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Simple Summary: Mitochondria are well known for being the powerhouses of the cell—whether
the cell is normal or cancerous. Moreover, they can move, split, fuse themselves, or be eliminated via
mitophagy with the help of the interplay between motor proteins and the cell scaffold—especially
microtubules. The relationship between mitochondria, microtubules, and motor proteins is altered
in cancer, and targeting this molecular machinery can offer a novel weapon in its treatment. In this
paper, we review and summarize the state of the art of this approach.

Abstract: Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in
several fundamental cellular functions, including the regulation of metabolism, energy production,
calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of
these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial
dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells
to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression.
The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for
redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial
dynamics are driven by the cytoskeleton—particularly by the microtubules and the microtubule-
associated motor proteins dynein and kinesin—the molecular mechanisms regulating these complex
processes are not yet fully understood. More recently, an exchange of mitochondria between stromal
and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells
results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecu-
lar mechanisms that regulate mitochondrial trafficking can potentially be important for identifying
new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.

Keywords: microtubules; mitochondria dynamics; mitophagy; cancer bioenergetics; tunneling
nanotubes

1. Introduction

The cytoskeleton is a dynamic and interconnected network of filaments composed
of structural and regulatory proteins that play a key role in all fundamental cellular pro-
cesses, such as shape retention, motility, division, and intracellular transport of proteins
and organelles [1,2]. Therefore, it is not surprising that alterations in cytoskeletal func-
tion can contribute to the onset and progression of cancer [3]. The three main types of
filament that characterize the cytoskeleton are microfilaments, microtubules, and inter-
mediate filaments [4]. Several ultrastructural analyses have shown that the cytoskeletal
filaments interact directly or indirectly with the plasma membrane and various intracellular
organelles [5].
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The microtubules (MTs)—the most rigid intracellular cytoskeletal filaments—are
formed by the polymerization of two globular proteins, α- and β-tubulin, into protofila-
ments that can then associate laterally to form a hollow tube [6].

Microtubules have a distinct polarity that is critical for their biological function.
Tubulin polymerizes end-to-end; therefore, in an MT, one end will have the α-subunits
(minus) exposed, while the other end will have the β-subunits (plus) exposed [7].

MTs are essential in many vital cellular processes, such as structural support, mito-
sis, chromosome segregation during meiosis, and intracellular transport of vesicles and
organelles such as mitochondria [1,2,7]. In particular, to facilitate the movement of vesicles
and mitochondria along their tracks, MTs recruit motor proteins via acetylation on lysine
40 of α-tubulin [8–11]. Microtubule-associated motor proteins include kinesin and dynein,
which carry their cargo to the minus and plus ends of the microtubules, respectively [12,13].
In vitro studies have revealed that the loss of acetylated residues in MTs reduces the
interaction of kinesin with tubulin, with a subsequent decrease in cell motility [10].

MTs have been an ideal target in antineoplastic therapy for many years, as they are
the main components of the mitotic spindle. In addition, these filaments, together with
motor proteins, play a fundamental role in the mitochondria’s structural and functional
organization, including morphology, dynamics, motility, and distribution (Figure 1) [14].

Figure 1. Microtubule-dependent mitochondrial dynamics: Through the balance between fu-
sion/fission and biogenesis/mitophagy, mitochondrial dynamics represent a central process in
the bioenergetic adaptation and metabolic plasticity of cancer cells. The balance between biogenesis
and mitophagy regulates the number of mitochondria and their quality. The fusion process helps to
increase mitochondrial metabolism and to limit mitophagy and apoptosis, while the fission process
allows the spatial redistribution of mitochondria in areas of the cell with greater energy and metabolic
needs, favoring cell spreading and metastases.

Although the mechanisms regulating this interplay and its impact on mitochondrial
architecture and cellular bioenergetics are still not well understood, growing evidence
underlines how mitochondrial dynamics are fundamental in tumorigenesis, tumor pro-
gression, and the metabolic flexibility of cancer cells [15]. It has been hypothesized that the
mitochondria–MT associations are necessary to regulate the distribution, positioning, and
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tracking of mitochondria to cellular-energy-requiring areas, as suggested in several neu-
ronal studies, where kinesins and dynein were shown to transport mitochondria through
axons and dendrites to energy-intensive areas in order to produce adenosine triphosphate
(ATP) and guanosine triphosphate (GTP) [12,16]. Furthermore, the interaction of micro-
tubules with the outer membrane proteins’ voltage-dependent anion-selective channel
(VDAC) is directly involved in the coordination of mitochondrial function [17]. The in-
tracellular distribution of mitochondria occurs through the action of the motor proteins
associated with microtubules, including the plus-end-directed kinesins and minus-end-
directed dyneins [18,19].

In addition to regulating cell metabolism and energy production, mitochondria play
a crucial role in several fundamental cellular activities, including calcium homeostasis,
reactive oxygen species (ROS) production, and programmed cell death [20]. Each of these
processes can be impaired in cancer cells. The acquisition of migratory and invasive abili-
ties and adaptive changes in the metabolism of cancer cells has often been associated with
alterations in the mitochondrial network [21]. Indeed, mitochondrial dynamic processes are
key to the maintenance of mitochondrial homeostasis [22]; they include the displacement
of mitochondria along the cytoskeleton, and the regulation of mitochondrial architecture
mediated by fusion/fission events [22]. Interestingly, in addition to intracellular mito-
chondrial movement, a horizontal mitochondrial transfer between neighboring or even
non-immediately contacting cells was also observed [23]. These exchanges, especially
in the cancer microenvironment, can satisfy the energy needs of the acceptor cell, thus
favoring its proliferation and survival.

In this review, we analyze the involvement of the mitochondria–microtubules interplay
in tumor progression based on the current knowledge in this field.

2. Mitochondria

Mitochondria probably evolved from engulfed prokaryotes that developed an en-
dosymbiotic relationship with the host eukaryote, gradually developing into a mitochon-
drion [24]. As double-membrane-bound organelles, mitochondria have five distinct com-
partments: the outer mitochondrial membrane (OMM), the inner membrane space (IMS),
the inner mitochondrial membrane (IMM), the cristae (originated from the folds of the inner
membrane), and the matrix that contains the mitochondrial DNA [25]. They are considered
to be the energy producers of cells, as the cristae host the electron transport chain (ETC)
and oxidative phosphorylation (OXPHOS) proteins. Mitochondria are especially located
along cell extensions at the anterior edges of cells, where highly energetic mechanisms such
as extensive cytoskeletal remodeling and cell adhesion processes occur [26]. Mitochondria
play a pleiotropic role in tumorigenesis by allowing cancer cells to adapt to supervening
metabolic needs and environmental changes [27]. Recent studies have demonstrated the
potential roles of mitochondrial trafficking in cancer cell motility and invasion [28].

Mitochondria constitute a dynamic network in continuous reorganization, thanks
to the balance between different mechanisms such as fission and fusion, biogenesis, and
mitophagy, which control the number, morphology, quality, and cellular distribution of the
mitochondria [29]. The mitochondrial dynamics are essential in regulating several cellular
functions, playing a crucial role in bioenergetics activities, inflammation, cell differentiation,
movement, and cell fate [29].

3. Mitochondrial Fission and Fusion

The mitochondrial network morphology continuously changes as a result of fu-
sion/fission processes and the movement of mitochondria along microtubular struc-
tures [30]. In particular, the balance between fission and fusion determines the shape,
size, and number of mitochondria, strongly impacting on energy metabolism. Emerg-
ing evidence indicates that alteration of this balance contributes to various aspects of
tumorigenesis, cancer progression, and metastasis.
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Fusion and fission are highly energetic cellular processes closely related to the function-
ing of mitochondrial activity [31]. For instance, the fusion of damaged mitochondria with
healthy ones can restore—at least partially—the function of the impaired mitochondria.
On the other hand, the fission process allows the segregation of functioning mitochondria
from damaged ones, thus enabling the mitophagic removal of the latter [32]. Mitochon-
drial fusion is a sequential and complex process involving the outer and inner mitochon-
drial membranes and the matrix. The primary regulators of this process are the GTPase
dynamin-related proteins (outer mitochondrial membrane proteins) mitofusin1 (MFN1)
and mitofusin2 (MFN2), and optical atrophy 1 (OPA1)—a transmembrane protein tightly
associated with the mitochondrial inner membrane, and located in the intermembrane
space [31].

The opposite process—mitochondrial fission—is mainly regulated by the large GTPase
dynamin-related protein DRP1, mitochondrial fission protein 1 (Fis1), and mitochondrial
fission factor (MFF) [33], and is responsible for mitochondrial fragmentation. DRP1 is a cy-
tosolic protein, which requires the localization of Fis1 in the mitochondrial outer membrane
in order to form the fission complex. DRP1 physically constricts the mitochondrion to
form a ring structure located on the future mitochondrial fission area; its phosphorylation
regulates the mitochondrial translocation and activation of DRP1 by multiple kinases as
a function of the different phases of the cell cycle, or in response to stress conditions [34].
MFF, along with Fis1, appears to be one of the mitochondrial receptors of DRP1 [35]. Ac-
cordingly, a reduction in MFF levels induces elongation of the mitochondrial network and a
decrease in the translocation of DRP1 to the mitochondria [36]. Recently, the mitochondrial
dynamic proteins MID49 and MID51 have been observed to participate in the recruitment
of DRP1 to the mitochondria [37].

Multiple studies have demonstrated an imbalance of fission and fusion processes in
cancer, with elevated fission activity and/or decreased fusion resulting in a fragmented
mitochondrial network [33]. Such fragmentation of mitochondria allows their spatial
redistribution in cell areas with greater energy needs [38]. It has been proposed that
mitochondrial fusion promotes tumor cell resistance to apoptosis, whereas mitochondrial
fission has been associated with increased invasiveness. Indeed, several studies have
demonstrated that mitochondrial fission is required in order to maintain the migratory and
invasion potential of breast, thyroid, and glioblastoma cancer cells [38–41], while DRP1-
induced mitochondrial fission was found to be associated with a migratory phenotype
in several types of cancer. In human breast cancer cells, treatment with mitochondrial
division inhibitor 1 (MDIVI-1)—a DRP1-specific inhibitor that suppresses mitochondrial
fission [42]—induced the re-localization of mitochondria near the nucleus, suggesting
inhibition of subcellular mitochondrial trafficking [28]. Notably, recent research has also
demonstrated that restoration of the fused mitochondrial network—through either DRP1
knockdown/inhibition or MFN2 overexpression—impairs cancer cell growth, suggesting
that mitochondrial network remodeling is essential in cancer progression [38,39,43]. In
accordance with the above, a dysregulation of OPA1, MFN1, and MFN2 was observed
in different types of human tumors—such as lung and bladder cancers [44,45]—while, in
hepatocellular carcinoma, a high expression of DRP1 was associated with a significant
increase in distant metastases [46]. All of these facts highlight the important role of
mitochondrial dynamics in metastatic processes [33].

In any case, the mechanisms that regulate fission and fusion have not yet been fully
identified, but would also seem to be determined by the specific cell type (e.g., yeast,
neuron, cardiomyocyte, epithelial cells, etc.). However, in general, it has been observed
that mitochondrial motility facilitates fission and fusion, since a mitochondrion moves
towards another to merge and, once divided, the mitochondria have to move apart in order
to remain separate [47]. In fact, experimental evidence has suggested that impairment
of the mitochondrial motility, mediated by nocodazole or vasopressin—causes selective
inhibition of the fusion process [48].
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Previously published data clearly indicate that microtubules play an important role in
fusion and fission processes. For example, Mahecic et al. reported that microtubule-based
motor proteins were responsible for generating sufficient tension forces to induce the fission
process [49]. The actomyosin cytoskeleton participated in the formation of the constriction
point, and in the recruitment of DRP1 in the division zone [50,51]. In accordance with this
scenario, it was observed that the destruction of microtubules with nocodazole, or of actin
filaments with latrunculin-β, inhibited the mitochondrial fission process [51]. On the other
hand, it has also been found that the interaction between microtubules and mitochondria
via the microtubule–mitochondria binding protein (Mmb1p) could inhibit the localization
of DRP1 to the mitochondrion, thus counteracting the fission process [52]. Accordingly,
the deletion of Mmb1p induced mitochondrial fission [53]. Mmb1p appears to play a
role in the stability of the microtubule network. It has been suggested that more stable
microtubules would favor longer contact times between mitochondria and microtubules,
thus promoting mitochondrial elongation. Conversely, shorter mitochondria–microtubule
interaction times would seem to favor the activation of fission mechanisms, leading to
mitochondrial fragmentation [54].

In Figure 2, a schematic drawing summarizing the processes of fission and fusion, and
the main actors involved, is shown.

Figure 2. Mitochondrial fission and fusion: Mitochondrial fusion is mainly regulated by MFN1,
MFN2, and OPA1 activity, which promote the fusion of juxtaposed mitochondrial membranes.
The fusion process contributes to implementing respiration and mitochondrial metabolism, while
limiting mitophagy and apoptosis. Mitochondrial fission is regulated by the GTPase activity of
the DRP1 that is recruited to the mitochondria in response to stresses, and here interacts with
its mitochondrial receptors (Mff1, Fis1, and MID49/51). DRP1 is responsible for mitochondrial
fragmentation, as it physically constricts the mitochondrion by forming a ring structure located on
the future mitochondrial fission area.
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4. Mitophagy

Given the crucial role of mitochondria in vital processes, there are several multistep
mechanisms involved in the control of their functionality, including mitophagy [30,55,56].

Mitophagy, a specific type of autophagy, is a helpful self-degradative process for
mitochondrial quality control [57]; it is critical to clearing damaged or dysfunctional
mitochondria and maintaining cellular homeostasis, since dysfunctional mitochondria can
promote oxidative stress [58].

The serine/threonine kinase PTEN-induced putative kinase 1 (PINK1), and the E3
ubiquitin ligase Parkin, play pivotal roles in the regulation of mitophagy. PINK1 is normally
imported into the mitochondria, where it is cleaved by the protease PARL, and remains in
small amounts on the inner membrane. In mitochondrial depolarization conditions with a
transmembrane potential (∆ψm) decrease, PINK1 levels on the outer membrane increase.
Parkin moves from the cytosol to the mitochondria in healthy mitochondria, triggering the
ubiquitination of different proteins on the outer membrane, such as MFN1, MFN2, and
VDAC. In damaged mitochondria, Parkin is selectively recruited via a PINK1-mediated
process [59]. Following ubiquitination, p62/SQSTM1 mediates the interaction between
proteins marked by ubiquitin and LC3, allowing the formation of a phagophore able to
engulf and degrade the damaged mitochondrion. Parkin-induced mitophagy is dependent
on PINK1, but it also requires DRP1-mediated mitochondrial fission [24]. Indeed, fission
is critical for mitophagy. In this process, one depolarized and one hyperpolarized mito-
chondrion are formed, and only the depolarized mitochondrion is removed, whereas the
hyperpolarized mitochondrion can be re-introduced into the mitochondrial network [60].
The close association between mitochondrial movement and mitophagy was first indicated
by the observation of a biochemical association between PINK1 and the Miro complex [61],
and subsequently between Parkin and this complex—especially after mitochondria depo-
larization with carbonyl cyanide m-chlorophenylhydrazone (CCCP) [62].

As consequence of activating the PINK1/Parkin pathway, there is the proteasome-
dependent degradation of Miro and the subsequent release of kinesin from the mitochon-
drial surface [62,63]. All of this determines the arrest of mitochondrial transport and the
recruitment of cytosolic Parkin to the mitochondrion [62]. It is therefore likely that halting
mitochondria in some manner facilitates their clearance by mitophagy.

An alternative pathway for the induction of mitophagy—particularly important in
cancer cells—is activated by hypoxia. Damaged mitochondria increase the expression
of BNIP3, BNIP3-like (BNIP3L/NIX), and FUNDC1—a family of mitophagy receptors
localized in the OMM of the mitochondria [64], which directly recruit LC3 through their
LC3-interacting region (LIR) to initiate mitophagy [65,66]. BNIP3 and NIX interact with
LC3 at the microtubule level, promoting the sequestration of mitochondria in forming
autophagosomes [67]. Figure 3 shows both alternative pathways.

A close link has been observed between mitophagy and microtubules in aggressive
tumors, such as glioblastomas and metastatic melanomas. In particular, in a model of
glioblastoma, a reduction in α-tubulin has been observed to induce a downregulation of
BNIP3 and NIX, with consequent inhibition of mitophagy. This leads to a reduction in the
numbers of of lamellipodia and filopodia, with a significant reduction in the migratory
capacity of tumor cells [68].

Mitophagy is also a crucial complex process in the progression of hematological
malignancies and the acquisition of drug resistance, especially in advanced myeloma and
lymphomas [69]. In high-grade lymphomas and in the cells derived from particularly
aggressive tumors, the fusion between mitophagosomes and lysosomes frequently occurs
in the perinuclear zone, at the minus end of the microtubule network [70]. In these cells,
the mitochondrial localization around the nucleus is strongly fission-dependent [71]. DRP1
and Fis1 are master regulators of fission machinery, and act in the asymmetric cell division
of stem cells, facilitating the preservation of stem properties only to daughter cells that
inherit the younger mitochondria [72].
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Figure 3. Mitophagy: Mitophagy is a specialized form of autophagy in which dysfunctional mitochondria are targeted
and engulfed by autophagosomes that fuse with lysosomes to degrade the encapsulated mitochondria. Mitophagy
is regulated by a number of different mechanisms, including Pink1/Parkin-mediated pathways and the BNIP3/NIX
pathways. (A) When mitochondria are damaged by losing their membrane potential (∆Ψ), PINK1 recruits Parkin from
the cytosol to the damaged mitochondria. Here, phosphorylated Parkin ubiquitinates outer membrane mitochondrial
proteins, and causes mitochondrial engulfment by binding to LC3 on the isolation membranes that fuse with lysosomes.
(B) BNIP3/NIX-mediated mitophagic pathways are activated in cancer cells by hypoxia. Outer mitochondrial membrane
proteins, such as BNIP3/NIX, bind to LC3 on the isolated membranes, mediating the sequestration of damaged mitochondria
into autophagosomes.
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It is interesting to note that mitophagy can play opposite roles in tumorigenesis, based
on the tumor type and stage and the microenvironmental context. Indeed, this process can
promote the survival of cancer cells by eliminating damaged mitochondria that, through
excessive ROS production, could induce apoptosis. At the same time, mitophagy can act as
a tumor suppressor by eliminating impaired mitochondria that, inducing a chronic mild ox-
idative stress, could promote carcinogenesis. In general, in the first steps of carcinogenesis,
Parkin mutations inhibit mitophagy, while during cancer progression, abnormal regulation
of BNIP3 improves mitophagy. This adaptation process may represent a cellular strategy
for increasing cancer survival [73]. For instance, it has been demonstrated that in the onset
of hepatocellular carcinoma, the loss of mitophagy induces the accumulation of damaged
mitochondria, promoting carcinogenesis [74].

It should be noted that alterations in mitochondrial dynamics and mitophagy are
considered to be among the most important causes of mitochondrial DNA (mtDNA) re-
lease [75]. Cytosolic mtDNA fragments can translocate into the nucleus and be incorporated
within nuclear DNA, contributing to genomic instability and potentially causing cancer and
other diseases [76]. Interestingly, cytosolic mtDNA is a potent agonist of the cell’s innate im-
mune surveillance machinery; it can trigger an innate inflammatory response [77], enabling
the recruitment of adaptor molecules/receptors—such as cyclic GMP–AMP (cGAMP) syn-
thetase (cGAS), toll-like receptor 9 (TLR9), and the nucleotide-binding oligomerization
domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome—which
induce a type I interferon (IFN-I)- or NF-κB-mediated inflammatory response [77–79].

Interestingly, in a recent paper, Ziegler et al. highlighted a link between mitophagy,
lysosomal integrity, and MHC class I presentation in intestinal epithelial cells (IECs). In
particular, the authors demonstrated the active role of the immune system in the antitumor
response in colon cancer, supporting the possibility of successfully modulating the immune
response in at least some types of cancer. The hypothesis arising from these results is that
the therapeutic trigger of mitophagy could stimulate antigen presentation in the tumor
cells themselves, contributing to the development of an immune response against colorectal
cancer [80].

5. Intracellular Mitochondrial Trafficking

A fundamental step in tumor progression that improves invasiveness and metastatic
propensity is the motility increase of cancer cells. Growth factors and cytokines regulate
the cell migration process through different signaling pathways—such as MAPK and
PI3K-AKT—which alter the expression of genes involved in cell polarity, morphology,
cytoskeletal dynamics, and cell adhesion, increasing migratory ability [81]. The importance
of the spatial distribution of mitochondria in cancer cells, and the mechanisms by which
mitochondrial dynamics regulate cell migration, have only recently been brought to light.
Mitochondrial trafficking has emerged as a fundamental regulator of the metastatic capacity
of various tumors [26]. Indeed, our current knowledge shows that the localization of mito-
chondria to the leading edge favors tumor invasion by providing the ATP and metabolic
intermediates necessary for the bioenergetic and biosynthetic demands of the cells. A high
amount of energy is needed to power the cytoskeletal dynamics and the different molecular
processes, such as the development of focal adhesions and cell protrusions essential for cell
migration [26]. A recent study showed that cortical mitochondria supported membrane
lamellipodia dynamics and actin cytoskeleton remodeling, resulting in increased cancer cell
motility and invasion [82]. The importance of local energy production was demonstrated
in both ovarian cancer cells [83] and living mouse embryonic fibroblasts (MEFs), where
mitochondrial accumulation at the leading edge of the lamellipodia led to increased ATP
concentration [84].

Mitochondrial localization in cancer cells can be reprogramed depending on intra-
cellular and extracellular signals, leading to cells changing from a highly proliferative
phenotype to a highly invasive phenotype. In particular, the presence of abundant perinu-
clear mitochondria characterizes a highly proliferative phenotype, while mitochondrial
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localization to the leading edge determines a highly invasive phenotype (Figure 4A). Thus,
mitochondrial re-localization at the cortical level involves a “regional” increase in oxidative
metabolism to support the energy-intensive movements [84] and, in general, contributes
significantly to the metabolic plasticity of cancer cells.

Figure 4. Intracellular mitochondrial trafficking: (A) Mitochondrial intracellular distribution. In
cancer cells, the presence of abundant perinuclear mitochondria characterizes a highly proliferative
phenotype; mitochondrial localization to the leading edge determines a highly invasive phenotype.
(B) Mitochondrial intracellular transport. Mitochondria move within the cell over short and long
distances. Microtubule-based mechanisms drive long-distance transport, while short-distance trans-
port is driven by actin-based movement. Long-distance transport is performed by two MT-based
molecular motors with opposite functions: the kinesin (KIF)-driven anterograde transport, and the
dynein-driven retrograde transport. (C) Mitochondrial movement blocking. Mitochondria possess
several anchoring mechanisms capable of blocking their movement. SNPH associates with the
mitochondrial outer membrane and anchors mitochondria to microtubules. Moreover, high calcium
concentrations inhibit MT-based mitochondrial trafficking by binding to the MIRO 1/2 proteins. This
binding prevents MIRO and KIF from interacting. In addition, mitochondrial trafficking can also be
controlled by the ubiquitination of SNPH or MIRO 1/2, or by high levels of ROS production able to
activate MAPK p38. The p38 phosphorylation promotes disengagement of the KIF from microtubule
tracks via phosphorylation of serine 176.

The intracellular localization of mitochondria is the result of movements along the
microtubules and anchoring to the actin filaments [9]. Protein adapters and mitochondrial
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receptors make the binding between mitochondria and motor proteins possible. The in-
teraction between motor proteins, adapters, and receptors ensures targeted movements
of the mitochondria and the fine-tuning of their motility [85,86]. The molecular mecha-
nisms underlying this movement were initially described in neurons, where microtubule
polarity and structural organization influence both soma-to-axon and soma-to-dendrite mi-
tochondrial transport. Microtubule-based motor proteins such as the kinesin superfamily
proteins and cytoplasmic dyneins sustain long-range mitochondrial transportation in the
anterograde (microtubule plus end) and retrograde (microtubule minus end) directions,
respectively. In the axonal portion, the microtubules are uniformly distributed, so that the
negative ends face the cell body while their positive ends point distally [87,88]. Although
initially considered “neuronal-specific,” the anterograde (from the nuclei to the periphery)
and retrograde (from the periphery to the nuclei) mitochondrial movements have also been
shown in other cell types, such as migrating lymphocytes [89] and tumor cells [90]. Previ-
ously published data demonstrate that the intracellular transport of mitochondria occurs
mainly via the microtubule cytoskeleton, using a mechanism consisting of mitochondrial
Rho GTPases (MIRO 1/2), trafficking adapter proteins that bind to kinesin (TRAK1 and
TRAK2) and the motor proteins kinesin-1/3 and dynein [91,92].

The scaffolding TRAK1/2 proteins permit mitochondrial motility by coordinating the
interaction between kinesins/dyneins [65] and the Ca2+-dependent MIRO GTPase placed
on the outer mitochondrial membrane (Figure 4B, left panel) [92].

Interestingly, the experimental findings of Heindrichs et al. demonstrated that TRAK1
strongly increases KIF5B’s processivity when the microtubule surface is crowded with a
large variety of proteins; moreover, the authors suggest that the anchoring of KIF5B by
TRAK1 increases the time for which KIF5 can stop in front of an obstacle without detaching
from the microtubule [93].

In contrast, short-range mitochondrial movements depend on actin filaments and
myosin motors (e.g., MYO19, MYO6, MYO5). Myosins move along actin filaments in both
directions [91]. How myosins regulate movement, and how they bind to mitochondria,
is poorly understood. Recently, the MIRO-dependent localization of MYO19 to the mito-
chondria has suggested that MIRO proteins might be active in regulating mitochondrial
motility via either actin or microtubules (Figure 4B, right panel) [94].

Mitochondrial trafficking was first thought of in neurons as an energy supply process
toward high-consuming sites [9]. However, it can also locally fuel membrane dynamics and
migration of cancer cells [82]. By exploiting the same neuronal regulators of mitochondrial
motility, cancer cells can reposition the mitochondria in cortical areas favoring invasive
processes [95].

The activity of DRP1 appears to be mandatory in the mitochondrial trafficking associ-
ated with tumor chemotaxis [86], as mitochondrial fission allows for a more rapid transfer
of mitochondria along the microtubules within tumor cells. Consequently, the occurrence
of a link between microtubule-based mitochondrial trafficking and mitochondrial fission
was suggested [96].

It is interesting to note that several mechanisms can determine the blocking of mi-
tochondrial movement and, more generally, the movement of all intracellular organelles
inside the cell. Mitochondria can be immobilized (1) by the binding of myosin to actin [96];
(2) by their anchor to microtubules via syntaphilin (SNPH) [97]; (3) by the action of calcium
on microtubules [98]; and (4) by proteasomal degradation of the kinesin-1/TRAK complex
(Figure 4C) [98].

As the intracellular distribution of mitochondria can regulate tumor cell growth,
motility, and metastatic capacity, the alteration of mitochondrial movement could modify
cancer therapy responses. Blocking mitochondrial movement would result in a lower
energy supply for cancer cells, thus preventing tumor progression and invasion. It has been
shown that SNPH can block invasion in glioblastoma, as well as breast, lung, and prostate
cancers [95]. Furthermore, lower levels of SNPH are correlated with tumor progression
and metastatic dissemination in lung, colon, prostate, and breast cancers [95].
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Changes in the intracellular levels of ROS are also able to regulate mitochondrial
dynamics. Indeed, several in vitro and in vivo studies on cancer cells have reported that
increased ROS production was correlated with mitochondrial membrane potential loss,
mitochondrial fission, mitophagy, and apoptosis [99,100]. On the other hand, excessive
fission activity can enhance ROS production [101], due to mitochondrial membrane depo-
larization [102]. In turn, ROS induce post-translational modifications of DRP1, MFNs, and
OPA-1, with consequent damage to mitochondrial morphology and function [103]. On the
other hand, lowering ROS levels leads to mitochondrial fusion [102].

Thus, the activity of ROS might be capable of increasing tumorigenesis and/or pro-
moting cancer progression by activating signaling pathways that regulate cellular prolif-
eration, metabolic adaptation, apoptosis resistance, chemoresistance, and cellular migra-
tion/invasion [101].

6. Role of Microtubules in Mitochondrial Dynamics

The movement of mitochondria along MT tracks is regulated by second messengers
generated ad hoc. Within the past decade, experimental evidence has shown the key role
of calcium in regulating mitochondrial movement. High calcium concentrations have been
observed in many cell types to inhibit MT-based mitochondrial trafficking by binding to
the MIRO1 and 2 proteins [13,16,104]. This link between calcium and MIRO prevents the
latter from interacting with the motor protein KIF5 [105] (Figure 4C). With calcium being
the second messenger of a plethora of signaling pathways, mitochondrial trafficking can
therefore be regulated by many factors [105].

Mitochondria, along with other organelles, constitute intracellular storage sites for
calcium. Therefore, it was hypothesized that mitochondrial trafficking could be inhibited
or stimulated by calcium fluctuations rather than by the absolute level of calcium [106].
From this perspective, the MIRO/KIF5 binding could represent an indicator of high local
calcium levels, allowing the mitochondria to buffer it. The calcium fluxes occur in areas of
high metabolic demand, such as nerve endings, or the protrusion zones and leading edge
in the case of cancer cells. These areas where the mitochondria are clustered represent the
cell migration fronts, and play a pro-metastatic role [107].

In addition, mitochondrial trafficking can also be controlled by the ubiquitination of
SNPH or MIRO1. For instance, it has been shown that the ubiquitination of some residues
of SNPH—a protein located in the OMM [108]—is necessary to allow binding with tubulin
and the consequent relocation of mitochondria to specific cellular areas [105]. By contrast,
MIRO1 degradation induces mitochondrial arrest movements due to its phosphorylation
at S156 by PINK1. In tumor cells, SNPH is downregulated by oxidative stress. During
oxidative stress or hypoxia, the downregulation of SNPH, acting on the mitochondrial
metabolism and trafficking, could inhibit cell proliferation and stimulate the motility
and invasion of tumor cells. For instance, the degradation of SNPH in hypoxic conditions
induced a greater presence of cortical mitochondria in glioblastoma cells, with a consequent
increase in their invasiveness [109]. Therefore, SNPH could function as a metastatic
propensity regulator, thus proving to be potentially useful as a biomarker. This hypothesis
would also agree with the lower levels of SNPH found in cells isolated from metastatic
sites compared to those isolated from their respective primary sites.

Other important modulators of mitochondrial dynamics are the ROS that suppress
mitochondrial motility in both Ca2+-dependent and -independent manners [110,111]

A recent work has shown how ROS could also regulate mitochondrial dynamics via
the MAPKp38 pathway (Figure 4C). In particular, in human fibroblasts, a high level of ROS
production was able to activate p38, which promoted disengagement of the motor from the
microtubule tracks via phosphorylation of the serine residue at position 176 of KIF5 [111].
This inhibited the mitochondrial motility independently of any changes in calcium flux.

Moreover, it was shown that in neuronal cells under hypoxic conditions, the MIRO/TRAK
complex regulated mitochondrial trafficking via its association with hypoxia-upregulated
mitochondrial movement receptor (HUMMR) [112].
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7. Metabolic and Phenotypic Consequences of Mitochondrial Transfer

Multiple studies have shown that whole functional mitochondria can be naturally
transferred from a healthy cell to a recipient cell via nanotubular structures known as
“tunneling nanotubes” (TNTs) (Figure 5) [113]. TNTs are short-lived cytoplasmic bridges
between cells that transport various cargos in a uni- or bidirectional fashion—including
cytosolic molecules, organelles such as mitochondria [114,115], or pathogens [116]. TNTs
are ultrafine and very heterogeneous in length and width; they lack any attachment to
the substrate, but their structure—depending on the context and the delivered cargo—is
supported by cytoskeletal F-actin fibers [113] in conjunction with microtubules [117,118].
The main molecular mechanisms driving TNT formation start from the formation of
membrane protrusions (filopodia-like) or the dislodgement of two previously attached
cells, in both physiological and pathological environments. Each of these processes of cell-
to-cell communication can lead to closed-ended or open-ended TNTs, the latter allowing
cytoplasmic continuity between connected cells. The TNT-mediated intercellular transfer
can occur between neighboring cells or cells not immediately in contact; it may affect the
bioenergetic state of acceptor cells, depending on their metabolic requirements to favor
cell proliferation and survival [119], resulting in metabolic reprogramming of connected
cells [114,120]. In particular, the experimental findings of Tan et al. showed that the
transfer of mtDNA from host cells to tumor cells with compromised respiratory function
restores the mitochondrial respiration required for tumorigenesis in murine lung and
breast tumor models [121]. These results are also supported by the recent data obtained by
Bajzikova et al., which confirm the importance of mtDNA transfer from host cells to tumor
cells in the reconstitution of OXPHOS, showing that pyrimidine biosynthesis dependent on
respiration-linked dihydroorotate dehydrogenase (DHODH) is necessary for tumor growth,
and that mitochondrial ATP generation is actually unessential for tumorigenesis [122].

Figure 5. Mitochondrial transfer: Schematic representation of mitochondrial transfer via tunneling
nanotubes (TNTs). The donor cell—generally a non-cancerous cell—moves mitochondria to the
recipient cell, usually a cancer cell or an injured cell. The main advantages of mitochondrial transfer
to acceptor cells are listed.
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For efficient mitochondrial shuttling, TNTs are formed de novo; they are transiently
expressed in response to a broad range of cellular stressors [123–127], suggesting that
TNT formation may represent a type of stress response [128]. TNT structures involved in
mitochondrial transfer were observed as a heterotypic connection between non-malignant
and cancer cells in many different cancer types [129,130], as well as from mesenchymal
stem cells (MSCs) to differentiated cells, in damaged tissues and tumors [131]. The abil-
ity of TNTs to form between tumor cells and, at the same time, to connect these cells to
the tumor microenvironment (TME), indicates a crucial role of mitochondrial trafficking
in cancer progression. It has been demonstrated that tumor cells can employ mitochon-
drial transfer to modify their microenvironment, thus favoring tumor progression [132].
TNT-mediated acquisition of healthy mitochondria confers more aggressive phenotypic
characteristics to tumor cells, such as enhanced proliferative and invasive properties and
radio/chemotherapy resistance [133,134].

In tumor cells, the advantage of mitochondrial transfer benefits cell proliferation
and survival, increases OXPHOS and, consequently, supports cancer metabolic plastic-
ity [130,135]. On the other hand, restoration of basic mitochondrial activities in cancer cells
via uptake of healthy mitochondria led to a significant decrease in intracellular ROS levels,
suggesting a crucial role for these reactive molecules in the acquisition of chemoresistance
after mitochondrial transfer [119].

8. Mitochondrial Dynamics and Cancer Therapy

The fundamental role of mitochondria in the different stages of carcinogenesis and in
tumor maintenance has led many researchers to hypothesize that mitochondrial dynamics
may represent a possible innovative therapeutic target [42,136,137].

However, before this can be realized, in-depth studies are necessary in order to shed
light on some contradictions emerging from the studies carried out to date.

For instance, several experimental data have highlighted the dual role of mitophagy in
the onset of cancer, based on the type and stage of the tumor and the microenvironmental
context. In fact, mitophagy can promote cancer cell survival by removing damaged
mitochondria, thus counteracting ROS-mediated apoptosis. On the other hand, mitophagy
can act as a tumor suppressor by eliminating dysfunctional mitochondria able to promote
carcinogenesis by inducing a mild chronic oxidative stress [73,138].

In aggressive tumors, such as glioblastomas and metastatic melanomas, a close link
between mitophagy and tubulin alterations has been observed. In particular, in a model
of glioblastoma, the α-tubulin decrease—due to genetic alteration or pharmacological
treatment—induced a downregulation of BNIP3 and NIX, and inhibited the selective
mitophagic removal of mitochondria. This inhibition of mitophagy resulted in decreased
formation of lamellipodia and filopodia able to negatively affect tumor cell migratory
ability [64,65].

As mentioned above, the highly dynamic network of mitochondria is preserved by
the continuous balance between fission and fusion, which are regulated, among others, by
DRP1and MFNs, and OPA1, respectively.

Although mitochondrial fusion has been correlated with chemoresistance in some
cancers, most of the literature agrees that the DRP1-induced fission is necessary for the
processes of invasion and metastasis in tumors such as those of the breast and thyroid,
as well as in glioblastoma [33,38–42]. In accordance with this, in cancer cells a surplus of
fission is generally caused by upregulation of DRP1 expression, leading to the formation
of fragmented mitochondria necessary for their spatial redistribution to those regions
of the cell with high metabolic demands [37]. Given that DRP1 upregulation is a com-
mon event in many oncogenic transformations, it can be assumed that cancer cells may
be preferentially sensitive to DRP1 inhibition. This hypothesis was confirmed via the
pharmacological and genetic inhibition of DRP1, which led to decreases in the growth of
glioblastomas, melanomas, hepatocellular carcinomas, and mesotheliomas, either in vitro
or in vivo [137,139–141]. In the MDA-MB-231 and MDA-MB-436 breast cancer cell lines,
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the downregulation of DRP1 or overexpression of MFNs had a similar impact in reducing
cell migration and invasion. This could suggest that the inhibition of fission may have
the same effect as the induction of fusion, at least in some cancers, pointing to the role of
mitochondrial dynamics, rather than fission, in the metastatic process [38]. In the same
vein, the observed imbalance of the fusion/fission process (i.e., with a predominance of
fission) in human lung cancer cell lines could be reversed by DRP1 inhibition (or MFN2
overexpression), promoting cell cycle arrest and increasing spontaneous apoptosis [50].
Furthermore, in brain tumor cells, the inhibition of DRP1 has been reported to decrease
migration and proliferation [137].

Zhao et al. also showed that mitochondrial fission was necessary for the redistribution
of mitochondria to the leading edge, and that this presence enhanced the formation of
lamellipodia. The mitochondrial clustering in the migration front of the cell could represent
a prerequisite, or be the first step, in the migration and invasion of breast cancer cells [38].
In addition, some studies also support the idea that the inhibition of mitochondrial frag-
mentation might represent a useful therapeutic strategy to reduce metastatic dissemination
in colon cancer cells, in which DRP1 downregulation decreased proliferation and increased
apoptosis [136].

Although no specific inhibitors targeting MFNs and OPA1 have been devised at now,
the hydrazone M1, which acts as a mitochondrial fusion process promoter independently of
these two proteins, might be considered a promising drug for targeted cancer therapy [142].

Conversely, two drugs inhibiting DRP1 have been developed, i.e., the mitochondrial
division inhibitor MDIVI-1, and the peptide P110. The former inhibits DRP1 activity [39],
while the latter alters the DRP1–Fis1 interplay, decreasing DRP1’s functionality in the
neurons [143]. Between the two agents, MDIVI-1 has been extensively studied in a cancer
setting and, although it has shown cytoprotective effects in non-transformed cells—such
as neurons and cardiomyocytes—it has shown some cytotoxic properties across a wide
range of cancer cell lines [144], thus suggesting a certain selectivity. Moreover, a recent
study indicated that MDIVI-1, in addition to inhibiting DRP1, was also able to target
mitochondrial complex I in the absence of DRP1, thus directly impacting mitochondrial
metabolism [145]. These data further support the role of DRP1 as putative target of
pharmacological approaches aimed at inhibiting oncogenic transformations in a wide
range of cancers [137,139–141].

Inhibition of DRP1 by MDIVI-1 has also been observed to promote apoptosis induced
by the cytokine tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in human
ovarian cancer cells [146]. TRAIL is a receptor-mediated inducer of apoptosis proposed for
the clinical therapy of some cancers, such as pancreatic cancer, non-squamous non-small-
cell lung cancer, and lymphoma [147,148]; however, as with most drugs, the resistance
acquired by tumor cells limits their therapeutic effectiveness over time. Similarly, MDIVI-1
was found to be active in overcoming cisplatin resistance in primary ovarian cancer cells iso-
lated from patients [149]. The inhibition of mitochondrial fission would therefore seem to
sensitize tumor cells to antineoplastic drugs, suggesting a possible use of MDIVI-1 in com-
bined therapy. Interestingly, in cardiovascular diseases, the inhibition of the mitochondrial
fusion process has been suggested to represent a promising therapeutic strategy. In fact,
MFN1- and -2-deficient cells were characterized by elevated mitochondrial fragmentation
with a loss of mitochondrial membrane potential and defects in mitochondrial respira-
tion [141,150]. Ferreira et al. demonstrated that in rats’ heart failure, β-II protein kinase C
(βIIPKC) accumulates on the mitochondrial outer membrane and phosphorylates MFN1,
resulting in buildup of fragmented and dysfunctional mitochondria. The authors showed
that the use of βIIPKC siRNA or a synthetic βIIPKC inhibitor mitigated mitochondrial
fragmentation and cell death in cultured neonatal and adult cardiac myocytes [150].

As emerged from the above, the localization of mitochondria in the different areas of
the cell strongly impacts its proliferative and movement capacities and, therefore, plays a
fundamental role in the spreading of tumor cells.
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In this regard, although initially described as neuronal-specific, SNPH is expressed in
multiple non-neuronal tissues, including cancers [26,109]. A decrease in SNPH causes a
considerable mitochondrial repositioning to the cortical cytoskeleton, enhancing cancer
cell motility and invasion. It was demonstrated that SNPH downregulation or loss during
tumor progression was correlated with poor outcomes in patients [109]. Conversely,
the reintroduction of SNPH into invasive tumor cells was able to decrease metastatic
dissemination in a murine model [151].

Given the role played by the binding between the mitochondria and the cytoskeleton
in the regulation of mitochondrial dynamics, microtubule-targeted agents constitute a class
of anticancer drugs used in the clinic [38,152]. Among the most widely used agents in the
treatment of several malignancies, there are taxanes and vinca alkaloids [84,153]; their use
is mainly justified by the fact that, by interfering with the formation of the mitotic spindle,
they have an antiproliferative effect. However, we cannot exclude the possibility that their
anticancer efficacy is also partly linked to the effect exerted on the mitochondrial dynamics.

Targeting DRP1, SNPH, or other proteins involved in mitochondrial dynamics could
therefore be of great interest in the context of anti-metastatic therapy. In fact, although
metastases are the leading cause of death in cancer patients, there is a scarcity of therapeutic
targets to interfere specifically with tumor dissemination processes [154].

In accordance with the growing evidence of the contribution offered by mitochondrial
dynamics in metastatic processes—promoting both metabolic adaptation and the migration
propensity of cancer cells [155,156]—the biochemical machinery involved in these dynamics
may represent an innovative therapeutic target.

9. Conclusions

In recent decades, it has emerged that dynamic interactions between mitochondria
and the cytoskeleton are critically important for maintaining the structure and function
of the mitochondrial network. The movement of mitochondria through the cytoskeleton
is fundamental for the supply of energy and metabolites to areas of the cell with high
energy demands, and for buffering calcium where necessary. Furthermore, the cytoskeletal
network—particularly microtubules and motor proteins—plays a fundamental role in
the regulation of the mitochondrial fission/fusion balance, as well as in quality control,
mitochondrial turnover, and in the distribution of mitochondria during cell division.

Since cancer is a disease associated with mitochondrial dysfunction, which has a
key role in carcinogenesis, as well as in tumor maintenance and progression, considering
mitochondrial dynamics as an innovative therapeutic target and/or as a useful prognostic
biomarker in cancer might be appropriate. In this scenario, further studies are needed
in order to better understand the effects of different oncogenic signaling pathways on
mitochondrial dynamics, and/or to identify additional signaling modalities that regu-
late mitochondrial network homeostasis in cancer cells—also as a function of the tumor
microenvironmental features.
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