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Simple Summary: The detection of skin moles driven by current deep learning based approaches
yields impressive results in the classification of malignant melanoma. It has been observed that the
specific criteria for in situ and early invasive melanoma highly depend on the anatomic site of the
body. To address this problem, we propose a deep learning architecture based framework to classify
skin lesions into the three most important anatomic sites, including the face, trunk and extremities,
and acral lesions. In this study, we take advantage of pretrained networks,we perform in depth
analysis on database, architecture, and result regarding the effectiveness of the proposed framework.
Experiments confirm the ability of the developed algorithms to classify skin lesions into the most
important anatomical sites with 91.45% overall accuracy for the EfficientNetB0 architecture, which is
a state-of-the-art result in this domain.

Abstract: Over the past few decades, different clinical diagnostic algorithms have been proposed to
diagnose malignant melanoma in its early stages. Furthermore, the detection of skin moles driven by
current deep learning based approaches yields impressive results in the classification of malignant
melanoma. However, in all these approaches, the researchers do not take into account the origin of
the skin lesion. It has been observed that the specific criteria for in situ and early invasive melanoma
highly depend on the anatomic site of the body. To address this problem, we propose a deep learning
architecture based framework to classify skin lesions into the three most important anatomic sites,
including the face, trunk and extremities, and acral lesions. In this study, we take advantage of
pretrained networks, including VGG19, ResNet50, Xception, DenseNet121, and EfficientNetB0, to
calculate the features with an adjusted and densely connected classifier. Furthermore, we perform
in depth analysis on database, architecture, and result regarding the effectiveness of the proposed
framework. Experiments confirm the ability of the developed algorithms to classify skin lesions into
the most important anatomical sites with 91.45% overall accuracy for the EfficientNetB0 architecture,
which is a state-of-the-art result in this domain.

Keywords: deep learning; transfer learning; malignant melanoma; skin cancer; convolutional neural
networks; dermoscopy images

1. Introduction

During the last few years it has been widely observed that malignant melanoma, the
deadliest form of skin cancer, is becoming increasingly aggressive due to a combination
of environment, genetics, and lifestyle. Most skin cancer cases are related to ultraviolet
(UV) light damaging the DNA in skin cells. The statistics released by the American Cancer
Society are alarming. It is projected that the number of new melanoma cases will increase
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by 5.8% in 2021 [1]. Furthermore, it is estimated that 207,390 cases of melanoma will be
diagnosed in the U.S. in 2021, including 106,110 cases in situ (noninvasive) and 101,280 in-
vasive cases, penetrating the epidermis into the skin’s second layer. The staggering rates
show that global action including redefining of medical diagnostic algorithms and early
diagnosis and novel treatment methods are needed in order to achieve control of melanoma
mortality rate reduction and prevention of severe cases.

The most widely used medical diagnostic algorithms include pattern analysis, the
ABCD rule of dermoscopy, and the so-called seven-point checklist, which are based on
a critical, simultaneous assessment of so-called dermoscopic criteria. Argenziano et al.
confirmed that diagnostic algorithms improved the rate of diagnosing pigmented skin
lesions by 10–30% [2]. However, due to the lack of access to large datasets, the algorithms
have not been adapted and adjusted for skin changes depending on the place of origin. It
has been observed that the criteria for melanoma in situ and early invasive melanoma is
highly dependant on the anatomic site of the lesion origin for the three main anatomic sites
including (1) trunk with extremities, (2) face, and (3) palms and soles (acral lesions) [2].

The currently proposed computer-aided methods have been designed to extract and
calculate significant features based on the entire dermoscopic dataset and distinguish
between benign and malignant skin lesions. However, when dealing with melanoma
originating in different parts of the body, no detailed research studies have been published
so far.

This study aims to perform an experimental study in order to determine the ability
of algorithms to recognize the anatomical site based only on dermoscopic images. We
propose a novel framework for distinguishing between pigmented skin lesions based on
site-specific dermoscopic characteristics of skin lesions originating in different anatomic
sites of the body. We achieve this goal with the application of pretrained convolutional
neural networks (CNN), their interpretability, and connection to the domain knowledge.

The information about the body location of the analysed skin lesion can be exploited
as an additional channel in the CNN based architecture or as a parameter determining
the selection of the next step of the classification system in the two-stage decision making
process. Furthermore, it can be very beneficial to add such an algorithm to prove whether
the assigned location seems to be correct or not. During a body examination, several lesions
are analyzed for one patient (sometimes even more than 20). There are systems that require
marking the place of origin right after taking the medical image and those that require
adding anatomical site annotation at a later stage, after registering all skin moles. It seems
that the automatic checking of the origin of the skin mole can be valuable and result in
more accurate detection of malignant melanoma. Moreover, automatic information about
the place of origin of a section for the histopathological examination may also be helpful in
assessing the lesion if it has not been provided at an earlier stage.

The novelty of this work can be summarized as follows:

• We present a new approach based on the adjusted pretrained EfficientNetB0 net-
work architecture for the classification of skin moles into anatomic sites of the body,
which confirms that melanoma-specific criteria occurring in particular sites enable
differentiation between them.

• We compare the outcomes of state-of-the-art pretrained models including VGG19,
ResNet50, Xception, DenseNet121, and EfficientNetB0. We visualize the feature
distribution extracted by each architecture.

• We propose a new approach for model interpretability based on comparing Grad-
CAM heatmaps with the segmentation ground-truth for assessing the skin lesion
classification process.

• We compare and estimate the correlation between feature importance and
domain knowledge.
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1.1. Motivation and Clinical Definition

The main motivation to undertake this research is the difficulty observed in correct
visual assessment of dermoscopic images by inexperienced dermatologists who typically
achieve sensitivity and specificity at around 62–63% [2]. Furthermore, the varied appear-
ance and relevance of melanoma-specific criteria present in skin lesions originating in
different anatomic sites can cause serious problems during visual assessment. In recent
years, the diagnostic criteria have been proposed and tested by several authors [3–5].

In Table 1, we present the most important melanoma-specific criteria for melanoma in
situ and early invasive melanoma, which contribute to the diagnosis where the frequency
of the criteria is >70% [2]. For thick and advanced melanomas, the preformed anatomic
structures responsible for the site-specific dermoscopic appearance are already destroyed
and are independent of the various sites. Table 1 shows the dermoscopic criteria that
are commonly observed in skin lesions heavily dependent on the anatomic site of the
body. For trunk and extremities, the more common melanoma-specific criteria include
multi-component pattern and atypical pigment networks, in contrast to the face where
reticular patterns and atypical pigment pseudonetworks are always present. For skin moles
located on palms and soles, the presence of parallel-ridge patterns is considered highly
important (Figure 1).

Table 1. Common melanoma-specific criteria for melanoma in situ and invasive melanoma detection according to the
anatomic site of the body based on [2].

Anatomic Site Criterion Description Frequency
Trunk, extremities Multicomponent pattern Combination of few dermoscopic structures Very common

Atypical pigment network Irregular brown to black network Very common
Irregular dots and globules Black or brown oval structures Common
Irregular streaks Irregular linear structures Common
Irregular pigmentation Pigmented areas with irregular size and distribution Common

Face Reticular pattern Diffuse pigmentation of the erpidermis or papillary dermis Always present
Atypical pigment pseudonetwork Advanced morphological structures by melanoma progression Always present

Palms and soles Parrallel-ridge pattern Pigmentation along the cristae superficiales Very common
Irregular dots/globules Black or brown oval structures Common
Irregular pigmentation Pigmented areas with irregular size and distribution Common

Figure 1. Dermoscopic images of in situ or early invasive melanomas presenting different dermoscopic features according
to the anatomic site: (left) melanoma on the leg characterized by an atypical pigment network and irregular streaks,
(middle) melanoma on the face characterized by reticular pattern, and (right) acral melanoma characterized by parallel-
ridge pattern and irregular pigmentation.

1.2. Related Studies

In recent years, numerous clinical decision-support systems and computer-aided
diagnostic systems have emerged for the automatic diagnosis of melanocytic lesions. These
systems implement deep neural networks capable of classification of malignant and benign
lesions. To the best of our knowledge, this study represents the first attempt to classify skin
lesions into three main anatomic sites and proposes a new benchmark for the classification
of skin lesions dedicated separately for each subtype. These subtypes include trunk with
extremities, face, and palms and soles (acral lesions). However, we present the most recent
studies concerning the classification of skin lesions from the respective anatomical regions.
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Yu et al. [6] created a VGG-16 network trained on dermoscopic images of hands
and feet consisting of acral melanoma and benign nevi confirmed by histopathological
examination. This binary classification network demonstrated true positive, true negative,
and area-under-the-curve measures similar to expert dermatologists and was able to
outperform junior physicians. However, the dataset used was comparatively small—a total
of 724 dermoscopic images consisting of 350 images of acral melanoma and 374 images of
benign nevi.

Le et al. [7] devised a ResNet50 ensemble network for the classification of seven skin
lesion types, including melanoma. This network used class weighing with a focal loss
function to address the class imbalance of the HAM10000 dataset used for training their
network. They achieved top-1, top-2, and top-3 accuracy, 93%, 97%, and 99%, respectively.
This work observed that the gradual removal of the surrounding skin using U-Net segmen-
tation resulted in increasingly reduced network performance. This suggests that the skin
textures surrounding lesions are an important contributing factor to network accuracy and
may be a vital pointer to any future networks trained to identify lesions by anatomical site.

Winkler et al. [8] investigated the diagnostic performance of FotoFinder Moleanalyzer
Pro [9]—a commercially available CNN. Their experiment involved a binary classification
(malignant/benign) for different melanoma localizations and subtypes using six dermo-
scopic datasets, which included melanomas of acral skin. This study noted that for acral
melanomas, the system showed reduced sensitivity at high specificity.

Han et al. [10] created a localization network comprising a blob detector, a fine-
image selector, and disease classifier. Their heterogeneous dataset comprised unprocessed
photographs of malignant and benign lesions, which included lesions located on the head
and neck. This study noted the limitations of using only dermoscopic images to train deep
learning models that would be used in real-world settings due to the large number of
complex shapes present on the human body, including acne and acne scars.

González-Cruz et al. [11] also noted limitations of datasets used in deep learning
research for melanoma detection. They analyzed a dataset of 2849 high quality dermoscopic
images of skin tumours to determine suitability for machine learning analysis. Their
findings indicate that a large number of tumours located on the head, neck (76.8%), and
trunk (>53.1%) had potential exclusion criteria due to absence of normal surrounding skin
and pigmentation.

2. Database Specification

Nowadays, the most widely used dermoscopic skin lesion image database is the fourth
ISIC dataset released by [12–14].

The ISIC 2019 dataset contains 33,569 dermoscopic images with patient metadata
for the training set, indicating anatomical site of 22,700 lesions from a total of 25,331.
Part of the ISIC 2019 dataset comprises the HAM10000 dataset, constituting the majority
of dermoscopic images that are associated with the anatomical site. HAM10000 has
been released by [12] and contains 11,526 dermoscopic images with metadata indicating
anatomical site for 9781 lesions in the training set. The dataset contains 7222 dermoscopic
images representing skin lesions originating in three different anatomic sites of the body
including 6225 trunk/extremities, 702 face/head, and 295 acral lesions.

Due to highly imbalanced class composition, we augmented acral and face lesions
by randomly applying image transformations such as rotation, sheer, and zoom. Each
acral image was augmented 21 times, and each face image was augmented nine times,
creating 6195 and 6318 artificial images, respectively. Augmentation was completed after
we split the data into train, validation, and test subsets to avoid leaking information
between subsets.

Data Visualization

In order to understand the distribution of the dataset, we visualize the data distri-
bution of HAM10000 using two-dimensional reduction techniques—Uniform Manifold
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Approximation and Projection (UMAP) [15] and the t-distributed Stochastic Neighbor
Embedding technique (t-SNE) [16]. UMAP is a manifold learning technique for dimension
reduction, and t-SNE is an unsupervised method that maps similarities between high-
dimensional data into a probability distribution in such a manner that similar objects
have a higher probability, minimizing the Kullback–Leibler divergence between the two
distributions [16]. Figure 2 shows the visualisation of dataset distribution using UMAP
and t-SNE and the relationship between anatomical sites of the body.

Figure 2. Visualization of HAM10000 dataset distribution on three anatomic sites with UMAP and
t-SNE data transformation. The blue dots represent trunk and extremities, orange dots represent
acral, and green dots represent face and head skin lesions.

We observe that skin lesions originating on the face form clusters of green dots while
acral cases show irregular distribution. In order to analyze the datasets, we have calculated
statistical metrics for (IntraC) intra-class and (InterC) inter-class ratio together with the
ratio between InterC and IntraC (Ratio), computed using the Euclidean distance. Moreover,
we analyzed the Silhouette Coefficient (Silh.), which is given by [17] as follows:

Silh. =
b− a

max(a, b)
(1)

where a is the mean distance between a sample and all other points in the same class, and b
is the mean distance between a sample and all other points in the next nearest cluster. The
best value is 1 and the worst value is −1. Values near zero indicate overlapping clusters.
Another relevant metric is the Calinski–Harabasz (CH) index, also known as Variance Ratio
Criterion, and it represents the ratio of the sum of between-cluster dispersion and of within-
cluster dispersion for all clusters within the dataset. The dispersion is given as the sum of
distances squared [18]. Additionally, the Davies–Bouldin index has been calculated, which
signifies the average similarity between clusters as a measure that compares the distance
between clusters with the size of the clusters themselves and is defined as follows [19]:

DB =
1
k

k

∑
i=1

max
i 6=j

Rij (2)

where
Rij =

si + sj

dij
(3)

and si is the average distance between each point of cluster i and the centroid of that cluster,
dij is the distance between cluster centroids, and k is the number of clusters.

In Table 2, we present the statistical analysis of the HAM10000 dataset in terms of the
distribution of lesions regarding the anatomical site of the body. We observe that the com-
plexity of the underlying classification task is very high and that regular machine learning
algorithms will not be able to provide sufficient results. A high intra-class distance value
indicates that cases are widely distributed in the space and hardly separable. However, as
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the inter-class distance is higher, measuring the difference between two classes, it indicates
the possibility of separating the data into anatomical sites.

Table 2. Statistical analysis of the dataset including calculations for the entire HAM10000 dataset
regarding malignant and benign lesions as well as distribution in the acral and non-acral subsets.

Anatomic Site # Total Nb. #Melanoma Cases
Metrics

IntraC InterC Silh CH DB
Acral lesions 295 16 331.30 360.62 0.12 3.87 3.96
Face/head 702 102 317.65 324.655 0.03 6.75 6.84

Trunk/extremities 6225 490 338.26 356.12 0.12 90.27 4.57
HAM10000 7222 608 338.40 353.92 0.10 95.21 4.88

Furthermore, Figure 3 presents the distribution of melanocytic lesions within the
disjoint dataset into the anatomic site. We observe that the red dots, representing malignant
lesions, form areas and shapes that will be easier to separate than in the entire dataset. This
is further confirmed by Table 2, which shows that the Silh. score and DB values indicate a
better partition between trunk/extremities and the entire dataset.

(a) (b)

(c) (d)

Figure 3. Interpretation of the 3D t-SNE plot visualization of the HAM10000 dataset where the red dots indicate melanoma
cases while gray dots represent benign lesions. The following figures present the distribution of malignant and benign cases
for the (a) entire dataset, (b) trunk-extremities dataset, (c) face-head dataset, and (d) acral dataset.
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3. Method
3.1. Determination of the Anatomic Site of the Skin Lesion

An overview of our method is illustrated in Figure 4. We reuse deep CNN models
pretrained on the ImageNet dataset for feature extraction using the prepared HAM10000
dataset for the classification of skin lesions into anatomic sites of the body. We adjust the
classifier, which has a three layer structure. As a result, we generate classification outcomes
for the most widely used pretrained networks and analyze them. We further employ the
Grad-CAM algorithm to generate heatmaps in order to conduct multi-task learning model
interpretability.

Figure 4. The streamline of our proposed framework. We use pretrained deep learning models in-
cluding VGG19, ResNet50, DenseNet121, and EfficientNetB0 for feature extraction on the HAM10000
dataset. We employ the extracted features to conduct the multi-class classification task. Finally, we
perform model evaluation and interpretation based on the heatmaps.

3.2. Separability Analysis Using Deep Learning

We analyze the capability of the existing deep learning frameworks in discriminating
three anatomic sites (trunk and extremities, acral, and face/head). This analysis will inform
the design of our proposed method. For this preliminary analysis, we trained the models
for 25 epochs without pretrained models and without data augmentation. Figure 5 presents
the visualization of the data distribution by each network. The statistical metrics presented
in Table 3 confirm that the three anatomic sites are separable and create clusters, where the
intra-class values are lower and inter-class values are much higher. We observed that all
of the implemented pretrained networks achieved high values for the CH index, which
indicates huge potential in obtaining good results for the classification task. Considering
the small size and imbalanced nature of the dataset, we propose several strategies to
overcome these challenges in the following section.
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Figure 5. Visualization of full dataset feature distributions extracted with VGG19, ResNet50, Xception, DenseNet121, and
EfficientNetB0. These graphs visually illustrate the separability of three anatomic sites.

Table 3. Statistical analysis on the separability of three anatomic sites (trunk, acral, and face/head) of the HAM10000 dataset
using UMAP visualization on deep learning methods.

Method
Metrics

Intra (Trunk) Intra (Acral) Intra (Head) Inter-Class Silhoutte CH DB
Input 4.2582 4.2815 3.3802 4.5036 −0.0016 251.8074 3.8125

VGG19 7.0763 3.4522 3.7104 7.5375 0.0658 822.4723 1.5865
ResNet50 3.9671 1.4387 1.7728 9.9075 0.4192 3463.3257 0.5819
Xception 3.0442 3.6002 3.0653 17.6211 0.8052 15,137.3670 0.3198

DenseNet121 4.2608 1.9341 1.7729 6.5770 0.3685 1919.5011 0.7422
EffcientNetB0 4.4417 2.2625 2.0617 9.1643 0.5488 3458.3440 0.6102

3.3. Pretrained Model Based Architecture

Due to our limited and imbalanced dataset we take advantage of the transfer learning
concept which indicates the effectiveness of reusing pretrained CNN architectures to extract
the feature representation. There are several strategies of performing transfer learning
including fine-tuning and feature extraction. However, due to our problem specification we
propose a CNN based architecture which consists of a pretrained convolutional base and
an adjusted classifier. We tested several state-of-the-art architectures including VGG19 [20],
ResNet50 [21], DenseNet121 [22] and the latest EfficientNetB0 [23]. EfficientNet models
which have been introduced in 2019 by Tan et al. are based on the inverted bottleneck
residual blocks of MobileNetV2 and squeeze-and-excitation blocks. They use a compound-
ing scaling method which scales width, depth, and resolution together instead of scaling
only one model attribute. The EfficientNetB0 architecture has been proposed by a multi-
objective neural architecture search which optimizes both accuracy and floating-point
operations. Furthermore, a new activation function, Swish, has been proposed which
shows superior performance for deeper networks. Swish is a multiplication of a linear and
a sigmoid activation [23]:

Swish(x) = x ∗ sigmoid(x) (4)

On top of the base, we have adjusted a fully connected classifier that contains the
following layers: dense layer with 256 neurons and ReLU activation function, additional
dropout layer which randomly sets input units to 0 with frequency of rate 0.7 at each
step during training time as a regularization technique for reducing overfitting [24]. The
architecture closes with a dense layer with the number of neurons corresponding to the
number of classes and Softmax activation function for the predict a multinomial probabil-
ity distribution.

3.4. Deep Learning Architecture Training

For each of the pretrained architectures including VGG19, ResNet50, Xception,
DenseNet121, and EfficientNetB0, we deployed randomized search (RandomizedSearchCV)
for optimizing hyperparameters including number of epochs, optimizer, and batch size [25].



Cancers 2021, 13, 6048 9 of 14

The algorithm selected 20 random sets of parameters from an established range, main-
taining an equal distance in a search space. We tested batch size and number of epochs
from ranges batchsize = 8, 16, . . . , 512 and nbepochs = 5, 10, . . . , 50, respectively, and tested
several optimizers including RMSprop, SGD, Adadelta, Adam, and Adamax. The learning
rate was left at default, as it greatly varies between different optimizers. Hyperparameter
optimization was performed using 3-fold cross-validation on a training set. By training
our model repeatedly with different parameters from this grid, we were able to select a
more narrow area of parameters. Then, we used Grid Search, which performs an exhaus-
tive search on all different hyperparameter combinations, for a much smaller range of
parameters. Finally we empirically tuned those numbers further by analysing the model’s
behaviour on a separate validation set and, for example, stopping the training earlier to
avoid overfitting. After deciding the final set of parameters for each network architecture,
we trained the models again, five times each, this time also checking the model’s perfor-
mance on a completely separate test set. Achieved results for each training were averaged.
Final parameters and results are presented in Table 4.

In Figures 6 and 7, we show the average training and validation accuracy for DenseNet121
and EfficientNetB0 architectures, which are the top two performers, and achieved the
highest score in classifying skin lesions into the three main anatomical sites.
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Figure 6. Average training and validation accuracy (left) and loss (right) during training of DenseNet121 for five times
with maximal and minimal deviation areas marked in color (blue for training and red for validation).
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Figure 7. Average training and validation accuracy (left) and loss (right) during training of EfficientNetB0 for five times
with maximal and minimal deviation areas marked in color (blue for training and red for validation).

4. Experimental Results
4.1. Statistical Metrics

We compare the ability of state-of-the-art algorithms in classifying dermoscopic images
of skin moles into three main anatomic sites of the body, including trunk/extremities,
face/head, and acral lesions on five state-of-the-art deep learning networks, i.e., VGG19,
ResNet50, Xception, DenseNet121, and the latest EffcientNetB0. The evaluation of the
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implemented and optimized architectures has been performed by using 20% of the dataset.
The test results have been calculated five times and averaged.

The following performance metrics have been calculated based on the confusion
matrix: accuracy (ACC), precision (PPV, positive predicted value), recall (SE, Sensitivity),
and F1-score, where we specify the following: TP (true positive), FN (false negative), TN
(true negative), and FP (false positive) values.

Accuracy, which measures statistical bias and systematic error, refers to the closeness
of the measurements to a specific value and can be expressed as follows.

ACC =
TP + TN

TP + FN + FP + TN
(5)

Precision refers to random errors, and it is a measure of statistical variability, which
describes the closeness of the measurements to each other and can be written as follows.

PPV =
TP

TP + FP
(6)

Recall measures the proportion of actual positives that are correctly identified as such
and is defined as follows.

SE =
TP

TP + FN
(7)

F1-score (also F-score) considers both the precision and the recall of the test to compute
the final score and is a measure of the test’s accuracy. The F-score can be expressed
as follows.

F1 =
2 · PPV · SE
PPV + SE

(8)

4.2. Effectiveness of the Proposed Framework

From the results presented in Table 4, we can conclude that all models were able to cor-
rectly recognize anatomic sites with high accuracy. Table 4 presents the evaluation metrics
for each network architecture for the best set of training hyperparameters (optimised using
grid search method described in Section 3.4). EfficientNetB0 achieved 91.45% accuracy
and 91.5% F1-score, precision, and recall, which were the best results when trained with
45 epochs, batch size of 128, and the Adamax optimizer [26]. High precision and recall
indicate the overall good performance of the model, with no visible biases. From the group
of other architectures, only DenseNet121 managed to overcome the barrier of 90%, with
others being slightly worse.

Table 4. Anatomic body site classification results for different neural network architectures with
optimal set of parameters for each network and input images resized to 224 × 224.

Architecture
Optimal Training Hyperparameters Metrics
Optimizer Batch Size Epochs Accuracy Precision Recall F1

VGG19 SGD 64 25 0.883 0.89 0.89 0.89
ResNet50 SGD 32 50 0.898 0.90 0.90 0.90
Xception Adadelta 128 35 0.867 0.87 0.87 0.86

DenseNet121 Adam 64 25 0.902 0.90 0.90 0.90
EfficientNetB0 Adamax 128 45 0.9145 0.915 0.915 0.915

In addition to mentioned statistical metrics, we also assessed the effectiveness of the
proposed framework using various visualisation and interpretability techniques, including
our own metric, which we further describe in the next section.

4.3. Model Interpretability Based on Heatmaps Analysis

In order to improve model explainability, we used the Grad-CAM visualization algo-
rithm [27], which creates a heatmap that shows which parts of the input image contributed
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the most to the classification. Furthermore, we performed an overlapping of the heatmaps
with the segmentation ground-truth provided by Tschandl et al. [28].

In Figure 8, we present two examples for each anatomic site with their corresponding
heatmaps for pretrained architectures. Regions on which the network focuses are marked
in bright colors superimposed on the input image. From these images, we can draw several
conclusions. Firstly, we observe that the proposed architectures do not always concentrate
on the region of interest. For VGG19 and ResNet50, the classification is mostly based
on the surrounding area resulting in a low Softmax score (p value) within the range of
0.4–0.7, while DenseNet121 and EfficientNetB0 calculated the final score based on the skin
lesion area and achieved the highest p value close to one. Furthermore, EfficientNetB0,
which achieves the best results, tends to take very large areas into consideration instead of
focusing on a single area.

Figure 8. Grad-CAM visualization results. We compare the visualization results for each integrated pre-trained network
based on the classification of skin lesion into the anatomic site of the body. The input image is shown on the top, and P
denotes the Softmax score.

Acral cases were found to be mostly classified based on the background of the skin,
which is connected to the papillary pattern occurring in palms and soles. Trunk and face
skin lesion images are classified based on the area of the lesion. These results provide
strong evidence of the importance of differentiating between skin lesions originating in
different parts of the body.

Moreover, we have proposed and calculated an overlapping index that compares the
areas between heatmaps and segmentation ground-truth images. It confirms to what extent
the classification is based on the area of the skin lesion. The Heatmapindex is defined as the
sum of intensity pixels in the heatmap within the segmentation area divided by the sum of
all pixels in the heatmap. The formula is given by the following:

Heatmapindex =
∑(x,y)ε|H∩S| H(x, y)

∑(x,y)εH H(x, y)
· 100% (9)
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where H is the heatmap image, and S is the binary segmentation mask. Based on the
proposed overlap coefficient, we can observe (see Figure 9) and confirm that the classifi-
cation has been mostly performed based on the skin lesion area for skin lesions originat-
ing in trunk/extremities and face, while the acral lesions have been classified based on
the surroundings.

Figure 9. Examples of skin lesions originating in different anatomic sites with the corresponding heatmap created by the
EfficientNetB0 model and segmentation ground-truth marked with red color. Heatmapindex indicates to what extent the
classification is based on the area of the skin lesion.

4.4. Software and Hardware

This research study was conducted using Python 3.7 programming language with
Keras 2.3 [29] and scikit-learn [30] libraries. The models were trained on a NVIDIA RTX
2070 Super GPU (8 GB) with 48 GB RAM and Intel i7 Processor.

5. Conclusions

In this study, we developed a deep learning architecture based framework capable
of skin lesion classification of the three main anatomical sites trained on the HAM10000
dataset. The network was shown to have high accuracy (>91%) in the classification of
face, trunk and extremities, and acral anatomical regions. Furthermore, a heatmap analysis
was used to determine locations on dermoscopic images in which the network based its
classification on. The resulting architecture shows that features within dermoscopic images
can be used to determine anatomical locations of skin lesions.
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