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Simple Summary: Neuroendocrine neoplasms (NEN) are rare tumours, and currently available,
mono-analyte biomarkers for diagnosis and prognosis have poor predictive and prognostic accuracy.
Metabolic profiling has been applied to several cancer types, but the systemic metabolic consequences
of NEN have not yet been well studied. Here, we demonstrate, in a treatment-naive cohort of patients
with NEN, that several metabolites are dysregulated in NEN and this is detectable in urine, due to
changes in cancer metabolic processes, neuroendocrine signalling molecules and the gut mirobiome.
This may have relevance for novel diagnostic biomarkers.

Abstract: The incidence of neuroendocrine neoplasms (NEN) is increasing, but established biomark-
ers have poor diagnostic and prognostic accuracy. Here, we aim to define the systemic metabolic
consequences of NEN and to establish the diagnostic utility of proton nuclear magnetic resonance
spectroscopy (\H-NMR) for NEN in a prospective cohort of patients through a single-centre, prospec-
tive controlled observational study. Urine samples of 34 treatment-naive NEN patients (median age:
59.3 years, range: 36-85): 18 had pancreatic (Pan) NEN, of which seven were functioning; 16 had
small bowel (SB) NEN; 20 age- and sex-matched healthy control individuals were analysed using
a 600 MHz Bruker 'H-NMR spectrometer. Orthogonal partial-least-squares-discriminant analysis
models were able to discriminate both PanNEN and SBNEN patients from healthy control (Healthy
vs. PanNEN: AUC = 0.90, Healthy vs. SBNEN: AUC = 0.90). Secondary metabolites of tryptophan,
such as trigonelline and a niacin-related metabolite were also identified to be universally decreased in
NEN patients, while upstream metabolites, such as kynurenine, were elevated in SBNEN. Hippurate,
a gut-derived metabolite, was reduced in all patients, whereas other gut microbial co-metabolites,
trimethylamine-N-oxide, 4-hydroxyphenylacetate and phenylacetylglutamine, were elevated in
those with SBNEN. These findings suggest the existence of a new systems-based neuroendocrine
circuit, regulated in part by cancer metabolism, neuroendocrine signalling molecules and gut mi-
crobial co-metabolism. Metabonomic profiling of NEN has diagnostic potential and could be used
for discovering biomarkers for these tumours. These preliminary data require confirmation in a
larger cohort.

Keywords: neuroendocrine neoplasms; neuroendocrine tumours; biomarkers; nuclear magnetic
resonance; metabolic profiling; metabonomics; precision medicine

Cancers 2021, 13, 374. https:/ /doi.org/10.3390/ cancers13030374

https:/ /www.mdpi.com/journal /cancers


https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4593-6075
https://orcid.org/0000-0002-2147-5190
https://orcid.org/0000-0002-4153-504X
https://orcid.org/0000-0001-6130-2035
https://doi.org/10.3390/cancers13030374
https://doi.org/10.3390/cancers13030374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13030374
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/3/374?type=check_update&version=2

Cancers 2021, 13, 374

20f16

1. Introduction

Neuroendocrine tumours, recently reclassified as neuroendocrine neoplasms (NEN),
were historically regarded as rare entities and arise from the gastroenteropancreatic sys-
tem in about 70% of cases. Multiple epidemiological studies have described a steadily
increasing incidence [1,2] and NEN frequently present with distant metastases at the initial
diagnosis [3]. Fewer than 20% of patients with distantly metastatic (stage IV) NEN are
candidates for surgery with curative intent. Currently, effective treatment options for “non-
surgical” patients with advanced tumours are limited, and although novel modalities have
been demonstrated to improve progression-free survival in randomised clinical trials [4-7],
ramifications in terms of improved overall survival are yet to be identified [8]. Standard
tumour markers for neuroendocrine disease include the neurosecretory peptides chromo-
granins A and B (CgA, CgB) and a panel of cell-type-specific secretory products including
gastrin, insulin, pancreatic polypeptide, vasoactive intestinal peptide, and serotonin or
its urinary metabolites, such as 5-hydroxyindoleacetic acid (5-HIAA). Their clinical utility
is burdened by limited accuracy [9] and there is an urgent unmet need for novel non-
invasive biomarkers for early identification, treatment monitoring, precision diagnostics
and phenotyping of NEN for the stratification of therapy.

Systems medicine provides a compelling opportunity to develop novel diagnostic and
prognostic strategies for rare diseases, where a diagnosis may be made on a deeper analysis
of an individual’s biology, based on the measurement of many thousands of genes, proteins
or metabolites [10]. Although the role of miRNA [11,12], circulating tumour cells [13],
circulating cell-free DNA and copy number variations [14] or circulating neuroendocrine
gene transcripts [15,16] in NEN have been recently analysed and encouraging results
reported, to date, there is no compelling “omics based” technology in routine clinical
use. One of the most widely applicable aspects of the development of precision medicine
relates to the diverse applications of metabolic phenotyping (metabotyping) to clinical
diagnostics, prognostics and molecular epidemiology [10]. Metabolic profiling has been
shown to provide promising biomarker panels in various neoplasms, including prostate
cancer [17], breast cancer [18], colorectal cancer [19,20], hepatocellular carcinoma [21], lung
cancer [22] and leukaemia [23]. The metabotypes of individuals can be measured from
the composition of accessible biofluids or tissues sampled in the clinic. Metabotypes vary
extensively between individuals and populations and result from the complex interplay
of host genes, lifestyle, diet and gut microbes. The systems metabolism of NEN has not
previously been described in detail and subtle metabolic perturbations induced by NEN
remain poorly defined.

Metabolic phenotyping may provide novel diagnostic and prognostic strategies for
various diseases [10]. Urinary analysis also delivers the greatest possible chance of achiev-
ing this, as it provides a non-invasive “window” into gastrointestinal metabolism. In our
previous discovery study, we demonstrated that retrospective proton nuclear magnetic
resonance ('H-NMR) analysis of urine was able to describe distinct metabolic phenotypes
for NEN based on the clinical presentation [24]. The aim of the current study was, therefore,
to define the systemic metabolic consequences of NEN and to establish the diagnostic
utility of 'H-NMR for NEN in a prospective study of treatment-naive patients with either
pancreatic NEN (PanNEN) or small bowel NEN (SBNEN) which, together, account for the
vast majority of digestive NEN.

2. Results

A total of 61 participants were recruited (NEN # = 41, of which: PanNEN n = 21,
SBNEN 7 = 20, and controls n = 20). Of these, one healthy control was excluded due to
corruption in the data file and seven patients were excluded from the analysis as they
behaved as chemical outliers on PCA Figure 1.
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Consecutive Pan-NEN and
SBNEN patients diagnosed
between Jan 2011 and Age-, sex-, BMI-matched
Dec 2013 healthy controls
(n=175) (n=20)
Ineligible* PR ‘
(n=134) ’
Samples collected
Healthy: 20
PanNEN: 21
SBNEN: 20
Excluded”
Healthy: 1 <
v
PanNEN: 3 Included in analysis:
SBNEN: 4 Healthy: 19
PanNEN: 18
SBNEN: 16

Figure 1. Remark diagram of the cohort studied.* Exclusion criteria are: patients under the age of 18,
pregnancy, patients undergoing neuroendocrine neoplasm (NEN)-specific systemic treatment, second
malignancies, comorbidities requiring significant systemic treatment (e.g., immunosuppression),
impaired renal function, poor compliance, missing consent for study participation. #1 healthy
control sample due to the corruption of the original data file; for NEN samples, 1 due to poor water
suppression, 3 due to high intensity of an unknown drug signal, and 3 due to extreme misalignment of
the spectra. PanNEN = pancreatic neuroendocrine neoplasm, SBNEN = small bowel neuroendocrine
neoplasm, BMI = body mass index.

One patient was excluded due to poor water suppression of the spectrum; three further
spectra were dominated by a high concentration of an unknown drug metabolite which
masked a considerable portion of the spectra, and three patients had spectra which could
not be aligned satisfactorily due to abnormal pH and osmolality, and were hence unsuitable
for analysis. In total, 34 NEN (18 PanNEN and 16 SBNEN) patients and 19 healthy controls
were included in the final analysis. The median age of the included NEN patients was
59.3 years (range 36-85), and further demographic data are shown in Table 1. Of the healthy
controls, nine were female, the mean age was 57.2 years (range 31-68), and the median
BMI was 25.1 (range 17.9-28.7).
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Table 1. Clinicopathological characteristics of neuroendocrine neoplasm patients at study entry.

Parameter Number

Number of patients 34
Sex -
Male 21
Female 13
Ethnicity -
Caucasian 20
African/Caribbean 5
Asian/ Arabic 9

Median age at diagnosis (years) 59.3 (range 36-85)

Median BMI 27.8 (range 17.4-42.0)

Site of primary tumour -
Small Bowel 16
Pancreas (sporadic) 18
Tumour functionality-Pancreas -
Non-functioning 11
Functioning 7

Median serum chromogranin A (normal < 60 pmol/L)

Median 5-HIAA in 24 h urine (normal 0.0-45.0 umol/L)

42 (range 21-2342)
25.5 (range 9.4-581.4)

Tumour Grade * -

1 18
2 16

3 0
Tumour stage * -
T14NoMj 7
T1_4N1Mp 13
T1_4NoM; 2
T1_4N1M; 12
Liver metastases present -
Pancreas NEN -
Yes 3
No 15

Small bowel NEN -
Yes 11

No 5

BMI = body mass index; * = tumour grading performed in accordance with World Health Organization/European
Neuroendocrine Tumor Society grading system [25,26], # = staging in accordance with the American Joint Committee
on Cancer/Union for International Cancer Control staging system [27], NEN = neuroendocrine neoplasm.

Seven of 18 (39%) of the PanNEN patients had functioning tumours. Of these, four
were insulinoma, two gastrinoma and one glucagonoma. Twenty-seven patients (79%)
had metastatic disease at initial diagnosis; of them, three out of 18 (17%) of the PanNEN
patients and 11 out of 16 (69%) SBNEN presented with metastases to the liver. Five of the
small bowel NEN patients had carcinoid syndrome (all untreated at study entry). The
disease stage remained unchanged in 31 patients during the 3-year follow-up.

Supervised orthogonal projection to latent structures discriminant analysis (OPLS-DA)
modelling of the NMR spectra revealed that the urinary metabolic phenotype of NEN was
clearly differentiated from that of healthy individuals (Figures 2 and 3).
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Figure 2. Ability of the OPLS-DA models to predict NEN status from healthy controls. (A) R?Y and
Q?Y coefficients of the OPLS-DA models generated. (B) Receiver operating curves (ROC) and their
associated area under the receiving operator curve (AUROC) values for Healthy vs. NEN (AUROC
0.94), (C) Healthy vs. PanNEN (AUROC 0.90) and (D) Healthy vs. SBNEN (AUROC 0.90). These
demonstrate strong diagnostic utilities of the models for NEN and its subgroups.
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Figure 3. OPLS-DA models comparing NEN and its subgroups to healthy control samples. Scores
(A—C) and their respective loadings (D-F) plots of the model comparing healthy individuals versus
all NEN patients (A,D), healthy individuals versus those with PanNEN (B,E) and healthy individuals
versus those with SBNEN (C,F). The pseudospectra of the loadings plots are coloured according to
correlation coefficient || for peak positions where positive false discovery rate (pFDR) < 0.1.
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Valid OPLS-DA models could be built, with permutation p < 0.05, comparing between
control and all NEN patients (R%Y = 0.82, Q*Y = 0.55, AUROC = 0.95) and comparing
control to each subgroup of NEN, respectively (Control vs. PanNEN: R?Y = 0.85, Q%Y = 0.48,
AUROC = 0.90, Control vs. SBNEN: R?Y = 0.89, Q%Y = 0.47, AUROC = 0.90); Figure 2. No
valid model could be built comparing PanNEN and SBNEN (Q?Y < 0).

Using the OPLS-DA models, signals with a significant contribution towards the model
coefficients were identified, their chemical identity assigned and their relative concentration
obtained for further testing of significance using Wilcoxon rank sum test (Figure 4, Table 2).
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Figure 4. Boxplot of metabolites with significant differences between NEN and NEN subgroups compared to healthy
control: (A) Hippurate, (B) Trigonelline, (C) metabolite related to niacin, (D) S-methyl-L-cysteine sulfoxide, SMCSO, related
metabolite, (E) 2-Hydroxybutyrate, (F) Trimethylamine N-oxide, TMAO, (G) 4-Hydroxyphenylacetate, (H) Phenylacetylglu-
tamine, PAG, (I) Kynurenine, (J) 5-Hydroxyindoleacetic acid, 5SHIAA. Numbers in the title correspond to the chemical shift
in ppm of the metabolite signal used for integration and the letters describe the signal multiplicity: singlet, s, doublet, d,
doublet, dd, triplet, t The symbols * and # indicate the levels of significance compared to healthy control based on Wilcoxon’s

rank sum test (*) and OPLS-DA model correlation (#), respectively: * and # for pFDR < 0.05; ** and ## for pFDR < 0.01; *** for
pFDR < 0.001.
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Table 2. Correlation coefficients and p-values of chemical shifts from OPLS models and Wilcoxon’s rank sum test.

OPLS-DA Model Wilcoxon’s Rank Sum Test
Healthy Vs. NEN Healthy Vs. PanNEN Healthy Vs. SBNEN Healthy Vs. NEN Healthy Vs. PanNEN Healthy Vs. SBNEN PanNEN Vs. SBNEN
Metabolite ppm Multiplicity r pFDR r pFDR r pFDR P pFDR r pFDR 14 pFDR r pFDR
3978 B 0.199 —0.488 0.022 - 0.867 0.105 0.173 0.075 0.123 0.345 0.423 0.438 0.751
7.557 t —0.318 0.098 —0.511 0.016 - 0.642 0.061 0.129 0.068 0.123 0.18 0.263 0.569 0.751
Hippurate 7.644 t 0.107 —0.511 0.016 - 0.681 0.071 0.132 0.075 0.123 0.202 0.275 0.523 0.751
7.84* d —0.375 0.044 —0.549 0.01 - 0.488 0.073 0.132 0.081 0.123 0.202 0.275 0.666 0.751
4.405* s —0.46 0.008 —0.391 0.08 —0.517 0.03 0 0 0 0.003 0 0.001 0.666 0.751
Niacin-related
8.791 d —0.342 0.072 - 0213 - 0.156 0.01 0.035 0.075 0.123 0.008 0.029 0.641 0751
4.444 % s —0.525 0.002 —0.533 0.012 - 0.053 0.003 0.012 0.045 0.111 0.002 0.01 0.116 0.295
Trigonelline 8.85 m —0.457 0.009 —0411 0.063 —0.509 0.034 0.003 0.012 0.047 0.111 0.002 0.01 0.081 0.238
9.128 B —0.485 0.005 —0.508 0.017 —0.462 0.067 0.005 0.019 0.092 0.129 0.002 0.01 0.037 0.156
Hydrox}/zi;obulyrale 1.363 * s 0.125 0.507 0.017 - 0.815 0.312 0.439 0.104 0.141 0.987 0.987 0.221 0.441
1.935 m 0.299 - 0.687 0.648 0.002 0.788 0.907 0.218 0.252 0.066 0.132 0.028 0.154
2.107 m 0.886 —0.48 0.025 0.553 0.017 0.897 0.921 0.062 0.123 0.074 0.133 0.016 0.115
PAG 2276* t 0.537 - 0.092 0.644 0.002 0.704 0.836 0.035 0.101 0.108 0.171 0.016 0.115
4.187 m 0.307 - 0.49 0.726 0 0.623 0.789 0.013 0.046 0.071 0.133 0.009 0.115
SMCSO-related 2.809 s 0.42 0.02 0.454 0.036 - 0.162 0.001 0.007 0 0.003 0.066 0.132 0.056 0.192
Hydrox;}};henylacetate 3.446* B 0.129 - 0432 0.557 0.015 0.228 0.333 0.649 0.685 0.101 0.167 0.438 0.751
TMAO 3.273* s 0.465 - 0.998 0.653 0.002 0.065 0.13 0.494 0.537 0.011 0.036 0.051 0.192
3.679 * d 0.179 - 0.864 0.626 0.003 0.853 0.921 0.171 0.204 0.066 0.132 0.018 0.115
Kynurenine 6.87 dd 0.328 - 0.994 0.55 0.018 0.889 0921 0.081 0.123 0.03 0.071 0.01 0.115
7428 t 0.388 - 0.246 0.646 0.002 0.817 0913 0.23 0.257 0.082 0.142 0.034 0.156
SHIAA 6.819* dd 0.48 —0.482 0.024 - 0.151 0.985 0.985 0.008 0.036 0.003 0.015 0 0.003

Correlation coefficients of only those with positive false discovery rate (/FDR) < 0.05 shown. * peak with the greatest signal-to-noise ratio
and/or least overlap that was used for interpretation and reporting. Multiplicity: s = singlet, d = doublet, t = triplet, dd = doublet of doublet,
m = multiplet. 5-HIAA: 5 Hydroxyindolacetic acid; PAG: phenylacetylglutamine; OPLS-DA: Orthogonal partial least squares-discriminant
analyses; SMCSO: S-methyl-L-cysteine sulfoxide; TMAQO: Trimethylamine-N-oxide.

For the model comparing control and all NEN patients, trigonelline (OPLS-DA pFDR = 0.002,
rank-sum pFDR = 0.012), hippurate (OPLS-DA pFDR = 0.044, rank-sum pFDR = 0.132) and
a niacin-related metabolite (OPLS-DA pFDR = 0.008, rank-sum pFDR < 0.001) were found
to be significantly lower in NEN patients, while an 5-methyl-L-cysteine sulfoxide-related
metabolite, which is a marker of cruciferous vegetable consumption [28], was significantly
higher in the NEN cohort (OPLS-DA pFDR = 0.02, rank-sum pFDR = 0.007).

Similarly, between control and PanNEN, patients had significantly lower amounts of
trigonelline (OPLS-DA pFDR = 0.012, rank-sum pFDR = 0.111), hippurate (OPLS-DA pFDR = 0.010,
rank-sum pFDR = 0.123) and the niacin-related metabolite (OPLS-DA pFDR = 0.08, rank-
sum pFDR = 0.003) in their urine. Conversely, excretion of 2-hydroxyisobutyrate was
significantly higher in PanNEN patients (OPLS-DA pFDR = 0.017, rank-sum pFDR = 0.141).

In the OPLS-DA model-comparing control and SBNEN, trigonelline and the niacin-
related metabolite were also significantly reduced in patients (OPLS-DA pFDR = 0.053 and
0.03, rank-sum pFDR = 0.010 and 0.001, respectively). It also revealed that trimethylamine N-
oxide (TMAO), 4-hydroxyphenylacetate and phenylacetylglutamine (PAG) and kynurenine
were significantly increased in SBNEN patients (OPLS-DA pFDR = 0.002, 0.015, 0.002 and
0.003; rank-sum pFDR = 0.036, 0.167, 0.171 and 0.132, respectively).

5-hydroxyindole acetic acid (SHIAA) was higher in all NEN patients compared to
healthy control; however, the difference did not reach significance, probably due its low
levels in PanNEN Figure 4. However, 5-HIAA was significantly elevated in SBNEN patients
(of whom 11/16 had liver metastases) based on the non-parametric rank sum test (rank-
sum pFDR = 0.015). Furthermore, univariate comparisons of metabolite levels between
PanNEN and SBNEN revealed that 5-HIAA was the only metabolite that significantly
differed between the two NEN types’ rank-sum pFDR = 0.003, Table 2.
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As determining the presence of metastases is a major clinical challenge of significant

importance, we sought to further investigate whether the metabolic profiles of urine could
be utilised to delineate NEN patients with or without metastases. Only the PanNEN
group had sufficient numbers for comparison between any loco-regional and/or distant

metastasis being present (1 = 8) or absent (1 = 10). A cross-validated PCA model was able
to separate those with or without metastasis in the first principal component with high
accuracy Figure 5.
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Figure 5. Scores plot of cross-validated principal component analysis model of spectra from PanNEN
patients with and without any metastases. (A) Component 1 vs. 2; (B) Component 1 vs. 3.

Interestingly, all three patients without metastases at the time of urine collection that
clustered close to spectra from patients with metastases on the negative side of principal
component 1 developed recurrent disease during the 3-year follow-up post-resection.
However, although a strong trend was observed in the PCA scores plot, no valid OPLS-DA



Cancers 2021, 13, 374

9o0f 16

models could be built to differentiate patients with metastatic from non-metastatic tumours
(Q?Y < 0), probably owing to the small sample size.

3. Discussion

This is the first prospective study defining the systemic metabolic consequences of
NEN and assessing metabolic phenotyping as a diagnostic tool in neuroendocrine neoplasia
disease. This suggests that 'H-NMR has tangible clinical utility, as it is able to identify
NEN status when compared to a healthy control group with a high diagnostic accuracy,
and to provide candidate biomarkers, new diagnostic strategies and phenotyping for the
stratification of therapy and identify therapeutic targets that could be pursued. In light of
the imminent need for novel biomarkers in NEN, metabolic phenotyping deserves further
attention. Chromogranin A, as a global biomarker for NEN that is currently widely used
in clinical practice, is burdened by poor assay reproducibility, low sensitivity and limited
predictive value. Chromogranin levels can be influenced by various medical conditions
such as renal failure, inflammatory bowel disease and irritable bowel syndrome, non-
NEN malignancies, and therapy with proton pump inhibitors. As expected, this analysis
identified that 5-HIAA, an established biomarker currently used in the clinical diagnosis
of NEN, was a discriminant between SBNEN patients and healthy controls. Of note,
68.8% of patients had liver metastases. Apart from NEN, elevation of urinary 5-HIAA
has been reported in several types of malignant conditions including gastric cancer [29]
and breast cancer [30]. The prognostic value of 5-HIAA has been suggested for advanced
disease in SBNEN [31]. Our multivariate models showed that 5-HIAA contributed only
minimal diagnostic strength to the model, but was significant in univariate non-parametric
comparisons. Its level was raised in SBNEN rank-sum pFDR = 0.015), and it was the only
metabolite found to be significantly different between PanNEN and SBNEN (rank-sum
pFDR = 0.003; Table 2. This might be due to the higher rate of liver metastases in SBNEN in
our cohort.

Similar to 5-HIAA, which is a urinary metabolite of tryptophan-derived serotonin,
a number of other discriminatory metabolites identified in this study are also products
of tryptophan metabolism. A niacin-related metabolite and trigonelline were found to be
significantly reduced in NEN patients (OPLS-DA pFDR = 0.002, rank-sum pFDR = 0.012)
and the significance remained even in comparisons to the subgroups (PanNEN: OPLS-
DA pFDR = 0.012, rank-sum pFDR = 0.111 and SBNEN: OPLS-DA pFDR = 0.053, rank-
sum pFDR = 0.010). Niacin (vitamin B3) and trigonelline are downstream products of
tryptophan metabolism via the kynurenine pathway. Trigonelline is found in coffee and
other dietary products [32], and has been shown to have anti-tumourogenic effects [33].
Liao et al. demonstrated that trigonelline inhibited migration of Hep3B cells through
down-regulation of nuclear factor E2-related factor-2-dependent antioxidant enzymes’
activity [34]. However, despite both metabolites being potentially confounded by dietary
factors, niacin deficiency is known to be prevalent in patients with serotonin-producing
NEN [35]. In the series reported by Bouma et al., the urinary niacin metabolite N1-
methylnicotinamide was reduced compared to healthy controls (median 17.9 pmol/24 h
vs. 43.7 umol/24 h, respectively) and below normal in 45% of the patients [35]. Therefore,
it is possible that the reduced excretion of trigonelline and the niacin-related metabolite
observed in NEN patients here is directly related to the presence of NEN and that niacin
could play a role in the prevention of tumour progression.

Interestingly, kynurenine, a metabolite found upstream of the two previously dis-
cussed metabolites in tryptophan metabolism, was found to be elevated in the SBNEN
group in this study. It has been increasingly recognised that indoleamine-2,3-dioxygenase
(IDO) and tryptophan-2,3-dioxygenase (TDO), which catabolise tryptophan into kynure-
nine, is commonly upregulated in tumours and this is thought to facilitate tumour immune
evasion [36]. Elevated levels of kynurenine and kynurenine/tryptophan ratio has been
reported in the serum of breast [37] and lung [38] cancer patients, as well as in the urine
of patients with bladder [39] and prostate [40] cancers. Our observation suggests that
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tryptophan metabolism is universally perturbed in NEN patients but the dynamics of the
perturbation may differ between the NEN subgroups.

Urinary excretion of hippurate, which was found to be lowered in NEN patients
(OPLS-DA pFDR = 0.044, rank-sum pFDR = 0.132), is modulated by the microbiota, and
it derives from bacterial activity in the distal small intestine rather than in the colon [41].
Increased urinary excretion of hippurate has been associated with weight loss or with
lean body mass [42]. However, there was no significant difference in BMI between the
NEN patients and healthy controls. It has been repeatedly reported to be reduced in
NEN patients [24], and also in various cancer types, such as renal cell carcinoma [43] and
colorectal cancer [44]. This further supports the association of gut microbial dysbiosis with
cancer development.

A few of the markers were found to have significantly increased levels in SBNEN
patients compared to control, namely, TMAO, PAG and 4-hydroxyphenylacetate, also of
gut microbial origin. TMAOQO has been associated with several diseases including colon
cancer [45] and cardiovascular disease [46]. Previous data have shown that TMAO levels in-
crease with the consumption of L-carnitine, which is metabolised by the gut microbiota such
as Peptostreptococcaceae and Clostridiaceae families, into trimethylamine (TMA). TMA is
further metabolised into TMAO by flavin monooxygenases in the liver [47]. Similarly, PAG
and 4-hydroxyphenylacetate are also gut microbial co-metabolites and elevated urinary ex-
cretion of them has been reported in colorectal [19] and gastric [48] cancers, respectively. In
summary, this analysis provides new evidence to suggest that host-microbial co-metabolic
pathways are perturbed in both PanNEN and SBNEN, and may have diagnostic value.

The PCA model of PanNEN patients showed an observable differential segregation
of patients with or without metastasis. Interestingly, all three PanNEN patients without
distant metastases at the time of analysis that clustered close to spectra from patients with
metastases on the negative side of principal component 1 developed recurrent disease dur-
ing the 3-year follow-up. This highlights the potential for metabolic phenotyping to detect
metastases earlier and more accurately than current clinical practice allows. However, the
patient numbers in this study were not large enough to enable robust statistical inference.
Future studies should include an increased number of patients with metastases as one of
the aims and recruit accordingly to obtain sufficient numbers for comparison.

There are limitations to this study. Firstly, we have analysed a highly selected group
of NEN patients and it remains a matter of further study to validate the results in the
heterogeneous patient population seen in clinical practice. Our inclusion criteria in this
initial study on metabolic circuits in NEN were very strict, since we wanted to control
cofounding factors affecting the variables being studied and avoid false discovery results.
The patient numbers in our study are small, which did not permit the correlation of the
spectroscopic data with clinical parameters such as tumour grade, tumour stage and
functional status or comparison with standard tumour markers. However, this will always
be a challenge when prospectively studying uncommon tumours such as NEN. The small
study size also prevented having a separate set of data for validation of the findings, which
shall be addressed in our future work. We were also unable to definitively account for
potential confounders such as diet in this work, since some of the metabolites, such as the
SMCSO-related metabolite, were possibly of dietary origin. This analysis also did not set
out to study the microbiome. As a result, there were no data from the luminal microbiome
to corroborate the metabolic dataset, which strongly indicates disease-associated dysbiosis
based on the perturbation of gut microbial (co-)metabolites such as hippurate and PAG.
This will be the subject of future work. We had to exclude some patient samples because of
technical reasons. We will attempt to increase the robustness of methodology to confirm the
diagnostic capability of this tumour marker in clinical practice. Furthermore, the majority
of SBNEN patients and many PanNEN patients have present metastasis, which may pose a
challenge to identifying biomarkers for early diagnosis before the tumour has metastasised.
However, this is as much a research challenge as a clinical challenge, as patients often
present late with metastasis at diagnosis. Finally, 'H-NMR spectroscopy accesses only
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a portion of the metabolome, with a bias towards high-concentration metabolites. The
failure rate of 10% is related to the experimental nature of the analysis and the challenges
of sample storage and volume. 'H-NMR is a scalable, high-throughout technology that
could be leveraged for translational applications. However, it is likely that this work would
lead to the development of targeted, quantitative assays for the analysis of the candidate
biomarkers that are described, which could be deployed at the point of care. Further
studies would be necessary to provide more mechanistic insight into the biology of the
metabolic perturbations caused by the presence of NEN in the organism. New studies
would obviously require the analysis of larger cohorts, and targeted analytical techniques
which should include the characterisation of the NEN gut microbiome. Studies which
additionally acquire data from complementary techniques such as liquid-chromatography
mass spectrometry, and comparison with other novel biomarkers such as circulating
neuroendocrine gene transcripts (NETest) should aid metabolic profiling characterisation
and delineate its clinical utility.

It is not possible to delineate cause and effect for the metabolites identified here, and
we can only speculate, at this stage, as to their roles. However, we have identified an
important avenue of research for the functional NEN microbiome that could be capitalised
on to improve current clinical practice.

4. Materials and Methods
4.1. Patient Recruitment and Sample Collection

From January 2011 to December 2013, consecutive patients with either PanNEN or
SBNEN were recruited from the European Neuroendocrine Tumor Society (ENETS) Centre
of Excellence at Imperial College London NHS Healthcare Trust, UK. Data were recorded in
our prospectively maintained database for NEN. Only treatment-naive patients with a pri-
mary tumour still in place and confirmed diagnosis of a localised or metastasised NEN and
a follow-up of at least 3 years were included. Patients under the age of 18, those who were
pregnant, and patients undergoing NEN-specific systemic treatment (e.g., somatostatin
analogues, mTOR inhibitors, chemotherapy or peptide receptor radionuclide therapy), and
patients who had any previous systemic, liver directed or surgical NEN-specific treatment,
were excluded. In all patients, the diagnosis of NEN was confirmed based on conventional
histology and immunohistochemistry for NEN-specific markers utilising either surgical
specimens or biopsy material. Tumour functional activity was defined by consideration
of clinical symptoms and results of standard biochemical testing. All patients underwent
staging and grading according to World Health Organization/European Neuroendocrine
Tumor Society (WHO/ENETS) [25,26] and American Joint Committee on Cancer/Union
for International Cancer Control (AJCC/UICC) [27] criteria. Staging included computed
tomography (CT), magnetic resonance imaging (MRI), somatostatin receptor-targeted
positron emission tomography (PET) PET/CT, and other diagnostic modalities tailored to
individual clinical situations. Standard biochemical work-up comprised assessment of gut
hormones and chromogranin A and B in serum (Imperial Supra-Regional Assay Service
radioimmunoassay, London, UK) and 5-hydroxyindolacetic acid (5-HIAA) in 24 h urine
(Chromsystems Instruments & Chemicals GmbH, Grafelfing, Germany).

Prospective data collection on medical history and clinical variables (NEN phenotype,
disease stage and grade, standard NEN biomarkers) was performed by a single researcher
(PD). Age-, sex- and body mass index (BMI)-matched healthy control individuals were
recruited from a healthy population of volunteers at the same institution and at The
Welcome Trust, London, UK. Patients who were on proton pump inhibitors interrupted
treatment for 2 weeks prior to sample collection when clinically justifiable. The project
was designed and carried out in accordance with reporting recommendations for tumour
marker prognostic studies REMARK; Figure 1 and [49].
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4.2. Sample Preparation

Patients and healthy controls were asked to provide a single sample of urine for
analysis, which was collected and stored at —80 °C. Samples were prepared according
to our previously published protocol [50]. In short, samples were thawed on the day
of analysis. An aliquot of 600 pL of urine was placed into 2 mL Eppendorf tubes and
centrifuged for 5 min at 6x g. A volume of 540 pL of the supernatant was transferred
into a new Eppendorf tube and mixed with 60 uL of standard urine buffer [50] containing
1.5 M potassium dihydrogen phosphate at pH 7.4 in deuterium oxide, with 3-trimethyl-
silyl—[2,2,3,3—2H4]pr0pionic acid (TSP) as reference, and sodium azide to avoid bacterial
growth. Eppendorf tubes were vortexed and 550 pL of the solution was placed into
SampleJet 5 mm NMR tubes (Bruker BioSpin Ltd., Rheinstetten, Germany). SampleJet racks
were immediately transferred to the SampleJet robot (Bruker BioSpin Ltd., Rheinstetten,
Germany) and were maintained at 4 °C until measurement.

4.3. 'TH-NMR Spectroscopic Analysis of Urine Samples

A standard NMR experiment for urine profiling as defined by the Clinical Phenotyping
Centre (CPC) was undertaken for each urine sample [50]. The experimental set-up followed
the strict protocol of the CPC and consisted of temperature calibration, water suppression
optimisation, quantitation calibration and optimisation of each run for a quality control
(QC) urine sample [50]. An 'H 1-dimensional (1D) profile was acquired for each urine
sample using a standard 1D pulse sequence employing the first increment of a Nuclear
Overhauser Effect pulse sequence to achieve pre-saturation of the water resonance in a
Bruker 600 Avance III NMR spectrometer (Bruker BioSpin Ltd., Rheinstetten, Germany).
The machine was equipped with a SampleJet robot, a 5 mm probe with high-degree
Z gradients and an automatic tuning and matching unit. The 'H-NMR spectra were
processed, phased, baseline corrected and calibrated in automation using TopSpin 3.2
(Bruker BioSpin Ltd., Rheinstetten, Germany). Any samples that did not conform to
accepted criteria for line-width, baseline and water suppression were reacquired. In
addition to the 1D NMR profile, a 2-dimensional (2D) J-res experiment was also acquired
to exploit the structural properties and help with biomarker identification. The acquisition
and processing parameters were as previously described elsewhere [50]. To facilitate
the identification of metabolites that were determined to be of statistical importance in
characterising NEN, 1D titration experiments with the corresponding chemical standard
and 2D experiments such as COSY, TOCSY [51] and 1H-13C-HSQC were acquired for
selected samples [52,53].

4.4. Statistical Analysis of the Spectral Data

All data pre-processing and statistical analyses were performed using Matlab R2016a
(MathWorks, Natick, MA, USA). The spectra were imported into Matlab and digitised into
65,536 datapoints with segment widths of 0.0002 ppm using in-house scripts. Spectral
regions corresponding to the TSP reference peak (<0.1 ppm), methanol (3.35-3.38 ppm),
water (4.7-4.9 ppm) and urea (5.6-6.0 ppm) signal regions, and background noise in
regions without signals (>9.4 ppm) were removed. The spectra were then aligned [54]
and normalised [55]. The probabilistic quotient normalization based on the calculation
of a most probable dilution factor by looking at the distribution of the quotients of the
amplitudes of a test spectrum by those of a reference spectrum was used.

Spectra were first subjected to principal component analysis (PCA) for the identifica-
tion of outliers. The original spectra of putative outliers, determined by being outside of the
95% Hotelling’s T? confidence interval in the PCA scores space, were examined. Spectra
were excluded from subsequent analyses as an outlier only if they contained extreme
concentrations of certain drugs since drug metabolites can potentially confound or bias the
models. Cross-validated PCA models were made using the leave-one-out method.

For orthogonal projection to latent structures-discriminant analysis (OPLS-DA) [56],
7-fold cross-validation was used and predictive models were further validated by 1000 per-
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mutations of the outcome vector. Integrals of individual peaks of interest were obtained
and further tested by Wilcoxon rank sum test for significant difference between groups.
P-values were adjusted for multiple testing using the Benjamini-Hochberg procedure [57]
with cut-off for significance at the false discovery rate of 0.5%. Predictions from the OPLS-
DA models were used for creating receiver operating characteristics (ROC) curves [58]. The
investigators Mei Ran Abellona U, Beatriz Jiménez and Michael Kyriakides were blinded
to clinical details.

Metabolite assignments were facilitated by in-house database comparison, statistical
tools such as statistical total correlation spectrometry (STOCSY) [59], with subset optimi-
sation by reference matching (STORM) [60], and 2-dimentional NMR data acquired from
selected samples. Of the metabolites identified (n = 250) only those with discriminatory
value were used for final analysis.

5. Conclusions

These findings suggest the existence of a new systems-based neuroendocrine circuit,
regulated in part by cancer metabolism, neuroendocrine signalling molecules and gut
microbial co-metabolism. This may represent a novel avenue for the discovery of preci-
sional medicine for NEN. The metabolic profiling of NEN has diagnostic potential and
should be expanded to larger studies to develop next-generation assays for precision NEN
phenotyping that assesses the levels of activity of these pathways. The role of the gut
microbial changes in the aetiology of NEN now needs to be defined based on the dysbiosis
observed in this patient population.

Author Contributions: Conceptualisation: all authors; methodology: B.J., M.R.A.U,, M.K,, D.SK.L.,
E.R, EH., JKN, ]JMK, software: B.J.,, M.R.A.U,; validation: B.J., M.R.A.U.,, MK, D.SKL. ER,,
EH., J KN, ]JM.K,; formal analysis: B.J., MR AU, ER,, EH,, JKN,, JM.K,; data curation: All
authors; writing—original draft: B.J., M.R.A.U., P.D.; writing—review and editing: M.K., AK.C,,
D.SKL, ER, EH,JKN.,]MK, AF All authors have read and agreed to the published version of
the manuscript.

Funding: The research was supported by grants of the Heinz-Horst Deichmann Foundation (Grant
number: P31294), Commission of the European Communities/FP7 (FP7-MC-IEF 300586), TransNETS
of UKI NETS (Grant number: P52805), and Imperial NIHR Biomedical Research Centre (Grant
number: P47850).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Research Ethics Committee for Wales (protocol code
07/MRE09/54).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available as they are derived from sensitive medical
information from individuals with neuroendocrine neoplasms or are study ‘controls’. Therefore,
ethical approval for data sharing would need to be sought.

Acknowledgments: We would like to thank the Imperial College Healthcare NHS Trust Tissue
Bank which provided the biosamples. Other investigators may have received samples from these
same tissues. The research was supported by the National Institute for Health Research (NIHR)
Biomedical Research Centre based at Imperial College Healthcare NHS Trust, MRC-NIHR National
Phenome Centre and Imperial College London. The views expressed are those of the authors and not
necessarily those of the NHS, the NIHR or the Department of Health.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

1. Ellis, L.; Shale, M.].; Coleman, M.P. Carcinoid tumors of the gastrointestinal tract: Trends in incidence in England since 1971. Am.
J. Gastroenterol. 2010, 105, 2563-2569. [CrossRef] [PubMed]


http://doi.org/10.1038/ajg.2010.341
http://www.ncbi.nlm.nih.gov/pubmed/20823835

Cancers 2021, 13, 374 14 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival
Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335. [CrossRef] [PubMed]
Clift, A K, Faiz, O.; Al-Nahhas, A.; Bockisch, A.; Liedke, M.O.; Schloericke, E.; Wasan, H.; Martin, J.; Ziprin, P.; Moorthy, K.; et al.
Role of Staging in Patients with Small Intestinal Neuroendocrine Tumours. J. Gastrointest. Surg. 2016, 20, 180-188. [CrossRef]
[PubMed]

Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A_; et al.
Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501-513. [CrossRef] [PubMed]
Yao, ].C.; Guthrie, K.A.; Moran, C.; Strosberg, ].R.; Kulke, M.H.; Chan, J.A.; LoConte, N.; McWilliams, RR.; Wolin, EM.; Mattar, B.; et al.
Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus
Bevacizumab in Patients with Advanced Carcinoid Tumors: SWOG S0518. J. Clin. Oncol. 2017, 35, 1695-1703. [CrossRef]
[PubMed]

Caplin, M.E,; Pavel, M; Cwikla, J.B.; Phan, A.T.; Raderer, M.; Sedlatkova, E.; Cadiot, G.; Wolin, EM.; Capdevila, J.; Wall, L; et al.
Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. . Med. 2014, 371, 224-233. [CrossRef] [PubMed]
Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase
3 Trial of177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. . Med. 2017, 376, 125-135. [CrossRef]

Frilling, A.; Clift, A.K. Therapeutic strategies for neuroendocrine liver metastases. Cancer 2015, 121. [CrossRef]

Oberg, K.; Modlin, I.M.; De Herder, W.; Pavel, M.; Klimstra, D.; Frilling, A.; Metz, D.C.; Heaney, A.; Kwekkeboom, D.; Strosberg,
J.; et al. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015, 16, e435-e446. [CrossRef]

Nicholson, J.K.; Holmes, E.; Kinross, ].M.; Darzi, A.W.; Takats, Z.; Lindon, J.C. Metabolic phenotyping in clinical and surgical
environments. Nature 2012, 491, 384-392. [CrossRef]

Li, 5.-C.C,; Essaghir, A.; Martijn, C.; Lloyd, R.V.; Demoulin, J.-B.B.; Oberg, K.; Giandomenico, V.; Oberg, K.; Giandomenico,
V. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod. Pathol. 2013, 26, 685-696.
[CrossRef]

Malczewska, A.; Frampton, A.E.; Mato Prado, M.; Ameri, S.; Dabrowska, A.E.; Zagorac, S.; Clift, A.K.; Kos-Kudta, B.; Faiz, O.;
Stebbing, J.; et al. Circulating MicroRNAs in Small-bowel Neuroendocrine Tumors. Ann. Surg. 2019. [CrossRef] [PubMed]
Khan, M.S.; Tsigani, T.; Rashid, M.; Rabouhans, ].S.; Yu, D.; Luong, T.V.; Caplin, M.; Meyer, T. Circulating tumor cells and EpCAM
expression in neuroendocrine tumors. Clin. Cancer Res. 2011, 17, 337-345. [CrossRef] [PubMed]

Boons, G.; Vandamme, T.; Peeters, M.; Beyens, M.; Driessen, A.; Janssens, K.; Zwaenepoel, K.; Roeyen, G.; Van Camp, G.; De
Beeck, K.O. Cell-free DNA from metastatic pancreatic neuroendocrine tumor patients contains tumor-specific mutations and
copy number variations. Front. Oncol. 2018, 8. [CrossRef] [PubMed]

Modlin, I.M.; Frilling, A.; Salem, R.R.; Alaimo, D.; Drymousis, P.; Wasan, H.S.; Callahan, S.; Faiz, O.; Weng, L.; Teixeira, N.; et al.
Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies.
Surgery 2015, 159, 336-347. [CrossRef] [PubMed]

Modlin, I.M.; Bodei, L.; Kidd, M. Neuroendocrine tumor biomarkers: From monoanalytes to transcripts and algorithms. Best
Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 59-77. [CrossRef]

Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P,; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y; et al.
Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910-914. [CrossRef]
Asiago, V.M.; Alvarado, L.Z.; Shanaiah, N.; Gowda, G.A.N.; Owusu-Sarfo, K.; Ballas, R.A.; Raftery, D. Early detection of recurrent
breast cancer using metabolite profiling. Cancer Res. 2010, 70, 8309-8318. [CrossRef]

Qiu, Y; Cai, G.; Su, M,; Chen, T; Liu, Y.; Xu, Y;; Ni, Y.;; Zhao, A,; Cai, S.; Xu, L.X,; et al. Urinary Metabonomic Study on Colorectal
Cancer. J. Proteome Res. 2010, 9, 1627-1634. [CrossRef]

Mirnezami, R.; Jiménez, B.; Li, ].V.; Kinross, ].M.; Veselkov, K.; Goldin, R.D.; Holmes, E.; Nicholson, J.K.; Darzi, A. Rapid
diagnosis and staging of colorectal cancer via high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR)
spectroscopy of intact tissue biopsies. Ann. Surg. 2014, 259, 1138-1149. [CrossRef]

Chen, T,; Xie, G.; Wang, X; Fan, J.; Qiu, Y.; Zheng, X,; Qi, X.; Cao, Y.; Su, M.; Wang, X.; et al. Serum and Urine Metabolite Profiling
Reveals Potential Biomarkers of Human Hepatocellular Carcinoma. Mol. Cell. Proteomics 2011, 10, M110.004945. [CrossRef]
[PubMed]

Carrola, J.; Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, LM.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al.
Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Urine. ]. Proteome Res. 2011, 10, 221-230.
[CrossRef] [PubMed]

Maclntyre, D.A,; Jiménez, B.; Lewintre, E.J.; Martin, C.R.; Schéfer, H.; Ballesteros, C.G.; Mayans, ].R.; Spraul, M.; Garcia-Conde,
J.; Pineda-Lucena, A. Serum metabolome analysis by 'H-NMR reveals differences between chronic lymphocytic leukaemia
molecular subgroups. Leukemia 2010, 24, 788-797. [CrossRef] [PubMed]

Kinross, ].M.; Drymousis, P,; Jiménez, B.; Frilling, A. Metabonomic profiling: A novel approach in neuroendocrine neoplasias.
Surgery 2013, 154, 1185-1192. [CrossRef]

Rindi, G.; Kloppel, G.; Couvelard, A.; Komminoth, P; Kérner, M.; Lopes, ].M.; McNicol, A.-M.; Nilsson, O.; Perren, A.; Scarpa, A.; et al.
TNM staging of midgut and hindgut (neuro) endocrine tumors: A consensus proposal including a grading system. Virchows Arch.
2007, 451, 757-762. [CrossRef]


http://doi.org/10.1001/jamaoncol.2017.0589
http://www.ncbi.nlm.nih.gov/pubmed/28448665
http://doi.org/10.1007/s11605-015-2953-6
http://www.ncbi.nlm.nih.gov/pubmed/26394880
http://doi.org/10.1056/NEJMoa1003825
http://www.ncbi.nlm.nih.gov/pubmed/21306237
http://doi.org/10.1200/JCO.2016.70.4072
http://www.ncbi.nlm.nih.gov/pubmed/28384065
http://doi.org/10.1056/NEJMoa1316158
http://www.ncbi.nlm.nih.gov/pubmed/25014687
http://doi.org/10.1056/NEJMoa1607427
http://doi.org/10.1002/cncr.28760
http://doi.org/10.1016/S1470-2045(15)00186-2
http://doi.org/10.1038/nature11708
http://doi.org/10.1038/modpathol.2012.216
http://doi.org/10.1097/SLA.0000000000003502
http://www.ncbi.nlm.nih.gov/pubmed/31373926
http://doi.org/10.1158/1078-0432.CCR-10-1776
http://www.ncbi.nlm.nih.gov/pubmed/21224371
http://doi.org/10.3389/fonc.2018.00467
http://www.ncbi.nlm.nih.gov/pubmed/30443491
http://doi.org/10.1016/j.surg.2015.06.056
http://www.ncbi.nlm.nih.gov/pubmed/26456125
http://doi.org/10.1016/j.beem.2016.01.002
http://doi.org/10.1038/nature07762
http://doi.org/10.1158/0008-5472.CAN-10-1319
http://doi.org/10.1021/pr901081y
http://doi.org/10.1097/SLA.0b013e31829d5c45
http://doi.org/10.1074/mcp.M110.004945
http://www.ncbi.nlm.nih.gov/pubmed/21518826
http://doi.org/10.1021/pr100899x
http://www.ncbi.nlm.nih.gov/pubmed/21058631
http://doi.org/10.1038/leu.2009.295
http://www.ncbi.nlm.nih.gov/pubmed/20090781
http://doi.org/10.1016/j.surg.2013.06.018
http://doi.org/10.1007/s00428-007-0452-1

Cancers 2021, 13, 374 15 of 16

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Rindi, G.; Kloppel, G.; Alhman, H.; Caplin, M.; Couvelard, A.; de Herder, WW.; Erikssson, B.; Falchetti, A.; Falconi, M.;
Komminoth, P; et al. TNM staging of foregut (neuro)endocrine tumors: A consensus proposal including a grading system.
Virchows Arch. 2006, 449, 395-401. [CrossRef]

Edge, S.; Byrd, D.; Compton, C.; Fritz, A.; Greene, F; Trotti, A. AJCC Cancer Staging Manual, 7th ed.; Springer: Chicago, IL, USA, 2010.
Edmands, WM.B.; Beckonert, O.P; Stella, C.; Campbell, A.; Lake, B.G.; Lindon, J.C.; Holmes, E.; Gooderham, N.J. Identification of
human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J. Proteome Res. 2011, 10, 4513—4521.
[CrossRef]

Mokhtari, M.; Rezaei, A.; Ghasemi, A. Determination of Urinary 5-Hydroxyindoleacetic Acid as a Metabolomics in Gastric Cancer.
J. Gastrointest. Cancer 2015, 46, 138-142. [CrossRef]

Nam, H.; Chung, B.C.; Kim, Y.; Lee, K.Y.; Lee, D. Combining tissue transcriptomics and urine metabolomics for breast cancer
biomarker identification. Bioinformatics 2009, 25, 3151-3157. [CrossRef]

Landry, C.S.; Cavaness, K.; Celinski, S.; Preskitt, J. Biochemical prognostic indicators for pancreatic neuroendocrine tumors and
small bowel neuroendocrine tumors. Gland Surg. 2014, 3. [CrossRef]

Arai, K; Terashima, H.; Aizawa, S.I; Taga, A.; Yamamoto, A.; Tsutsumiuchi, K.; Kodama, S. Simultaneous determination of
trigonelline, caffeine, chlorogenic acid and their related compounds in instant coffee samples by HPLC using an acidic mobile
phase containing octanesulfonate. Anal. Sci. 2015, 31, 831-835. [CrossRef] [PubMed]

Jeong, Y.-I.; Kim, D.H.; Chung, K.D.; Kim, Y.H.; Lee, Y.S.; Choi, K.-C. Antitumor activity of trigonelline-incorporated chitosan
nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 5633-5637. [CrossRef]

Liao, ]J.C,; Lee, K.T;; You, BJ.; Lee, C.L.; Chang, W.T.; Wu, Y.C.; Lee, H.Z. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression
involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr. Res. 2015, 59. [CrossRef]
[PubMed]

Bouma, G.; van Faassen, M.; Kats-Ugurlu, G.; de Vries, E.G.E.; Kema, I.P.; Walenkamp, A.M.E. Niacin (Vitamin B3) Supple-
mentation in Patients with Serotonin-Producing Neuroendocrine Tumor. Neuroendocrinology 2016, 103, 489-494. [CrossRef]
[PubMed]

Heng, B.; Lim, C.K.; Lovejoy, D.B.; Bessede, A.; Gluch, L.; Guillemin, G.J. Understanding the role of the kynurenine pathway in
human breast cancer immunobiology. Oncotarget 2016, 7, 6506—-6520. [CrossRef]

Lyon, D.E.; Walter, ].M.; Starkweather, A.R.; Schubert, C.M.; McCain, N.L. Tryptophan degradation in women with breast cancer:
A pilot study. BMC Res. Notes 2011, 4. [CrossRef] [PubMed]

Suzuki, Y,; Suda, T.; Furuhashi, K.; Suzuki, M.; Fujie, M.; Hahimoto, D.; Nakamura, Y.; Inui, N.; Nakamura, H.; Chida, K.
Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer 2010, 67, 361-365.
[CrossRef] [PubMed]

Boyland, E.; Williams, D.C. The metabolism of tryptophan. 2. The metabolism of tryptophan in patients suffering from cancer of
the bladder. Biochem. |. 1956, 64, 578-582. [CrossRef] [PubMed]

Gamagedara, S.; Kaczmarek, A.T.; Jiang, Y.; Cheng, X.; Rupasinghe, M.; Ma, Y. Validation study of urinary metabolites as potential
biomarkers for prostate cancer detection. Bioanalysis 2012, 4, 1175-1183. [CrossRef]

Aronov, PA.; Luo, FJ.-G.; Plummer, N.S.; Quan, Z.; Holmes, S.; Hostetter, T.H.; Meyer, T.W. Colonic contribution to uremic
solutes. J. Am. Soc. Nephrol. 2011, 22, 1769-1776. [CrossRef]

Lees, H.J.; Swann, J.R.; Wilson, L.D.; Nicholson, J.K.; Holmes, E. Hippurate: The natural history of a mammalian-microbial
cometabolite. |. Proteome Res. 2013, 12, 1527-1546. [CrossRef] [PubMed]

Cheng, Y,; Xie, G.; Chen, T.; Qiu, Y.; Zou, X.; Zheng, M.; Tan, B.; Feng, B.; Dong, T.; He, P; et al. Distinct urinary metabolic profile
of human colorectal cancer. J. Proteome Res. 2012, 11, 1354-1363. [CrossRef] [PubMed]

Monteiro, M.S.; Barros, A.S.; Pinto, J.; Carvalho, M.; Pires-Luis, A.S.; Henrique, R.; Jeronimo, C.; Bastos, M.D.L.; Gil, A.M.; Guedes
De Pinho, P. Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma. Sci. Rep.
2016, 6. [CrossRef] [PubMed]

O’Keefe, S.J.D.; Li, J.V,; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, ].M.; Kinross, J.; Wahl, E.; Ruder, E.; et al. Fat, fibre
and cancer risk in African Americans and rural Africans. Nat. Commun. 2015, 6, 6342. [CrossRef] [PubMed]

Tang, WH.W.; Wang, Z.; Levison, B.S.; Koeth, R.A; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal Microbial Metabolism of
Phosphatidylcholine and Cardiovascular Risk. N. Engl. ]. Med. 2013, 368, 1575-1584. [CrossRef] [PubMed]

Dumas, M.E.; Barton, R.H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, ].C.; et al.
Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci.
USA 2006, 103, 12511-12516. [CrossRef]

Jung, J.; Jung, Y.; Bang, E.J.; Cho, S.-I; Jang, YJ.; Kwak, ].M.; Ryu, D.H.; Park, S.; Hwang, G.S. Noninvasive Diagnosis and Evaluation
of Curative Surgery for Gastric Cancer by Using NMR-based Metabolomic Profiling. Ann. Surg. Oncol. 2014, 21, 736-742. [CrossRef]
McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Statistics Subcommittee of the NCI-EORTC
Working Group on Cancer Diagnostics Reporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin.
Pract. Oncol. 2005, 2, 416-422.

Dona, A.C,; Jiménez, B.; Schifer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R,; Pearce, ].T.M.; Holmes, E.; Lindon, J.C.; Nicholson,
J.K. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-Scale Metabolic
Phenotyping. Anal. Chem. 2014, 86, 9887-9894. [CrossRef]


http://doi.org/10.1007/s00428-006-0250-1
http://doi.org/10.1021/pr200326k
http://doi.org/10.1007/s12029-015-9700-9
http://doi.org/10.1093/bioinformatics/btp558
http://doi.org/10.3978/j.issn.2227-684X.2014.10.01
http://doi.org/10.2116/analsci.31.831
http://www.ncbi.nlm.nih.gov/pubmed/26256608
http://doi.org/10.1166/jnn.2014.8818
http://doi.org/10.3402/fnr.v59.29884
http://www.ncbi.nlm.nih.gov/pubmed/26699938
http://doi.org/10.1159/000440621
http://www.ncbi.nlm.nih.gov/pubmed/26335390
http://doi.org/10.18632/oncotarget.6467
http://doi.org/10.1186/1756-0500-4-156
http://www.ncbi.nlm.nih.gov/pubmed/21615916
http://doi.org/10.1016/j.lungcan.2009.05.001
http://www.ncbi.nlm.nih.gov/pubmed/19487045
http://doi.org/10.1042/bj0640578
http://www.ncbi.nlm.nih.gov/pubmed/13373811
http://doi.org/10.4155/bio.12.92
http://doi.org/10.1681/ASN.2010121220
http://doi.org/10.1021/pr300900b
http://www.ncbi.nlm.nih.gov/pubmed/23342949
http://doi.org/10.1021/pr201001a
http://www.ncbi.nlm.nih.gov/pubmed/22148915
http://doi.org/10.1038/srep37275
http://www.ncbi.nlm.nih.gov/pubmed/27857216
http://doi.org/10.1038/ncomms7342
http://www.ncbi.nlm.nih.gov/pubmed/25919227
http://doi.org/10.1056/NEJMoa1109400
http://www.ncbi.nlm.nih.gov/pubmed/23614584
http://doi.org/10.1073/pnas.0601056103
http://doi.org/10.1245/s10434-014-3886-0
http://doi.org/10.1021/ac5025039

Cancers 2021, 13, 374 16 of 16

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

Spraul, M.; Nicholson, ].K.; Lynch, M.].; Lindon, J.C. Application of the one-dimensional TOCSY pulse sequence in 750 MHz
TH-NMR spectroscopy for assignment of endogenous metabolite resonances in biofluids. J. Pharm. Biomed. Anal. 1994, 12, 613-618.
[CrossRef]

Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, ]. K. Metabolic profiling, metabolomic
and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692-2703.
[CrossRef] [PubMed]

Fonwville, ].M.; Maher, A.D.; Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Evaluation of full-resolution J-resolved 1H-NMR
projections of biofluids for metabonomics information retrieval and biomarker identification. Anal. Chem. 2010, 82, 1811-1821.
[CrossRef] [PubMed]

Veselkov, K.A.; Lindon, J.C.; Ebbels, TM.D.; Crockford, D.; Volynkin, V.V.; Holmes, E.; Davies, D.B.; Nicholson, ].K. Recursive
Segment-Wise Peak Alignment of Biological 'H-NMR Spectra for Improved Metabolic Biomarker Recovery. Anal. Chem. 2009,
81, 56-66. [CrossRef] [PubMed]

Dieterle, F,; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of
complex biological mixtures. Application in 'H-NMR metabonomics. Anal. Chem. 2006, 78, 4281-4290. [CrossRef]

Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119-128. [CrossRef]

Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. B 1995, 57, 289-300. [CrossRef]

Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, E; Sanchez, J.C.; Miiller, M. pROC: An open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinform. 2011, 12. [CrossRef]

Cloarec, O.; Dumas, M.-E.; Craig, A.; Barton, R H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, ]J.C.; Holmes, E.;
et al. Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic
'H-NMR Data Sets. Anal. Chem. 2005, 77, 1282-1289. [CrossRef]

Posma, J.M.; Garcia-Perez, I.; De Iorio, M.; Lindon, J.C.; Elliott, P.; Holmes, E.; Ebbels, TM.D.; Nicholson, J.K. Subset optimization
by reference matching (STORM): An optimized statistical approach for recovery of metabolic biomarker structural information
from TH-NMR spectra of biofluids. Anal. Chem. 2012, 84, 10694-10701. [CrossRef]


http://doi.org/10.1016/0731-7085(93)E0028-L
http://doi.org/10.1038/nprot.2007.376
http://www.ncbi.nlm.nih.gov/pubmed/18007604
http://doi.org/10.1021/ac902443k
http://www.ncbi.nlm.nih.gov/pubmed/20131799
http://doi.org/10.1021/ac8011544
http://www.ncbi.nlm.nih.gov/pubmed/19049366
http://doi.org/10.1021/ac051632c
http://doi.org/10.1002/cem.695
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1186/1471-2105-12-77
http://doi.org/10.1021/ac048630x
http://doi.org/10.1021/ac302360v

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Patient Recruitment and Sample Collection 
	Sample Preparation 
	1H-NMR Spectroscopic Analysis of Urine Samples 
	Statistical Analysis of the Spectral Data 

	Conclusions 
	References

