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Simple Summary: Neuroblastoma (NB) is a solid childhood tumor and needs to be treated with
multimodal therapy including radiation in advances stages. TrkA/NTRK1 expression is a hallmark
of NB with excellent prognosis, but the impact of TrkA/NTRK1 on radiation response is largely
unknown. Here, we report that human neuroblastoma cell lines engineered to express TrkA/NTRK1
in tightly controlled systems fail to activate the G2/M cell cycle checkpoint upon irradiation, which
recapitulates the effects of ATM or ATR inhibition. Our findings point to a hitherto unrecognized
TrkA/NTRK1-mediated wiring of the radiation response in NB cells.

Abstract: High expression of the receptor tyrosine kinase TrkA/NTRK1 is associated with a favorable
outcome in several solid tumors of childhood including neuroblastoma. During development,
TrkA/NTRK1 governs migration and differentiation of neuronal precursor cells, while it is associated
with mitotic dysfunction and altered DNA damage response, among others, in neuroblastoma. Here,
we used human neuroblastoma cell lines with inducible TrkA/NTRK1 expression to mechanistically
explore the role of TrkA/NTRK1 signaling in checkpoint activation after DNA damage induced
by ionizing radiation (IR). TrkA/NTRK1 activated cells showed increased short-term cell viability
upon IR compared to vector control cells. This was accompanied by a deficient G2/M-checkpoint at
both low (1 Gy) and high doses (4 Gy) of IR. In a tightly controlled setting, we confirmed that this
effect was strictly dependent on activation of TrkA/NTRK1 by its ligand, nerve growth factor (NGF).
TrkA/NTRK1-expressing cells displayed impaired ATM and CHK1 phosphorylation, resulting in
stabilization of CDC25B. In line with these findings, ATM or ATR inhibition recapitulated the effects
of TrkA/NTRK1 activation on the IR-induced G2/M-checkpoint. In conclusion, we here provide first
evidence for a previously unrecognized function of NTRK signaling in checkpoint regulation and the
response to IR.

Keywords: TrkA/NTRK1; irradiation; neuroblastoma; G2-checkpoint; cell cycle

1. Introduction

Neuroblastoma NB comprises 8–10% of all childhood cancers, accounts for 15% of
pediatric cancer deaths, and is the most common solid tumor in childhood [1]. The tu-
mor derives from primitive sympathetic neural precursors and most often is found in
the adrenal medulla [2]. A hallmark of NB is its highly heterogeneous disease outcome.
Clinical courses range from spontaneous regression to the development of metastasis
or relapse accompanied by therapy resistance and infaust prognosis [3]. Spontaneous
tumor regression is frequently observed in infants below 18 months of age, even without
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chemotherapy [4]. On the other hand, the survival rate for children 18 months or older is
only 40–50%, as neuroblastomas are often unresectable, metastatic, and require intensive
multi-modal therapy [5]. Only about 1–2% of children with neuroblastoma have a genetic
predisposition to the disease [6]. Hereditary neuroblastomas are caused by germline muta-
tions in ALK (anaplastic lymphoma kinase, 75%) [7,8] or PHOX2B (paired-like homeobox
2B gene; 5%) [9]. Nevertheless, most neuroblastomas occur spontaneously with the un-
derlying factors remaining largely unknown. The clinical heterogeneity of neuroblastoma
is reflected by its variety of biological and genetic features. Important molecular features
correlating with the differences in clinical outcome are telomerase activation [10], the
status of the MYCN oncogene, which is amplified in about 20% of all NB [11], loss of
heterozygosity at chromosomes 1p [12] or 11q [13], trisomy of 17q [14], and high expression
of the neurotrophin receptor TrkB/NTRK2 [15], all of which are linked to unfavorable
outcome [16]. Near-triploidy [17] and a high expression of TrkA/NTRK1 [18], on the other
hand, are associated with more benign tumors that often regress spontaneously [19]. We
and others have shown in in vitro models that activation of TrkA/NTRK1 by NGF induces
reprogramming of signaling pathways by altering gene expression profiles, proliferation,
and neuronal growth [20,21]. Expression of TrkA/NTRK1 has also been linked to het-
erotypic cell interactions enabling neuroblastoma cells to communicate with immune cells
and stromal cells [22]. Moreover, gene expression profiling data also suggested that NB
cells engineered to constitutively express TrkA/NTRK1 regulate factors associated with
non-homologous end-joining. Gene expression analyses of DNA repair-factors revealed
an up-regulation of the NHEJ-factor XRCC4 in SY5Y-NB cells upon ectopic expression of
TrkA/NTRK1 [23], but the consequences of TrkA/NTRK1 on cell cycle regulation upon IR
remained elusive.

It is known that several cancers acquire multiple defects in checkpoint signaling,
among which the aberrant transition from G2 to M phase plays a crucial role [24]. Therefore,
G2 checkpoint signaling modulation has been widely investigated in pre-clinical and
clinical settings. Two of the master regulators of the G2 checkpoint are ATM and ATR,
which function through activation of their respective downstream kinases, Chk1 and Chk2
and several other DNA-damage response proteins [25–27]. These key regulators of the
G2 checkpoint have been identified as targets for inhibitor development and several of
these inhibitors are now evaluated in clinical trials for several cancer entities. Ionizing
radiation (IR) is a promising treatment modality in many tumor types with altered DNA
double strand breaks (DSBs) repair. DSB repair pathways are shown to cooperate with
DNA damage cell cycle checkpoints [28,29] to safeguard genomic stability when cells are
exposed to IR. Thus, inhibition of checkpoint proteins in combination with IR is deemed an
attractive combinatorial treatment regimen. Understanding molecular circuits governing
the checkpoint response is crucial for defining patient populations, which will benefit from
such treatment modalities [30].

As current therapeutic regimens of NB also include radiotherapy, we here evaluated
the response of neuroblastoma cells to IR as a function of TrkA/NTRK1 expression, which
is a master regulator of NB biology. For this purpose, we used existing [21] and newly es-
tablished pre-clinical models engineered to conditionally express TrkA/NTRK1 to evaluate
differential responses when cells were irradiated in the presence or absence of TrkA/NTRK1
activation. Our findings imply that TrkA activation is correlated with a defective G2/M
checkpoint upon irradiation. We demonstrate that TrkA/NTRK1 activation overrides the
G2/M checkpoint by down-regulating both, ATM-Chk2 and ATR-Chk1 signaling.

2. Results
2.1. Inducible Expression of TrkA/NTRK1 in Human Neuroblastoma Cell Lines Increases
Short-Term Survival upon Ionizing Radiation (IR)

To study the immediate and long-term effects of TrkA/NTRK1-signaling upon expo-
sure to IR, TrkA/NTRK1-negative human neuroblastoma cell lines, SY5Y and Kelly, were
engineered to conditionally express TrkA/NTRK1 upon addition of tetracycline (TET) and
designated SY5Y-TRA and Kelly-TRA, respectively. We first validated that NTRK1 mRNA
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expression is restricted to SY5Y-TRA and Kelly-TRA cells exposed to TET (Figure 1A,B).
Furthermore, activation of TrkA/NTRK1 in SY5Y- TRA and Kelly TRA was only observed
upon TrkA/NTRK1 activation by its ligand, NGF (Figure 1C,D).
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Figure 1. Inducible expression and activation of TrkA/NTRK1 in SY5Y-TRA and Kelly-TRA cells
and the impact on proliferation upon ionizing radiation. (A,B) SY5Y and Kelly cells were engineered
to express TrkA/NTRK1 upon addition of tetracycline (TET). The suffix “-TR” indicates the presence
of the TET-repressor only, while the suffix “-TRA” refers to cells harboring the TR and the TET-
responsive element controlling TrkA/NTRK1 expression. Shown are mRNA levels of TrkA/NTRK1
in the cell lines indicated. Data were obtained by qPCR and normalized to the expression of the house
keeping gene, GAPDH (n = 3 from three independent experiments). (C,D) Western blot showing
protein expression of TrkA/NTRK1 (labelled “TrkA”) as well as TrkA/NTRK1 activation (indicated
by receptor phosphorylation, labelled “p-TrkA”). TrkA/NTRK1 activation is only observed in SY5Y-
TRA and Kelly-TRA cells upon addition of the TrkA/NTRK1-ligand, NGF. Original Western Blot
data are shown in Supplementary Figure S1 (E,F) TrkA/NTRK1 activation results in significantly
higher cell proliferation upon IR compared to parental cells and controls. Asterisks indicate signif-
icant differences between irradiated cells with and without TrkA/NTRK1 activation as indicated
(**** = p < 0.0001, *** = p < 0.001, ** = p < 0.01). Irradiation was performed at different dose intensities
(2, 4, 6, 8 or 10 Gy). Proliferation was evaluated by MTT assay after 96 h. Error bars show the SEM
from three independent experiments.
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To evaluate the consequences of the response to IR depending on TrkA/NTRK1
expression, SY5Y-TRA and Kelly-TRA cells as well as controls were exposed to different
doses of IR. Activation of TrkA/NTRK1 resulted in residual proliferation activity that was
significantly higher as compared to controls (Figure 1E,F).

2.2. TrkA/NTRK1-Activation Impacts on Cell Cycle Distribution and Induces Impaired G2-Arrest
in Irradiated Neuroblastoma Cells

To explore underlying reasons for the TrkA/NTRK1-mediated effects on short-term
proliferation, we analyzed changes in cell cycle distribution in SY5Y-TRA and Kelly-TRA
cells by flow cytometry after exposing cells to IR. Analyses of cells irradiated during the
S-phase of the cell cycle revealed that activation of TrkA/NTRK1 resulted in an increased
fraction (>10%) of cells in G2-phase at all time points analyzed upon high-dose IR (4 Gy)
(Supplementary Figure S2), but not at 1 Gy (Supplementary Figure S2). In the absence
of TrkA/NTRK1-expression, no cells were observed in G2-phase at 4 h post-IR in the
high-dose setting (4 Gy), while low-dose irradiation did not affect the fraction of cells in G2
irrespective of TrkA/NTRK1 expression and activation. To further discriminate mitotic cells
from cells in G2 phase, SY5Y-TRA and Kelly-TRA cells were again irradiated and stained
for the mitotic marker, H3pS10. The fraction of H3pS10-positive cells was then counted
and used to calculate the mitotic index (MI, Figure 2A). In cells without TrkA/NTRK1
activation, the MI decreased to almost undetectable levels in SY5Y cells (SY5Y-TR) and was
found reduced by >50% in Kelly-TR cells, in line with an intact G2-checkpoint upon low-
dose (1 Gy) IR (Figure 2B,D). By contrast, the MI of cells with TrkA/NTRK1 expression and
activation was significantly elevated (Figure 2C,E), indicating an impaired G2 checkpoint in
these cells. Notably, this effect was strictly dependent on TrkA/NTRK1 activation by NGF.
To better understand, if the cell cycle phase had an impact on the checkpoint response, we
additionally labelled cells with EdU, which stains cells in S phase. Cells irradiated in S
phase presented with a strong G2 arrest (Supplementary Figure S3). This also explains the
increased proportion of G2/M phase cells at 4 h after irradiation. To further characterize
the effect of dose intensity on checkpoint response, MIs were determined in a dose range
between 0.5 to 4 Gy for SY5Y-TRA and Kelly-TRA cells (Figure 2F,G). At all doses analyzed,
activation of TrkA/NTRK1 induced a G2 checkpoint defect in both SY5Y-TRA and Kelly-
TRA cells indicating that the TrkA/NTRK-mediated checkpoint defect is independent of
the applied IR dose. Taken together, different layers of evidence suggested a less stringent,
dose-independent G2-checkpoint upon irradiation induced by TrkA/NTRK1 activation in
neuroblastoma cells in vitro.

To check whether an IR-induced G2 checkpoint defect is specific for TrkA/NTRK1
or is a general consequence of tyrosine kinase activation in cancer cells, we used EGFR-
overexpressing lung cancer cells, A549 and H1975, as a control. Activation of EGFR in
A549 and H1975 cells was achieved by addition of the EGFR-ligand, EGF, 24 h before
exposure to 1 Gy. In both cell lines, IR strongly decreased the MI, indicating an intact
G2 checkpoint irrespective of EGFR activation (Supplementary Figure S4). These results
excluded an impaired G2 checkpoint as a generic response of tyrosine kinases activation
upon irradiation.

To demonstrate that the observed checkpoint defect was dependent on TrkA/NTRK1
activation, cells were again irradiated in the presence of absence of the specific Trk-inhibitor,
LOXO 101, which completely abolished phosphorylation of NTRK1 in both, SY5Y-TRA and
Kelly-TRA cells (Figure 3A). Addition of LOXO-101 prior to IR restored the G2 checkpoint
response in SY5Y and Kelly cells with TrkA/NTRK1 activation indicated by a significant
decrease of the number of cells in mitosis (Figure 3B,C). Notably, LOXO101 treatment
could not fully restore the checkpoint response in SY5Y-TRA cells upon TrkA/NTRK1
activation, while there was no significant difference between Kelly-TR and Kelly-TRA
cells with respect to G2 checkpoint activation. Nevertheless, these findings suggest that
TrkA/NTRK1 activation is causally involved in the impaired G2/M-checkpoint upon IR.
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Figure 2. TrkA/NTRK1 activation abrogates the G2-checkpoint upon IR and induces a dose-
independent G2 checkpoint defect in both SY5Y-TRA and Kelly-TRA cells. (A) Representative
dot plots indicate the mitotic cell fraction (mitotic index [MI], marked by squares), which was de-
fined as the number of H3pS10-positive cell divided by the total number of cells at 1 h post IR.
(B) SY5Y-TR cells and (D) Kelly-TR cells were exposed to IR (1 Gy) and the MI determined at time
points indicated. (C) SY5Y-TRA cells and (E) Kelly-TRA cells along with their respective controls
were exposed to IR (1 Gy) and their MI was determined at time points indicated. (F,G) Analyses
of the mitotic index of SY5Y and Kelly cells after irradiation with IR doses as indicated. Asterisks
indicate significant differences between irradiated cells with and without TrkA/NTRK1 activation
as indicated (**** = p < 0.0001, *** = p < 0.001, ** = p < 0.01). Error bars show the SEM from three
independent experiments.
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Figure 3. TrkA/NTRK1 inhibition abrogates the TrkA-mediated effect on the G2 checkpoint upon irradiation in SY5Y
and Kelly cells (A) Expression and activation of TrkA/NTRK1 in SY5Y-TRA and Kelly-TRA cells with and without LOXO
101 treatment. Original Western Blots have been included as Supplementary Figure S5. Activation of TrkA/NTRK1 in
SY5Y cells (B) or Kelly cells (C) was achieved by addition of NGF and cells were treated with the Trk-Inhibitor LOXO 101
prior to IR. MI values were normalized to the respective unirradiated controls. Asterisks indicate significant differences
between experimental groups as indicated (*** = p < 0.001, ** = p < 0.01, * = p < 0.05). Error bars show the SEM from
3–5 independent experiments.

2.3. Inhibition of Cell Cycle Checkpoint Proteins Recapitulate the Effect of TrkA Activation on the
G2 Checkpoint Response

ATM and ATR are central pillars of the G2 checkpoint response, and their function is
essential for activation of cell cycle checkpoints. We therefore asked whether G2 checkpoint
defects in TrkA/NTRK1 activated cells depend on suppression of ATM and ATR signaling.
To address this issue, we first analyzed the impact of specific ATM and ATR inhibitors
on G2 checkpoint response in cells with or without TrkA/NTRK1 activation. Inhibition
of either ATM by KU-55933 or ATR by VE821 abrogated the G2 checkpoint in irradiated
SY5Y-TRA and Kelly-TRA cells irrespective of activation of TrkA/NTRK1 (Figure 4A–D).
This suggests that response to IR-mediated G2-arrest in SY5Y and Kelly cells depends on
the function of signaling downstream of both, ATM and ATR.

To analyze the impact of TrkA/NTRK1 expression on checkpoint signaling proteins,
we determined expression and activation levels of key proteins involved in the G2/M-
checkpoint response. Protein samples were collected at 0, 1, and 3 h post IR from both
SY5Y-TRA and Kelly-TRA cells and controls with and without TrkA/NTRK1 activation
after exposure to IR (1Gy). We observed reduced p-ATM and p-Chk1 levels in cells with
activation of TrkA/NTRK1 (Figure 5A,B); however, this did not reach statistical signifi-
cance (Supplementary Figure S6). Interestingly, Chk1 and ATM expression levels remain
unchanged in cells with TrkA/NTRK1 activation upon IR. Additionally, stabilization of
CDC25B, which is a requirement for entry into mitosis, could be confirmed in both cell lines,
SY5Y and Kelly, upon TrkA/NTRK1 activation. In addition, we also validated on-target
effects of ATMi, ATRi, and LOXO-101 on checkpoint signaling proteins including Chk1
upon irradiation (Supplementary Figure S7), confirming that the canonical signaling of
ATM and ATR is active in our model systems. Taken together, these results support the
notion that the ATM-ATR-Chk1 pathway is a downstream target of TrkA/NTRK1 that
governs the G2 checkpoint response upon irradiation.
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with and without activation of TrkA/NTRK1 by NGF were exposed to an ATM inhibitor (ATMi, KU-55933) and irradiated
with 1Gy. After irradiation, the mitotic indices (MI) were determined. (B,D) SY5Y-TRA and Kelly-TRA cells with and
without activation of TrkA/NTRK1 by NGF were exposed to an ATR inhibitor (ATRi, VE821) and irradiated with 1Gy. After
irradiation, the mitotic indices (MI) were determined. In all these experiments, cells containing the TET repressor only
(SY5Y-TR, Kelly-TR) served as controls.
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Figure 5. The ATM/ATR DNA-damage signaling pathway is inhibited by TrkA/NTRK1 activation in SY5Y and Kelly
cells. Representative Western blots showing expression and phosphorylation of TrkA/NTRK1, ATM, Chk1, and CDC25B.
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as indicated.

3. Discussion

Multimodal therapy of high-risk neuroblastoma includes irradiation as a standard
treatment option. It is presently unclear, which modifiers of the radiation response would
predict responses or resistance of neuroblastoma to irradiation. Of note, high-risk neurob-
lastomas are often associated with copy number alterations of individual chromosomes,
most prominently loss of 1p and 11q as well as 17q gain [12,14,31]. By contrast, more
benign disease courses, frequently associated with TrkA/NTRK1 expression, are charac-
terized by near-triploid tumor genomes suggesting defects in mitotic control rather than
genomic instability. We therefore established inducible TrkA/NTRK1 expression in two
human neuroblastoma cell lines, SY5Y and Kelly, to dissect the impact of TrkA/NTRK1
on cell cycle regulation and checkpoint responses. In this tightly controlled system, we
could show that activation of TrkA/NTRK1 significantly enhanced short term proliferation
after irradiation compared to parental cells and controls. In-depth analyses of cell cycle
distribution indicated that the G2/M checkpoint response of SY5Y and Kelly cells was dys-
functional after irradiation with either 1 Gy or 4 Gy in cells irradiated during G2 phase of
the cell cycle. By contrast, TrkA/NTRK1-negative cell lines and cells without TrkA/NTRK1
activation had an intact G2-checkpoint indicated by the absence of H3pS10-positive cells
at 1 h post-IR. TrkA/NTRK1-activation led to a significantly higher proportion of mitotic
cells after irradiation so that the fraction of cells in mitosis was still at 50% compared to
unirradiated controls at 1 h post IR. On the other hand, cells irradiated in S-phase displayed
a significant G2 checkpoint arrest as indicated by accumulation of EdU-positive cells in
G2 phase (Supplementary Figure S3). It has been shown that ATM-deficient cells have
two distinct types of G2 checkpoint responses depending on the cell cycle phase they were
in during IR [32]. This resulted in significant G2 checkpoint arrest for cells irradiated in
S phase. Similarly, we could recently demonstrate that the checkpoint responses in cells
deficient for homologous recombination also depend on the cell cycle phase at the time
point of IR [29]. These findings are in line with the observed G2/M checkpoint defect upon
TrkA/NTRK1 activation that is specific for irradiated G2 cells. The underlying processes
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regarding DNA repair mechanisms still need to be elucidated. However, two lines of
evidence support the hypotheses that the observed G2/M checkpoint defect is a specific
consequence of TrkA/NTRK1 activation. First, inhibition of TrkA/NTRK1 abrogated the
mitotic entry of neuroblastoma cells with activated TrkA/NTRK1. Second, no effect of
receptor tyrosine kinase activation on the checkpoint response was observed in EGFR-
dependent lung cancer cell lines upon addition of EGF. Trk-specificity of this effect on
checkpoint regulation is further corroborated by the finding that Trk-inhibition by a small
molecule inhibitor, LOXO 101, abrogates the TrkA/NTRK1-mediated survival benefit upon
irradiation in SY5Y and Kelly cells. However, these cells differ in the status of the MYCN
oncogene: SY5Y is MYCN-normal, while Kelly cells are MYCN-amplified. The latter is
known to be associated with Chk1 activation and MYCN-amplified cells are exquisitely
sensitive to Chk1 inhibition [33]. Our results further suggest that the ATM/ATR signaling
is intact in SY5Y and Kelly cells, as both ATM or ATR inhibition recapitulated the pheno-
type of TrkA/NTRK1 activation. It has been previously reported that PI3K signaling is a
canonical pathway regulated by TrkA/NTRK1. Constitutively active PI3K enabled cells
to override the DNA damage-induced G2/M-checkpoint [34]. The mechanism by which
over-activation of PI3K inhibits G2-arrest may involve PKB/AKT-mediated inactivation of
Chk1 through phosphorylation at Serine 280, thus impairing phosphorylation of Cdc25
and preventing inhibition of the Cyclin B1/Cdc2 complex [35]. Of note, TrkA/NTRK1
activation facilitated stabilization of CDC25B upon IR, which is a prerequisite for entry into
mitosis [36], and this was not observed in control cells without TrkA/NKTR1 activation. In
summary, to the best of our knowledge this is the first report causally linking TrkA/NTRK1
activation and regulation of the G2-checkpoint in neuroblastoma cells. It is tempting to
speculate that the impaired G2/M checkpoint could at least in part explain the genomic
instability frequently observed in primary TrkA/NTRK1 expressing neuroblastoma.

4. Materials and Methods
4.1. Cell Lines and Culture Conditions

Human neuroblastoma cell lines, SY5Y and Kelly TR were first transfected with
pcDNA6/TR, containing a tetracycline repressor gene and the resulting cell lines were
designated SY5Y-TR and Kelly-TR. Next, pT-REx-DEST30 (Invitrogen, Carlsbad, CA, USA)
containing NTRK1 cDNA was transfected into SY5Y-TR and Kelly-TR to give rise to
SY5Y-TRA and Kelly-TRA, respectively. Single cell clones were selected upon addition of
blasticidin and G418 to the medium. NTRK1/TrkA expression was induced by tetracycline
for 24 h before TrkA was activated by addition of NGF (100 ng/mL, R&D Systems, Min-
neapolis, NE, USA) as described [21]. A549 and H1975 cells are derived from non-small
cell lung cancers characterized by high expression of EGFR [37]. In H1975, EGFR is consti-
tutively active due to an activating mutation in the tyrosine kinase domain (L858R), while
a second mutation (T790M) confers resistance to EGFR inhibitors [38]. All cell lines were
grown in RPMI supplemented with 10% FBS and 5% PenStrep. Cells were incubated at
37 ◦C in a humidified atmosphere with 5% CO2 and 95% air.

4.2. Inhibitors and Antibodies

The specific ATM inhibitor (ATMi) 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (Cal-
biochem, KU-55933) was dissolved at 10 mM in dimethyl sulfoxide (DMSO) (Sigma-Aldrich),
and used at 10 µM. The specific ATR inhibitor (ATRi) 3-amino-6-[4-(methylsulfonyl)phenyl]-N-
phenyl-2-pyrazinecarboxamide (VE821, Haoyuan Chemexpress) was dissolved in DMSO at
10 mM, and used at 5 µM. Inhibitors were added 1 h before irradiation and maintained dur-
ing the whole experimental procedure. Larotrectinib sulfate (LOXO 101) is a Trk-Inhibitor
(Selleckchem) was dissolved at 1 mM in dimethyl sulfoxide (DMSO) (Sigma-Aldrich) and
was used at 1.89 µM final concentration. All primary antibodies were obtained from Cell
Signalling (CS) and used in a dilution of 1:1000 for Western Blot experiments (ATM, CS,
#2873; p-ATM Ser1981, CS, #5883; TrkA, CS, #2510; p-TrkA/B Tyr785/Tyr816, CS, #4621;
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Chk1, CS, #2360; p-Chk1 Ser317, CS, #12302; CDC25B, CS, #9525). Anti-H3pS10 antibody
was obtained from Abcam (ab5176).

4.3. Irradiation

Irradiations were carried out with an X-ray machine (GE-Healthcare, Chicago, IL, USA)
operated at 320 kV, 10 mA with a 1.65 mm Al filter (effective photon energy approximately
90 kV), at a distance of 50 cm, and a dose rate of approximately 1.3 Gy/min. Dosimetry
was performed with a survey meter (PTW) and/or a chemical dosimeter, which were used
to calibrate an infield ionization monitor [29].

4.4. Viability Assay

For monitoring cell viability, 2000 cells were plated in a 96-well plate. Induction
and activation of TrkA/NTRK1 by TET or TET/NGF prior to irradiation (0.5–4 Gy) was
achieved as described [21]. After incubation for an additional 48 h, cell viability was
analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay by quantitating the absorption at 565 nm in a plate reader (Bio-Rad Hercules, CA,
USA) as described [20].

4.5. Calculation of the Mitotic Index Using Histone H3-pS10 (H3pS10) and PI Staining

Cells were harvested at 0, 1, 3, and 5 h after IR and fixed in 70% ethanol at—20 ◦C.
After fixation, cells were resuspended in 1 mL of 0.25% Triton X100 in phosphate-buffered
saline (PBST) prior to incubation in H3pS10 antibody (Abcam, 1:5000, Lot GR3250710-1)
and subsequently washed according to the manufacturer’s recommendations. Detection
was achieved using a secondary antibody coupled to Alexa Fluor 488 (Invitrogen, 1:300, Lot
2156521, in PBS-T) and addition of propidium iodide (PI, 4 µg/mL). Samples were analysed
in a flow cytometer (Gallios, Beckman Coulter, Brea, CA, USA) and the fraction of mitotic
cells determined by Kaluza (Beckman Coulter) and FlowJo software (BD Biosciences). To
calculate the mitotic index, the number of H3pS10 and PI positive cells was normalized to
the total number of cells.

4.6. Western Blot Analyses

Samples were prepared by solubilizing cells in RIPA buffer prior to loading on 4–15%
SDS gels. Gels were run in a gel chamber for 15 min at 100 V and then for 45 min at 120 V.
The proteins were transferred from to a nitrocellulose membrane using the Trans-Blot
Turbo Transfer System (Bio-Rad). Prior to blocking, membranes were washed three times in
TBS-T and blocking took place for 1 h with 5% BSA in TBS-T. The membrane was washed
again with TBS-T and incubated overnight at 4 ◦C in the presence of the primary antibody.
The antibody solutions consisted of 1% BSA in 5 mL TBS-T and a dilution of 1:1000 of
the respective antibody listed above. Detection was achieved using “ECL Prime Western-
Blotting Detection” reagents (GE Healthcare) and the ChemiSmart Imaging System (Vilber
Lourmat, Collégien, France) and protein expression was quantified using the Fiji software
(https://fiji.sc/ (Accessed on 25 October 2021)).

4.7. EdU Incorporation and Detection

Cells were pulse-labeled with 10 µM of 5-Ethinyl-2´-deoxyuridine (EdU) for 15 min
and then irradiated and processed for flow cytometry. Briefly, cells were collected by
trypsinization and permeabilized by incubating the cell pellets for 2 min in ice-cold PBS
containing 0.2% Triton™ X-100 on ice. Cells were spun down and pellets were fixed for
15 min with 3% PFA plus 2% sucrose dissolved in PBS. Cells were blocked with PBG
blocking buffer overnight at 4 ◦C. EdU signal was developed using an EdU staining kit
(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
Finally, DNA was stained using Propidium iodide plus RNAase solution for 15 min at RT.
Two-parameter FACS analysis was carried out with a Gallios flow cytometer (Beckman
Coulter) and quantitated using Kaluza software 1.3 (Beckman Coulter, Brea, CA, USA).

https://fiji.sc/
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4.8. Statistical Analyses

Results are expressed as mean ± SEM. Statistical significance between experimental
groups were determined by t-test or, when means of three or more groups were compared,
by two-way ANOVA followed by Bonferroni’s correction for multiple testing. Data analysis
was performed with Prism 8.4.3 software (GraphPad, San Diego, CA, USA). The signifi-
cance of differences between individual measurements is indicated by * symbol: * p < 0.05,
** p < 0.01, *** p < 0.001, n.s. non-significant.

5. Conclusions

In conclusion, we here provide first evidence for a previously unrecognized function
of NTRK signaling in checkpoint regulation and the response to IR.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13236023/s1, Figure S1. Western Blots corresponding to Figure 1C,D including
molecular weight markers. Figure S2. Activation of TrkA/NTRK1 increases the fraction of cells in
G2/M phase after high-dose irradiation (4 Gy) in SY5Y-TRA. The cell cycle was analyzed by FACS
and PI-staining in SY5Y cells with and without TET/NGF treatment. Cells were irradiated with (A)
1 Gy or (B) 4 Gy. Error bars show the SEM from three independent experiments. Figure S3. Edu pulse
labelling confirms migration of irradiated S-phase cells into the G2 within 4 h post IR. Two parametric
FACS histograms for (A) SY5Y-TR and (B) SY5Y-TRA cells treated with TET/NGF and measured at 0
or 4 h post IR. Figure S4. (A) EGFR phosphorylation is induced by EGF in A549 cells with wild-type
EGFR, while H1975 cells bearing an activating mutation in the EGFR receptor present with EGFR
auto-phosphorylation. (B, C) EGFR activation by its ligand, EGF, does not affect the G2-checkpoint
upon irradiation. Analyses of the mitotic Index of (A) A549 and (B) H1975 after irradiation with
1 Gy and 4 Gy. Error bars show the SEM from three independent experiments. Figure S5. Western
Blots corresponding to Figure 3A including molecular weight markers. Figure S6. Densitometric
analyses of aggregated Western Blot data (n = 3) from Figure 5A. Left: SY5Y control cells (TR) or SY5Y
cells with inducible expression of TrkA/NTRK1 (TRA) were used. Right: Kelly control cells (TR)
or Kelly cells with inducible expression of TrkA/NTRK1 (TRA) were used. Cells were treated with
TET/NGF (+) or not (−) and protein levels were determined by Western Blotting after irradiation at
time points indicated. Protein expression was normalized to β-Actin. Figure S7. Impact of Loxo101
(left), ATMi (KU55933, middle) and ATRi (VE821, right) treatment on IR induced expression of pATM,
pATR, pChk1 and pTrkA in SY5Y-TRA cells with (+TET/NGF) or without (-TET/NGF) activation
and expression of TrkA. Notably, KU55933 and VE821 are known to inhibit downstream signaling
(p-Chk1) rather than target phosphorylation. Samples were treated with inhibitors 1 h prior to IR and
collected 1 h after IR at doses indicated. Figure S8. Western Blots corresponding to Figure 5 including
molecular weight markers and densitometry readings. Values were either normalized to b-actin or
untreated control as indicated.
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