, pointing to improved immune
function [57]. Along the same lines but in an acute leukemia mouse model, two strains
of lactobacillus were supplemented in diet to enhance immunity [58]. The mouse model
showed loss of gut microbiome components, and reintroduction of lactobacillus reduced
inflammatory cytokine production and muscle atrophy markers. However, this effect was
not seen when supplemented with other strains of lactobacillus [58].

Retrospective analysis of dietary intake has also revealed associations between diet and
treatment outcomes. In a dietary intake study that evaluated over 500 patients undergoing
treatment, bacterial infections were found to be reduced in patients who consumed more
B-carotene and vitamin A through diet [59]. Additionally, vitamins A and E, and zinc from
dietary sources and B-carotene supplementation reduced the incidence of mucositis. Inter-
estingly, patients on supplements below dietary recommended intakes had increased rates
of bacterial infections and mucositis during post-induction treatment [59]. Another study
observed vitamin D deficiencies associated with decreased survival and poor outcome in
childhood leukemia patients in India, most of whom were deficient before treatment and
some after chemotherapy [60]. Mortality during treatment induction, commonly related to
infections, was high in vitamin D-deficient patients [60]. A limited small-scale study of less
than 25 patients showed increased cellular oxidative stress associated with high protein
consumption [61]. Correspondingly, a low protein diet in mouse models of lymphoma was
able to slow tumor growth [62]. However, the majority of studies still point to benefits of
proteins from good sources, such as legumes and vegetables as mentioned earlier, because
childhood leukemia treatments often lead to protein malnutrition.

Proper nutrition impacts how a patient responds to treatment and should be factored
in when formulating a treatment and long-term follow-up plan. In the near term, it is
important to perform comprehensive screenings, and closely monitor and modify food
intake of patients throughout treatment. Nutrient supplementation, for example, may
modulate responses and lower treatment associated morbidities. It is clear that diet and
nutrition have the potential to positively impact leukemia patients’ outcomes.

4. Micronutrients and Macronutrients Control Genome Stability

Foodstuffs are composed of both micronutrients and macronutrients. Micronutrients
are vital in the normal functioning of life, with many acting as substrates or cofactors for
enzymes responsible for genome maintenance and repair. Moderate deficiency results in
genomic damage equivalent to damage caused by exposure to sizeable doses of genotoxins,
such as chemical carcinogens and radiation [63]. At the cellular level, micronutrient ex-
cesses or deficiencies may lead to micronuclei formation, DNA oxidation and chromosome
damage, and loss of DNA transcription fidelity, and are likely significant contributors to
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transformation [64–66]. It is prudent to highlight a few specific examples. Iron deficiency
is the most common micronutrient deficiency in children worldwide. Daily iron supple-
mentation, up to two-fold of the dietary recommended intake, can prevent micronuclei
formation and enhance genome stability [67]. Iron has been recognized as an essential
component of fundamental cell cycle progression [68]. Iron status variation can influence
DNA metabolism functions by affecting multiple enzymes required for DNA synthesis and
repair [68,69]. A recent study showed that human family B DNA polymerases required
iron as a cofactor to maintain the enzyme’s function and stability to influence the fidelity of
DNA synthesis [70]. However, overload of iron has also been linked to genome instability
and increased cancer risk [71]. Excessive iron compounds can induce genotoxicity by
increasing the mutagenic response in mouse lymphoma assays. Overdose of iron has
been reported to induce double strand breaks in mouse models [72]. Thus, it is essential
to elucidate the appropriate dosage of iron supplement to improve health and nutrition
balance without the toxic effects.

Calcium, another essential mineral for life, is necessary for multiple biological func-
tions, including building healthy bones, muscles, and nerves, and maintaining the fun-
damental cell progressions [73]. However, exposure to high calcium concentration may
induce genome instability. In an Australian study, hypercalcemia has been related to the
formation of shorter telomeres [74]. Hypercalcemia can also increase chromosomal damage
and is linked to the incidence of childhood leukemia [75]; moreover, high plasma calcium
was positively correlated with micronuclei formation in a cross-sectional study involving
462 children [76]. Similar results are reported for high intakes of magnesium and zinc and
micronucleus frequency [77]. Zinc, an essential component of over 300 enzymes [78], is
critical to the control of cellular growth and genome stability [79,80]. An in vitro study
found that zinc deficiency or excess was tightly related to increased DNA damage and chro-
mosome instability in human lymphocytes [81]. Micronuclei frequency and apoptotic and
necrotic percentages were significantly increased in zinc deficient and zinc-oversupplied
cultures [81]. Excesses in aluminum or copper can also prompt the accumulation of DNA
damage [82,83]. However, another study by Fenech et al. [84] found that supplementing
with vitamin E, calcium, folate, retinol, and nicotinic acid was associated in each case with
a significant decrease in genomic damage, as indicated by reduced micronuclei frequency;
this study also correlated an increase in micronuclei formation with high intakes of certain
micronutrients, including riboflavin, pantothenic acid, and biotin. Thus, micronutrient
intake is an essential requirement for the maintenance of genome stability and must be
carefully regulated and controlled.

Macronutrients include dietary protein, fat, and carbohydrates, and all are indis-
pensable in the regulation of normal physiology. Dietary protein provides amino acids,
some of which the body cannot produce on its own, as a foundation upon which all other
protein molecules in the body are formed. Soybeans are a critical dietary protein source in
many countries. Dietary soy protein can decrease circulating insulin levels and prevent
insulin-induced DNA damage [85]. Conversely, excessive protein intake, like a high casein
diet, may induce DNA damage, which can be abolished by dietary-resistant starch [86]. In
pediatric leukemia patients, protein consumption is thought to alter intracellular oxidative
stress, and as a consequence, influence chemotherapeutic efficacy [61].

Dietary fat provides glycerides and fatty acids that are important for regulating energy
storage and body temperature. Dietary fat is mainly derived from animal fats and plant
fats, consisting predominantly of saturated fats and unsaturated fats, respectively [87].
In an in vitro study that treated human aortic endothelial cells with omega-3 fatty acid,
researchers found supplementation with polyunsaturated omega-3 fatty acids can attenuate
oxidative stress-induced DNA damage, including abasic sites, oxidized bases, and strands
breaks [88]. Conversely, a high fat diet may result in DNA damage by increasing hydrogen
peroxide, superoxide production, and expression of oxidative stress response genes [89,90].
In a recent prospective cohort study, children born to mothers with high BMIs were at high
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risk of developing leukemia [91]. A similar association of increased leukemia in overweight
mothers was found in a retrospective case-control study in California [92].

Nutrition status is likely to intersect the balance between genome stability and pe-
diatric leukemia initiation, progression, and treatment. These complex interconnections
are being dissected through emerging nutrigenomics analyses, which aim to decipher
nutrient–gene–cancer networks. Briefly, Table 1 outlines recent nutrigenomic studies in the
field of pediatric leukemia.
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Table 1. Overview of recent nutrigenomic studies in the field of pediatric leukemia.

Author Objective Methods Results

Timms et al., 2019 [93]
Investigate the potential mediating
mechanism between environment

and pediatric ALL disease risk.

Epigenome-wide association study (EWAS)
(n = 861–927)

• DNA methylation may play an intermediary role in the causal pathway linking
childhood ALL risk exposures with disease risk.

• Hypergeometric probability tests demonstrate directionally concordant gene
methylation changes observed in ALL disease and in response to alcohol intake
(p = 0.006); sugary caffeinated drink intake during pregnancy (p = 0.045).

Schraw et al., 2018 [94]

Investigate the relationship
between maternal genotypes in

folate-related genes and
pediatric ALL.

Genome-wide DNA methylation profiling
and single nucleotide polymorphism

selection and genotyping method. (sample
from 51 pediatric ALL patient-mother pairs

and 6 healthy donors)

• Maternal folate metabolism may impact leukemogenesis via DNA methylation.
• Differential DNA hypermethylation in patients with ALL according to maternal

MTR genotype.
• Maternal MTR rs12759827 may influence DNA hypermethylation in ALL.

Evans et al., 2014 [95]
Identify the relative contribution of
gene-environment interactions to

pediatric ALL.

Using genome-wide genotyping to
investigate gene-environment interaction.

(358 childhood ALL cases and 1192
population controls)

• IKZF1 and ARID5B variants are associated with childhood ALL in an Australian
Caucasian population.

• IKZF1 variant is a genetic effect if the mother took folic acid or drank alcohol.

Løhmann et al., 2019 [96]
Identify associations between

pre-therapeutic BMI and outcome
in pediatric AML.

Multinational study of 867 pediatric AML
patients diagnosed within the last

two decades.

• Obesity is associated with developing leukemic cytogenetic abnormalities.
• Pediatric AML cytogenetics appear to differ by BMI status.
• BMI standard deviation score associated with frequency of inv(16)/t(16;16) and t(8;21)

Potter et al., 2018 [97]

Investigate the relationship
between maternal folate and

related B-vitamin intake during
pregnancy and pediatric ALL risk.

Pyrosequencing to confirm the target
hypermethylation genes; identify

directional methylation change in response
to folate depletion and in ALL.

• Hypermethylation of ASCL2, KCNA1, SH3GL3, SRD5A2 in ALL is confirmed by
measuring 20 patient samples.

• SH3GL3 methylation is inversely related to maternal red blood cell folate concentrations.
• ASCL2 methylation is inversely related to infant vitamin B12 levels.

Spector et al., 2005 [98]

Confirm maternal consumption of
dietary DNAt2 inhibitors during

pregnancy would increase the risk
of infant leukemia.

Case-control study (240 cases of infant
acute leukemia and 255 random digit

dialed controls)

• Fresh vegetables and fruits consumption during pregnancy may decrease the risk of
infant leukemia, particularly MLL+.

• Maternal consumption of dietary DNAt2 inhibitors (fruits and vegetables) may increase
risk of AML (MLL+) infant leukemia by inducing DNA cleavage and t(4;11) translocation.

Pimentel-Gutiérrez et al., 2016 [99]
Investigate the anti-cancer effect of

curcumin on a human ALL
cell line.

REH ALL cell line. Cell viability, gene
expression and activation of NF-κB and

caspase 3 has been detected.

• Curcumin enhanced caspase-3 activation and downregulated NF-κB activation.
• Curcumin prevents DNA oxidation by decreasing in DNA adduct formation.

Abbreviations used in Table 1: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ARID5B, AT-rich interaction domain 5B; ASCK2, achaete-scute complex homolog; BMI, body mass index; DNA,
deoxyribonucleic acid; DNAt2, DNA topoisomerase II; EWAS, epigenome-wide association study; IKZF1, IKAROS family zinc finger 1; KCNA1, potassium voltage-gated channel subfamily A member 1; MTR,
5-methyltetrahydrofolatehomocysteine methyltransferase; SH3GL3, SH3 domain containing GRB2-like 3; SRD5A2, 3-oxo-5α-steroid 4-dehydrogenase 2.
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5. The Role of Nutrition in the Developing Immune System and the Management of
Preleukemic and Leukemic Clones

To date, the etiology of leukemia has been primarily attributed to an interplay be-
tween genetic mutations and the response of the developing immune system to early-life
infections. This conclusion stems from a hypothesis first raised by Greaves [100]. In 1988,
Greaves first addressed that early-life infection was a crucial factor in the immune response
and the immune cell network [100]. Lack of infectious exposure neonatally and in infancy,
for instance, when isolated in a more affluent “hygienic” environment, might fail to pro-
gram the immune system. Delayed exposure to common infections, along with abnormal
immune function, might result in childhood leukemia [101]. As additional evidence has
emerged in recent years, Greaves’ hypothesis has been more widely accepted as a cause for
leukemia development. Studies after Greaves that sought to consolidate his hypothesis
looked into immune modulation of preleukemia by focusing on preleukemic children’s
vaccination history, daycare attendance, common early-life infections, and the presence of
autoimmune responses such as allergies. A nation-wide vaccine trial compared the early
and late phase with the haemophilus influenzae type B vaccine in 11,000 children born
in Finland and found early vaccinations may reduce the risk of childhood leukemia [102].
A French case-control study also supported Greaves’ hypothesis by identifying inverse
associations between childhood leukemia and day-care attendance, early common infec-
tions, and breast-feeding periods [103]. Evidence of a protective role of early-life infection
exposure was identified in the Northern California Childhood Leukemia Study which
enrolled 699 ALL cases and 977 controls. In their study, ear infection before 6 months was
associated with a reduced risk of ALL among Hispanic and non-Hispanic populations [104].
Compared to early-life (first 3 months) infection, late phase (6–9 months) exposures to
influenza and respiratory syncytial virus (RSV) were strongly associated with incidence of
pediatric ALL [105]. By the same token, allergies have been found to lower the risk of child-
hood leukemia, although they are not related to infections [106,107]. Animal evidence also
supports Greaves’ hypothesis. Immunostimulatory DNA-containing unmethylated CpG
dinucleotides (CpG ODN) can mimic the “danger” signal from infections provided to the
immune system. In vivo treatment with CpG ODN can enhance the innate immune activity,
and thus induce durable alleviation and immune-mediated protection in ALL [108].

While normal early-life infections can reduce the risk of leukemia, more serious
clinically diagnosed infections can be indicators for abnormal immune function, which can
increase the probability of developing the disease. More episodes of medically diagnosed
infections were associated with increased incidences of both childhood ALL and AML [109].
A matched case-control study enrolling 1600 cases ALL and 16,000 controls aged 2–14 years
from Canada demonstrated that having more infections (>2 infections/year) or an infection
between the age of 1–1.5 years may increase the risk of developing childhood ALL [110].
In conclusion, Greaves’ hypothesis and the additional confirmatory studies show that
early-life infections can “educate” the developing immune system and correct its course
before developing complete childhood leukemia. However, this conclusion assumes an
immune system that is robust in tackling infections.

Prenatal and postnatal development of the immune system plays a pivotal role in
determining the risk of acquiring childhood leukemia. Importantly, the balance of macronu-
trients and micronutrients has demonstrable impacts on systemic inflammation and immu-
nity [111,112]. Obesity, for example, is linked to chronic inflammation through a variety
of mechanisms. Excessive free fatty acids released from the adipose tissue promote in-
flammation by binding to the Toll-like receptors, a family of transmembrane proteins
that are responsible for controlling inflammatory and immunological responses, conse-
quently increasing the expression of multiple pro-inflammatory cytokines [113–115]. These
cytokines are essential for tumorigenesis, as they stimulate the expression of adhesion
molecules on stromal and immune cells, and induce angiogenic factors, chemokines,
matrix metalloprotease proteins (MMPs), and reactive oxygen species (ROS) [116,117].
Obesity is also known as a significant driver of macrophage infiltration and the dysregu-
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lation of M1/M2 macrophage balance, which influences many different aspects of tumor
progression [118,119].

Micronutrient components, such as vitamin A, vitamin C, and vitamin D, also influ-
ence cancer prevention and therapy [120]. Vitamin A and its bioactive metabolite, retinoic
acid, regulate immune activity [121]. Retinoic acid can enhance natural killer cell activity,
IL-2 secretion, and the CD4+/CD8+ T cell ratio. For these reasons, several experimental
studies and clinical trials have examined the essential role of retinoic acid in the treatment
of hematological malignancies, such as cutaneous T cell lymphoma and acute promyelo-
cytic leukemia [122–126]. Vitamin C, a powerful antioxidant, promotes immune defense by
regulating various cell functions [127]. A recent experimental study showed that vitamin C
could inhibit tumor growth by increasing the cytotoxic activity of adoptively transferred
CD8+ T cells [128]. Vitamin C can also elevate the efficacy of immune checkpoint inhibitors
to induce a complete response and reduce monotherapy doses [128]. Finally, vitamin D
has also been considered to have an anti-proliferation effect in melanoma by strengthen-
ing cytotoxic activity and functioning as an immune regulator through the expression of
immune checkpoint modulator PDL-1 [129]. While there is much to learn, it is clear that
nutrition may have significant beneficial effects on immune activities, including responses
to early-life infection and the surveillance of preleukemic and leukemic clones.

6. Future Perspectives and Applications

Nutrigenomic studies offer insights into the mechanics of nutrient–gene interactions
for preventive strategies, treatment strategies, palliative care, and to improve public health
in general [130]. It is evident that nutritional and environmental exposures in-utero greatly
influence childhood leukemia incidence [36]. Therefore, adequate nutrition should be
promoted early as a preventive lifestyle rather than a cure. Malnutrition and obesity can
also affect how the body responds to treatment, and if not managed well, can contribute to
relapse. Indeed, studies highlight the need for nutritional interventions during cancer treat-
ment to improve prognosis and quality of life post-treatment [131]. The design of clinically
relevant interventions, however, is complicated by diverse variables (genetics, environment,
culture, economics, intake amount, metabolic ability, lifestyle) that may heavily influence
data interpretation and outcomes [132]. Moreover, changing nutritional signatures during
treatment pose an additional challenge that prompts further evaluation [133]. However,
the potential benefits associated with nutritional counselling and better follow-up may
include the improvement of quality of life and relapse-free survival. Thus, future avenues
of research should include multiple omics analysis that study the impact of nutrition on
epigenetics (especially DNA damage to the genome), the gut microbiome, and other factors
that may influence an individual’s dietary preferences or response to treatment [130–132].
For example, a recent study used a big data framework approach to predict outcomes in
childhood leukemia patients [134]. Moreover, while additional animal and human studies
remain a critical need in the area of nutrition, it may be useful to focus on better structured
analyses, possibly incorporating machine learning, to summarize existing associations.
However, in the near term, encouraging healthy eating and increasing access to affordable
organic and healthy foods, which today are out-of-reach for far too many, has the potential
to improve treatment responses and children’s health.

7. Conclusions

Childhood leukemias have an in-utero origin wherein preleukemic cells exist prena-
tally. Indeed, the etiology of leukemia is thought to rely on the interactions of transforming
mutations occurring in immature immune cells and the developing immune system, which
itself is shaped by the balance of macronutrients and micronutrients. Maternal diet and
nutrition, therefore, are likely to be essential in the determination of disease predisposition.
Consistently, many aspects of the maternal diet associate with a lower risk of developing
leukemia, including a balanced maternal diet, folate supplementation, restricted exposure
to alcohol, smoking, and caffeine. Similarly, exposures to environmental toxins, both chem-
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ical and radiation, have long-term health effects, including an elevated predisposition to
cancer. Moreover, obesity and malnutrition in the affected child associate with high risk of
disease, increased treatment-related morbidity, and reduced event-free survival. The molec-
ular mechanisms that account for these adverse events are being uncovered, and include
strong connections between micronutrient deficiencies and elevated occurrences of genome
instability measured at the cellular level. Tragically, inadequate nutrition is often a result
of socio-economic forces, but diet quality improvement may help to reduce the burden of
childhood leukemia and the long-term adverse health effects of current treatments.
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