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Simple Summary: Distinguishing pancreatic cancer from healthy tissue before and during surgery
can be enhanced by using molecular tracers directed at molecules on tumor cells allowing high-
contrast visualization of tumor tissue, eventually improving diagnosis and surgical removal. Albeit
sugar molecules and proteins carrying a large amount of sugars-mucins- have gained significant
interest as tumor-specific targets, their relative presence on structures surrounding tumor tissues
and lymph node metastases is unknown. The current study shows that the presence of several, but
not all, investigated sugar molecules and mucins on pancreatic cancer cells is higher compared to
surrounding tissues. Moreover, given their abundance on tumor cells in lymph nodes and their
absence on normal lymph nodes, all investigated targets are high-potential targets for visualization of
lymph node metastases. This study paves the way for the development of molecular tracers against
the targets evaluated herein to allow improvement of pancreatic cancer treatment.

Abstract: Targeted molecular imaging may overcome current challenges in the preoperative and
intraoperative delineation of pancreatic ductal adenocarcinoma (PDAC). Tumor-associated glycans
Lea/c/x, sdi-Lea, sLea, sLex, sTn as well as mucin-1 (MUC1) and mucin-5AC (MU5AC) have gained
significant interest as targets for PDAC imaging. To evaluate their PDAC molecular imaging potential,
biomarker expression was determined using immunohistochemistry on PDAC, (surrounding) chronic
pancreatitis (CP), healthy pancreatic, duodenum, positive (LN+) and negative lymph node (LN−)
tissues, and quantified using a semi-automated digital image analysis workflow. Positive expression
on PDAC tissues was found on 83% for Lea/c/x, 94% for sdi-Lea, 98% for sLea, 90% for sLex, 88%
for sTn, 96% for MUC1 and 67% for MUC5AC, where all were not affected by the application of
neoadjuvant therapy. Compared to PDAC, all biomarkers were significantly lower expressed on
CP, healthy pancreatic and duodenal tissues, except for sTn and MUC1, which showed a strong
expression on duodenum (sTn tumor:duodenum ratio: 0.6, p < 0.0001) and healthy pancreatic tissues
(MUC1 tumor:pancreas ratio: 1.0, p > 0.9999), respectively. All biomarkers are suitable targets for
correct identification of LN+, as well as the distinction of LN+ from LN− tissues. To conclude, this
study paves the way for the development and evaluation of Lea/c/x-, sdi-Lea-, sLea-, sLex- and
MUC5AC-specific tracers for molecular imaging of PDAC imaging and their subsequent introduction
into the clinic.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer-
related mortality in the Western world, with a dismal 5-year survival of only 9% [1]. As
80–90% of patients present with locally advanced or metastatic disease, radical surgical
resection, which is the only curative therapy, is often not feasible. Extensive preoperative
imaging using endoscopic ultrasound (EUS), magnetic resonance imaging (MRI) and
positron emission tomography/computed tomography (PET/CT) is crucial for accurate
selection and stratification of patients for surgery. Nevertheless, 20–47% of patients who
qualify for surgery present with an irresectable disease at the time of surgery [2,3], whereas
R1 (microscopic residual disease) resections are reported in up to 80% of patients, both of
which are associated with worse overall survival [4–6]. On the other hand, approximately
7% of resections for suspected pancreatic cancer are performed for benign diseases, such as
chronic pancreatitis (CP) [7]. Considering the abundance of desmoplasia in both PDAC
and CP, which may be further induced by the application of neoadjuvant therapy (NAT),
distinguishing malignant from healthy or benign tissue is challenging in both a preoperative
and real-time intraoperative setting [8–10]. By facilitating high-contrast visualization of
tumor cells, targeted molecular imaging may play a key role in overcoming these challenges,
potentially avoiding resection for benign and irresectable disease, while simultaneously
aiming to increase radical resection rates in resectable patients.

Within the continuing search for novel targets for molecular imaging, tumor-associated
glycans and mucins have gained significant interest (reviewed in [11]). In cancer, many
proteins and lipids are aberrantly glycosylated, which results in the appearance of truncated
O-glycans, such as sialyl-Thomsen-Nouveau (sTn) and Lewis glycans, such as sialyl-Lewisa

(sLea) and sialyl-Lewisx (sLex), Lewisa/c/x (Lea/c/x), sialyl-di-Lewisa (sdi-Lea) and related
glyco-epitopes [12–15]. Some of these structures, such as sLea and sLex, are involved in
tumor progression, both directly and indirectly by applying conformational changes to
their carrier protein [16,17].

In reference to glycans, mucins, which are high-molecular-weight proteins that are
extensively coated with O-glycans, seem interesting tumor-specific targets based on their
high expression on tumor tissues, low abundance in healthy tissues and pivotal roles in
carcinogenesis [18,19] Especially, transmembrane mucin-1 (MUC1) and secreted mucin-
5AC (MUC5AC), which are both, directly and indirectly, involved in tumor progression via
their truncated sTn glycans, are considered promising targets for PDAC targeting [18]. As a
result of mucin overexpression, tumor-associated glycans become strongly amplified on the
outermost layer of multiple proteins simultaneously, making them a set of high-potential
molecular imaging targets with advantages for targeting beyond proteins [11,20]. Although
the aforementioned tumor-associated O-glycans and mucins are strongly expressed on
pancreatic cancers cells, their relative expression on (surrounding) chronic pancreatitis as
well as on healthy pancreas and duodenum and metastatic lymph nodes, which defines
their molecular imaging suitability, is underexplored.

Therefore, the current study aims to evaluate and compare the potential of tumor-
associated glycans Lea/c/x, sdi-Lea, sLea, sLex and sTn, and mucins MUC1 and MUC5AC
for molecular imaging of PDAC using a semi-automated, machine learning-based digital
image analysis workflow.

2. Materials and Methods
2.1. Patient and Tissue Selection

Medical records and pathology reports from patients who underwent pancreatic
resection in the Leiden University Medical Center (LUMC) between August 2011 and
July 2020 were retrospectively reviewed. Patients older than 18 years diagnosed with
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PDAC or CP were considered suitable for inclusion in the study. Representative formalin-
fixed paraffin-embedded tissue blocks containing PDAC, CP, healthy pancreatic, healthy
duodenum, LN+ and LN− tissues were obtained from the Pancreas Biobank of the LUMC.
All tissue samples were assessed by a hepatopancreaticobiliary pathologist (A.S.L.P.C.)
before inclusion in the study. Both peritumoral pancreatitis and primary CP tissues were
categorized as CP. Clinicopathological data were retrospectively collected from hospital
records. R1 resection was defined as the presence of tumor cells at≤1 mm from the surgical
margin. Pathological T (pT) and pathological N (pN) stages were defined according to
the 8th edition of the AJCC/UICC TNM staging system for pancreatic cancer. The study
protocol was approved by the Gastroenterology Biobank Review Committee (protocol
reference: 2020-16) and local medical ethical review committee (protocol reference: B20.052).
The research was conducted in accordance with the Dutch code of conduct for responsible
use of human tissue in medical research. Tissue samples and patient data were used
anonymously and in compliance with the Declaration of Helsinki (1964).

2.2. Monoclonal Antibodies and Reagents

Lea/c/x, sdi-Lea, sLea, sLex, sTn, MUC1 and MUC5AC were selected based on their
expected specificity for PDAC. The primary and secondary mAbs and other reagents are
listed in Table S1.

2.3. Immunohistochemistry (IHC)

The 4-µm-thick formalin-fixed paraffin-embedded tissue sections were placed on glass
slides. The sections were deparaffinized in xylene for 15 min, rehydrated in a series of
100%, 50%, 25% ethanol dilutions and rinsed in demineralized water. Next, endogenous
peroxidase was blocked for 20 min using 0.3% hydrogen peroxide in demineralized water.
Antigen retrieval was subsequently performed as described in Table S1. After cooling in
phosphate-buffered saline (PBS, pH 7.4), sections were incubated overnight in a humidified
chamber at room temperature with 150 µL primary antibody using a predetermined
optimal dilution (see Table S1). Next, slides were washed three times in PBS for 5 min and
incubated with appropriate secondary antibodies, followed by an additional washing step.
Staining was visualized through incubation with 3,3-diaminobenzidine tetrahydrochloride
solution (DAB, K3468, Agilent Technologies, Inc., Santa Clara, CA, USA) for 10 min at
room temperature. Sections were then counterstained with Mayer’s hematoxylin solution
(Sigma-Aldrich, Saint Louis, MO, USA). After dehydration in an incubator for 1 h at 37 ◦C,
slides were mounted with Pertex (Leica Microsystems, Wetzlar, Germany).

2.4. Semi-Automated Imaging Analysis

Whole slide images of tissue sections were captured using a PANNORAMIC® 250
Flash III DX scanner (3DHISTECH Ltd., Budapest, Hungary) and imported into QuPath
v.0.2.3 [21]. All tissue slides were scanned using similar settings to exclude variability
during image analysis. A detailed description and graphic representation of the object
classifier training, validation and semi-automated image analysis workflow is included in
the Supplementary Materials. Briefly, random forest object classifiers for PDAC, pancreatic
(healthy pancreas and CP), healthy duodenal, positive lymph node (LN+) and negative
lymph node (LN−) tissue classes were built for each biomarker [22]. QuPath parameters
used for automated cell detection are listed in Table S2. Object classifiers were trained until
they provided detection of their respective cell type with a sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and accuracy of≥85%, as depicted
in Figure S1. Next, tissue class-, biomarker-specific scripts allowing semi-automated cell
detection, segmentation, object classifier application and classification of DAB staining
intensity were generated as shown in Figure S2. DAB staining intensity was classified
as negative, low (1+), moderate (2+) or strong (3+). Next, PDAC, CP, healthy pancreas,
healthy duodenum, LN+ and LN− regions were then annotated on the full cohort by a
pathologist (A.S.L.P.C.), after which the respective script was run (Figure S2). Staining was
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quantified using the H-score (formula: 1 × (% cells 1+) + 2 × (% cells 2+) + 3 × (% cells
3+), range: 0–300). Immunohistochemical staining with an H-score ≥ 51 was regarded
positive [23].

2.5. Statistical Analysis

Statistical analysis and graph generation were performed using IBM SPSS statistics
(version 25, IBM Corporation, Somer, NY, USA) and GraphPad Prism (version 8, GraphPad
Software, La Jolla, CA, USA). Baseline characteristics between groups were compared
using a Chi-square test for categorical data, an unpaired t-test for normally distributed
data or Mann–Whitney U test for nonparametric data. Mean H-scores were compared
using one-way ANOVA with Bonferroni correction (≥3 groups) or an unpaired t-test
(2 groups). Receiver operating characteristic (ROC) curves were drawn to calculate area
under the curve (AUC) for LN+ vs. LN− detection based on H-score. Differences with a
p-value < 0.05 were considered statistically significant.

3. Results
3.1. Patient Characteristics

Tissues from 53 patients primarily diagnosed with PDAC and 9 patients diagnosed
with CP were obtained. The clinicopathological data of this cohort are summarized in
Table 1. Of the PDAC cohort, 22 patients received NAT, of which 15 patients received
chemoradiotherapy and 7 patients received chemotherapy. NAT patients were significantly
younger (p = 0.033) had significantly lower pN stages (p < 0.001), smaller tumors (p = 0.024)
and lower serum CA19-9 levels (p = 0.007) compared to PDAC patients who did not receive
NAT. Slides containing PDAC tissue were not available for 5 patients. In total, tissue
blocks containing 48 PDAC, 28 CP, 31 healthy pancreatic, 10 healthy duodenal, 27 LN+

and 41 LN− tissues derived of 62 patients (53 PDAC and 9 CP patients) were included in
the study.

3.2. Object Classifier Training and Validation

To prepare the scripts for semi-automated image analysis, thirty-five tissue class-,
biomarker-specific object classifiers were trained and validated as described in the Supple-
mentary Materials. Briefly, after extensive training, sensitivity, specificity, PPV, NPV and
accuracy were above the predetermined threshold of 85% for all object classifiers separately,
allowing highly accurate detection and classification of its cell type of interest (Table S3).

3.3. Biomarker Expression on PDAC, CP, Healthy Pancreatic and Duodenal Tissues

The cohort was stained for Lea/c/x, sdi-Lea, sLea, sLex, sTn, MUC1 and MUC5AC
(Figure 1), followed by semi-automated imaging analysis. H-scores scatter plots showing
IHC staining of all biomarkers on PDAC, CP, healthy pancreatic and duodenal tissues are
depicted in Figure 2.

Positive biomarker expression on PDAC tissues was found on 83% for Lea/c/x (40/48),
94% for sdi-Lea (45/48), 98% for sLea (47/48), 90% for sLex (43/48), 88% for sTn (42/48),
96% for MUC1 (46/48) and 67% for MUC5AC (32/48), as shown in Table 2. Categorized
IHC staining distributions on PDAC tissues and biomarker expression for each PDAC
case separately are represented in Table 3 and in heatmap format in Figure S3, respectively.
All biomarkers were highly expressed on tumor tissues and showed a tumor-specific,
membranous staining pattern of PDAC cells. Lea/c/x, sdi-Lea, sLea and sTn showed a
more heterogenous staining distribution, while sLex, MUC1 and MUC5AC staining was
slightly more homogenous. Moreover, strong luminal staining was occasionally observed
for Lea/c/x, sdi-Lea, sLea and sLex, but not for MUC1 and MUC5AC.

In CP, staining was homogenous and mainly located on acinar and ductal cells of
the pancreas. Low to moderate staining was observed for Lea/c/x, sdi-Lea, sLea and
MUC1, while sLex, sTn and MUC5AC expression was virtually absent. For all biomarkers,



Cancers 2021, 13, 5777 5 of 15

expression in CP was significantly lower than in PDAC, although tumor:CP ratios of only
1.7 and 1.4 were observed for Lea/c/x and MUC1, respectively (Table 2).

Low to moderate Lea/c/x, sdi-Lea and sLea expression was found in healthy acinar
cells, while MUC1 was highly expressed. As for CP, expression in healthy pancreatic tissue
was mainly located on acinar and ductal cells. sLex, sTn and MUC5AC expression was
virtually absent. Compared to PDAC, a significantly lower healthy pancreas expression
was found for all biomarkers (p < 0.0001), except for MUC1 (tumor:pancreas ratio: 1.0,
p > 0.9999).

Table 1. Characteristics of PDAC patients (n = 53) and CP patients (n = 9) *. PDAC patients are categorized into NAT and no
NAT patients. p-values represent differences between NAT and no NAT patients. CP: chronic pancreatitis, IQR: interquartile
range, NA: not applicable, NAT: neoadjuvant therapy, PDAC: pancreatic ductal adenocarcinoma, SD: standard deviation.

Characteristic Total PDAC (n = 53) NAT (n = 22) No NAT (n = 31) p-Value CP (n = 9)

Age, years, mean (SD) 64.7 (9.8) 61.3 (9.1) 67.1 (9.7) 0.033 53.5 (10.9)

Gender, n (%)
Male 26 (49) 9 (41) 17 (55) 0.406 8 (89)

Female 27 (51) 13 (59) 14 (45) 1 (11)

Surgery type, n (%)
Pancreaticoduodenectomy 41 (77) 16 (73) 25 (81) 0.632 4 (44)

Pancreatic corpus/tail resection 9 (17) 4 (18) 5 (16) 5 (56)
Total pancreatectomy 3 (6) 2 (9) 1 (3) 0 (0)

Tumor differentiation, n (%)
Good 6 (11) 1 (5) 5 (16) 0.607 -

Moderate 12 (23) 1 (5) 11 (36) -
Poor 18 (34) 4 (18) 14 (45) -

Missing 17 (32) 16 (73) 1 (3) -

Primary tumor, n (%)
pT1 18 (34) 10 (46) 8 (26) 0.275 -
pT2 27 (51) 10 (46) 17 (55) -
pT3 8 (15) 2 (9) 6 (19) -

Regional lymph nodes, n (%)
pN0 18 (34) 13 (59) 5 (16) <0.001 -
pN1 21 (40) 9 (41) 12 (39) -
pN2 14 (26) 0 (0) 14 (45) -

Surgical margin status, n (%)
R0 29 (55) 15 (68) 14 (45) 0.161 -
R1 24 (45) 7 (32) 17 (55) -

NAT, n (%)
No 31 (59) 0 (0) 31 (100) - 8 (89)

Yes, chemoradiotherapy 15 (28) 15 (68) 0 (0) - 0 (0)
Yes, chemotherapy 7 (13) 7 (32) 0 (0) - 1 (11)

Tumor size, mm, mean (SD) 26 (13) 22 (11) 30 (13) 0.024 -

Serum CEA, µg/L, median (IQR) 3.2 (5.9) 3.2 (6.5) 3.5 (5.2) 0.349 -

Serum CA19-9, kU/L, median
(IQR) 74.5 (377.5) 48.4 (69.7) 322.8 (371.6) 0.007 -

* Patients primarily diagnosed with CP are listed in the table as a separate cohort next to PDAC patients.
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Figure 1. Representative (immuno)histochemical staining of HE, Lea/c/x, sdi-Lea, sLea, sLex, sTn, MUC1 and MUC5AC 
expression on PDAC, CP, pancreas and duodenum tissues. HE: hematoxylin-eosin, CP: chronic pancreatitis, PDAC: 
pancreatic ductal adenocarcinoma, Overview images and inserts are taken at 5× and 25× magnification, respectively. Scale 
bars represent 100 μM. 

Figure 1. Representative (immuno)histochemical staining of HE, Lea/c/x, sdi-Lea, sLea, sLex, sTn, MUC1 and MUC5AC
expression on PDAC, CP, pancreas and duodenum tissues. HE: hematoxylin-eosin, CP: chronic pancreatitis, PDAC:
pancreatic ductal adenocarcinoma, Overview images and inserts are taken at 5× and 25× magnification, respectively. Scale
bars represent 100 µM.
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Figure 2. H-score scatter plots of immunohistochemical staining of (A) Lea/c/x; (B) sdi-Lea; (C) sLea; (D) sLex; (E) sTn; (F) 
MUC1; (G) MUC5AC expression on PDAC, CP, pancreas and duodenum tissues. Mean H-scores are represented by the 
horizontal line together with their error bars representing the 95% confidence interval. Within each tissue category, every 
dot represents immunohistochemical staining on one case. CP: chronic pancreatitis, Duo: duodenum, ns: not significant, 
Panc: pancreas, PDAC: pancreatic ductal adenocarcinoma, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.  

Table 2. Percentage of PDAC tissues with positive immunohistochemical staining (H-score ≥ 51 out of 300) and mean 
tumor:CP, tumor:pancreas and tumor:duodenum H-score ratios, along with the p-value of the H-score difference. CP: 
chronic pancreatitis, PDAC: pancreatic ductal adenocarcinoma. 

Biomarker 
PDAC 

Positive  
n (%) 

Tumor: 
CP p-Value Tumor: 

Pancreas p-Value Tumor: 
Duodenum p-Value 

Lea/c/x 40 (83) 1.7 0.0010 2.5 <0.0001 1.9 0.0073 
sdi-Lea 45 (94) 2.9 <0.0001 10.3 <0.0001 10.0 <0.0001 

sLea 47 (98) 2.2 <0.0001 3.8 <0.0001 5.9 <0.0001 
sLex 43 (90) 33.2 <0.0001 20.9 <0.0001 53.0 <0.0001 
sTn 42 (88) 15.6 <0.0001 100.9 <0.0001 0.6 <0.0001 

MUC1 46 (96) 1.4 0.0012 1.0 >0.9999 4.8 <0.0001 
MUC5AC 32 (67) 11.5 <0.0001 13.6 <0.0001 5.6 <0.0001 

Figure 2. H-score scatter plots of immunohistochemical staining of (A) Lea/c/x; (B) sdi-Lea; (C) sLea; (D) sLex; (E) sTn;
(F) MUC1; (G) MUC5AC expression on PDAC, CP, pancreas and duodenum tissues. Mean H-scores are represented by the
horizontal line together with their error bars representing the 95% confidence interval. Within each tissue category, every
dot represents immunohistochemical staining on one case. CP: chronic pancreatitis, Duo: duodenum, ns: not significant,
Panc: pancreas, PDAC: pancreatic ductal adenocarcinoma, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

Table 2. Percentage of PDAC tissues with positive immunohistochemical staining (H-score ≥ 51 out of 300) and mean
tumor:CP, tumor:pancreas and tumor:duodenum H-score ratios, along with the p-value of the H-score difference. CP:
chronic pancreatitis, PDAC: pancreatic ductal adenocarcinoma.

Biomarker PDAC Positive n (%) Tumor: CP p-Value Tumor: Pancreas p-Value Tumor: Duodenum p-Value

Lea/c/x 40 (83) 1.7 0.0010 2.5 <0.0001 1.9 0.0073
sdi-Lea 45 (94) 2.9 <0.0001 10.3 <0.0001 10.0 <0.0001

sLea 47 (98) 2.2 <0.0001 3.8 <0.0001 5.9 <0.0001
sLex 43 (90) 33.2 <0.0001 20.9 <0.0001 53.0 <0.0001
sTn 42 (88) 15.6 <0.0001 100.9 <0.0001 0.6 <0.0001

MUC1 46 (96) 1.4 0.0012 1.0 >0.9999 4.8 <0.0001
MUC5AC 32 (67) 11.5 <0.0001 13.6 <0.0001 5.6 <0.0001
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Table 3. Distribution of biomarker expression on 48 PDAC tissues (n (%)). Expression was categorized as negative
(H-score: 0–50), low (H score: 51–100), moderate (H-score: 101–200) or high (H-score 201–300). PDAC: pancreatic
ductal adenocarcinoma.

PDAC Expression

Biomarker Negative n (%) Low n (%) Moderate n (%) High n (%)

Lea/c/x 8 (17) 8 (17) 23 (48) 9 (19)
sdi-Lea 3 (6) 5 (10) 11 (23) 29 (60)

sLea 1 (2) 0 (0) 15 (31) 32 (67)
sLex 5 (10) 7 (15) 20 (42) 16 (33)
sTn 6 (13) 7 (15) 23 (48) 12 (25)

MUC1 2 (4) 1 (2) 18 (38) 27 (56)
MUC5AC 16 (33) 9 (19) 17 (35) 6 (13)

In healthy duodenal tissues, low to moderate expression of Lea/c/x, sdi-Lea, sLea and
MUC1 on cells of the glandular epithelium was observed, in which Lea/c/x expression was
more abundant relative to sdi-Lea, sLea and MUC1. Moreover, strong sTn staining was
observed. Of note, occasional staining of Brunner’s glands was present for sLea, sLex, sTn,
MUC1, MUC5AC, but to a lesser extent for Lea/c/x and sdi-Lea. Expression on healthy
duodenal tissue was significantly lower compared to PDAC for all biomarkers (p < 0.0001),
except for sTn (tumor:duodenum ratio: 0.6, p < 0.0001), as shown in Table 2.

3.4. Biomarker Expression on PDAC Tissues after NAT

As we found that all biomarkers showed high expression on PDAC tissues, subgroup
analyses were performed to study the effect of NAT on biomarker expression on PDAC
tissues. H-score scatter plots showing biomarker expression in NAT and no NAT patients
are shown in Figure 3. Although sLex, sTn and MUC5AC expression seemed slightly lower
in the NAT group, no statistically significant differences in biomarker expression between
NAT and no NAT patients were observed, suggesting that NAT does not influence the
(over)expression of these biomarkers.

3.5. Biomarker Co-Expression on PDAC Tissues

Biomarker co-expression on tumor tissues was analyzed to evaluate the potential
added value of targeting two biomarkers simultaneously. The percentage of patients with
positive expression of at least one biomarker along with the percentage of cases with
biomarker co-expression are shown in Table 4. Although co-expression was present in the
majority of patients, virtually all patients expressed at least one of two biomarkers of any
panel, with the least-performing biomarker combination being sTn-MUC5AC that was,
alone and or combined, expressed in 90% of PDAC tissues. The highest co-expression
panel was sLea and MUC1, which were simultaneously expressed in 94% of patients.

Table 4. Percentage of cases with positive expression for at least one of two biomarker combinations (panel: ≥1) along
with the percentage of cases with expression of both biomarkers (panel: both). Immunohistochemical staining with an
H-score of ≥51.0 was considered positive.

Biomarker Panel Lea/c/x (%) sdi-Lea (%) sLea (%) sLex (%) sTn (%) MUC1 (%) MUC5AC (%)

Lea/c/x ≥1 Both - - - - - - -
sdi-Lea ≥1 Both 94 83 - - - - - -

sLea ≥1 Both 100 81 100 92 - - - - -
sLex ≥1 Both 98 75 100 83 100 88 - - - -
sTn ≥1 Both 100 71 100 81 100 85 98 79 - - -

MUC1 ≥1 Both 100 79 100 90 100 94 100 85 100 83 - -
MUC5AC ≥1 Both 96 54 96 65 98 67 96 60 90 65 96 67 -
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Figure 3. H-score scatter plots of immunohistochemical staining of (A) Lea/c/x; (B) sdi-Lea; (C) sLea; (D) sLex; (E) sTn; (F) MUC1; (G) 
MUC5AC expression on PDAC tissues of patients who received NAT or no NAT. Mean H-scores are represented by the horizontal 
line together with their error bars representing the 95% confidence interval. Each dot represents immunohistochemical staining on 
one case. NAT: neoadjuvant treatment, ns: not significant. 
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Figure 3. H-score scatter plots of immunohistochemical staining of (A) Lea/c/x; (B) sdi-Lea; (C) sLea; (D) sLex; (E) sTn;
(F) MUC1; (G) MUC5AC expression on PDAC tissues of patients who received NAT or no NAT. Mean H-scores are
represented by the horizontal line together with their error bars representing the 95% confidence interval. Each dot
represents immunohistochemical staining on one case. NAT: neoadjuvant treatment, ns: not significant.

3.6. Detection of Lymph Node Metastases

LN+ and LN− tissues were stained to evaluate the biomarkers’ potential for identifica-
tion of lymph node metastases in addition to primary PDAC lesions. Representative IHC
images for biomarker expression on LN+ tissues are depicted in Figure 4, which shows
that all biomarkers were highly expressed on PDAC cells in LN+ tissues. For LN− tissues,
biomarker expression was mostly absent, although low to moderate expression was occa-
sionally observed for Lea/c/x, sdi-Lea and sLea. Despite the latter, mean LN+ expression
was significantly higher compared to LN− expression for all biomarkers (p < 0.0001), as
shown in Figure 5. In addition, sensitivity, specificity, PPV, NPV and AUC for correct LN+

detection were calculated based on positive or negative biomarker expression on LN+ and
LN− tissues. Although sensitivity for LN+ detection was lower for sLex and sTn, Lea/c/x,
sdi-Lea, sLea, MUC1 and MUC5AC showed high LN+ identification potential, with limited
false-positive and false-negative staining. Accuracy for identification of LN+ and LN−

tissues together was 90% for Lea/c/x, 81% for sdi-Lea, 81% for sLea, 84% for sLex, 81% for
sTn, 97% for MUC1, and 91% for MUC5AC (Table 5).

Table 5. Biomarker sensitivity, specificity, PPV, NPV and accuracy along with the AUC and p-value for identification of LN+.
Immunohistochemical staining with an H-score of ≥51.0 was considered positive. AUC: area under the curve, PPV: positive predictive
value, NPV: negative predictive value, Sens.: sensitivity, Spec.: specificity, 95% CI: 95% confidence interval.

Biomarker Sens. (%) Spec. (%) PPV (%) NPV (%) Accuracy (%) AUC (95% CI) p-Value

Lea/c/x 78 98 96 87 90 0.929 (0.846–1.000) <0.0001
sdi-Lea 70 88 79 82 81 0.955 (0.896–1.000) <0.0001

sLea 78 83 75 85 81 0.927 (0.858–0.995) <0.0001
sLex 59 100 100 79 84 0.960 (0.913–1.000) <0.0001
sTn 52 100 100 76 81 0.954 (0.894–1.000) <0.0001

MUC1 93 100 100 95 97 1.000 (1.000–1.000) <0.0001
MUC5AC 78 100 100 87 91 0.972 (0.912–1.000) <0.0001
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are taken at 5× and 25×magnification, respectively. Scale bars represent 100 µM. HE: hematoxylin-eosin, LN+: positive
lymph node.
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Figure 5. H-score scatter plots of immunohistochemical staining of (A) Lea/c/x; (B) sdi-Lea; (C) sLea; (D) sLex; (E) sTn;
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together with their error bars representing the 95% confidence interval. Within each tissue category, every dot represents
immunohistochemical staining on one case. LN+: positive lymph node, LN−: negative lymph node, ****: p < 0.0001.
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4. Discussion

Through specific binding to and (real-time) visualization of tumor cells, targeted
molecular imaging agents can play a key role in overcoming current challenges during
diagnosis, resection, and monitoring of PDAC. In this study, we evaluated the potential
of tumor-associated glycans Lea/c/x, sdi-Lea, sLea, sLex and sTn, and mucins MUC1 and
MUC5AC as a molecular imaging target for PDAC using a semi-automated, machine-
learning-based image analysis workflow. Our results show that all biomarkers are highly
expressed on PDAC cells. Importantly, subgroup analyses showed that biomarker expres-
sion was similar in patients who received NAT and patients who did not receive NAT,
suggesting that NAT does not influence biomarker expression. This finding is particularly
promising in view of the ever-increasing application of neoadjuvant chemoradiotherapy
for PDAC and paves the way for PDAC targeting using these biomarkers in a clinically
relevant setting [24]. We additionally showed that simultaneous targeting of two targets
using, for instance, a bispecific tracer could be attractive in order to allow targeting of
the entire PDAC population. High tumor:CP ratios were observed for all biomarkers,
although tumor:CP ratios for MUC1 and Lea/c/x were closer to 1 (1.4 and 1.7, respectively).
In addition, high tumor:pancreas ratios were observed for all biomarkers, except for MUC1
(tumor:pancreas ratio 1.0). These results suggest that all biomarkers, besides MUC1, have a
high potential to serve as molecular imaging targets to solve current challenges in the de-
lineation of primary PDAC lesions from surrounding CP and healthy pancreatic tissue. We
additionally evaluated biomarker expression on healthy duodenal tissues to evaluate their
potential for delineating locally advanced primary pancreatic head carcinomas invading
the duodenum, which can be present in 47–58% of patients [25,26]. In contrast to the other
biomarkers, sTn’s abundant expression on healthy duodenal tissues limits its suitability
for molecular imaging of primary PDAC invading the duodenum.

In addition to primary PDAC detection, both pre- and intraoperative imaging of
lymph node metastases is pivotal for disease staging and monitoring [27,28]. Therefore,
we evaluated the potential of the biomarker panel to detect lymph node metastases and
found that all biomarkers are significantly upregulated on LN+ compared to LN− tissues.
All biomarkers showed a high detection potential for LN+ tissues and distinction of LN+

from LN− tissues, which was comparable to the performance of established protein-
based molecular imaging targets, such as CEACAM5, PSMA, avβ6 and uPAR, further
strengthening their potential as molecular imaging targets [28,29].

Due to their tumor-specific (over)expression and excellent in vivo accessibility, tumor-
associated glycans, which are present on the outermost layer of the cell membrane, are
of particular interest for molecular imaging [11]. Several glycan-specific tracers were
successfully evaluated for molecular imaging of PDAC in a preclinical setting, but only
a few studies have described glycan-based imaging in a clinical context. For instance,
89Zr-DFO-HuMab-5B1 (MVT-2163), which targets sLea (more commonly known as CA19-
9), was successfully evaluated in a phase 1 trial for PET imaging of PDAC and provided
clear delineation of primary tumors and metastases, some of which were not identified
using standard imaging modalities [30]. sLea is also employed as a serum biomarker for
diagnosis and monitoring of PDAC within standard-of-care. However, despite its strong
overexpression in PDAC, targeting of sLea in PDAC is limited by its presence in the healthy
pancreas, CP and other benign pancreaticobiliary diseases, which is confirmed by the
relatively low tumor:CP, tumor:pancreas and tumor:duodenum ratios found in the current
study [31]. Noteworthy, we showed that sdi-Lea, which is a Lewis glycan structurally
related to sLea, had a more restricted expression on CP, healthy pancreas and duodenal
tissues with similar PDAC expression, which strengthens the major potential of sdi-Lea

over sLea for specific PDAC targeting.
Lea/c/x and sdi-Lea were recently described by Chua and Tivadar et al., respectively,

showing high expression on PDAC tissues with low to moderate abundance on healthy
tissues [13,15]. Once employed in vivo, the Lea/c/x-specific mAb FG88.2 subsequently
displayed remarkable tumor targeting [13]. Recently, our group conducted a proof-of-
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concept evaluation of the chimeric (human/mouse) counterpart of the FG88.2 mAb, CH88.2,
as a targeting moiety for fluorescence-guided surgery of colon carcinoma and PDAC.
Conjugated to IRDye 800CW, the tracer allowed clear visualization of subcutaneous HT-29
(colon carcinoma) and BxPC-3 (PDAC) tumor xenografts using a clinical near-infrared
fluorescence imaging system [32]. Although additional IHC exploration of expression
on other gastrointestinal tumors along with their normal counterparts and metastases is
required to evaluate the tracer employability beyond PDAC, the current findings strongly
support previous data on FG88.2 staining, paving the way for a clinical translation of the
tracer [13,15].

In addition to glycans, mucins, that are heavily coated with glycans, may form at-
tractive targets for molecular imaging of PDAC due to their tumor-specific expression,
some of which from the earliest in situ stage onward. Although in our study MUC1 seems
to be a less suitable candidate for molecular imaging of PDAC, it should be noted that
alternative conformational epitopes on MUC1, induced by the presence of (truncated)
O-glycans, were described [33,34]. As their accessibility is dependent on conformational
changes, induced by tumor-specific aberrant glycosylation, their expression on healthy
tissues might be minimized, making them more attractive for tumor-specific targeting.
For instance, the PAM4-reactive epitope, which is present on both MUC1 and MUC5AC,
was shown to have a low abundance on healthy pancreatic and CP tissues, while expres-
sion on PDAC and pancreatic intraepithelial neoplasia (PanIN)-1A lesions onward was
high [35,36]. Evaluation of PAM4-reactive epitope expression on the current cohort would
be an interesting continuation in order to establish its potential as a PDAC imaging target,
while simultaneously putting the current findings into perspective.

A strong methodological point of the study is the inclusion of tissues derived from
the entire PDAC context, i.e., the primary tumor, healthy/benign tissue counterparts,
surrounding organs and metastatic and healthy lymph nodes, which is paramount for
a complete and accurate biomarker comparison. Our semi-automated image analysis
workflow provided highly accurate cell classification, allowing an objective, reproducible
and precise evaluation of biomarker expression. In contrast, accurate manual scoring of
heterogeneous biomarker stainings may be challenging and consequently suffers from both
intraobserver and interobserver variability [37–39]. Moreover, to the best of our knowledge,
this study is the first to evaluate the expression of the current biomarkers on both PDAC
tissues of patients who received NAT and on metastatic PDAC lymph node tissues.

This study has some limitations. Application of the current QuPath workflow for
this relatively small cohort is limited by its labor intensity and still does not avoid the in-
volvement of a specialized pathologist. In addition, erroneous classification of out-of-focus
tissue areas and staining artifacts, although mostly avoided during tissue area annotation,
may further compromise accurate semi-automated scoring of digital images. Moreover, we
cannot fully exclude that, particularly in patients that received NAT, residual tumor clusters
in both primary resection and lymph node tissues were misclassified and subsequently
annotated as non-tumorous. It should however be noted that considering manual scoring
to be the gold standard may overlook the potential of machine learning-based algorithms
to classify cells with superior accuracy relative to the human eye [40]. Furthermore, we
feel that the benefits of the highly accurate, semi-automated scoring method, which is of
high importance considering the heterogenicity of the observed staining patterns within a
complex PDAC morphology, do outweigh the aforementioned disadvantages.

This study identified Lea/c/x, sdi-Lea, sLea, sLex, and MUC5AC as high-potential
targets for molecular imaging of PDAC. Future research into glycan- and mucin-targeted
imaging should thus focus on the development and evaluation of clinically suitable tracers
directed against these glycan and mucin targets. Secondly, although this study showed no
difference in biomarker expression on PDAC tissues between NAT and no NAT patients,
evaluating the correlation between biomarker expression on PDAC tissues before and after
NAT, for instance by using fine-needle aspiration biopsies acquired before NAT, could
strengthen the current finding that NAT does not influence biomarker expression. Thirdly,
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although this study demonstrates the potential of identifying LN+ tissues based on the
expression of the evaluated biomarkers, future animal models with complex lymph node
metastases are required to definitely establish a glycan or mucin-targeting tracer’s potential
for metastatic lymph node detection. Altogether, this study provides a strong foundation for
the development, characterization and preclinical evaluation of tumor-associated glycan-
and mucin-specific molecular imaging agents for high-contrast delineation of PDAC.

5. Conclusions

To conclude, our results show that particularly Lea/c/x, sdi-Lea, sLea, sLex and
MUC5AC are high-potential targets for molecular imaging of primary PDAC lesions,
regardless of the application of NAT. Due to their strong abundance on duodenum and
healthy pancreatic tissues, sTn and MUC1 were considered less suitable targets. All
biomarkers are suitable targets for correct identification of LN+ as well as the distinction
of LN+ from LN− tissues. Through this study, we lay the groundwork for the develop-
ment and evaluation of clinically suitable glycan- and mucin-specific tracers for molecular
imaging of PDAC.
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.3390/cancers13225777/s1. Figure S1: Graphical representation of biomarker training and validation
workflow; Figure S2: QuPath images and semi-automated image analysis workflow; Figure S3:
Heatmap of biomarker expression on PDAC tissues for each case separately. Table S1: Primary
and secondary mAbs, clone, catalog number, provider, isotype and conditions used during IHC;
Table S2: Automated cell detection parameters used in QuPath; Table S3: Mean ± SD object classifier
sensitivity, specificity, PPV, NPV, accuracy for the detection of tumor, stromal, acinar, immune or
glandular cells pooled from all biomarkers (n = 7).
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Abbreviations

95% CI: 95% Confidence Interval, AUC: Area Under the Curve, CP: Chronic Pancreatitis, DAB:
3,3′-Diaminobenzidine, EUS: Endoscopic Ultrasound, HE: Hematoxylin-Eosin, IHC: Immunohisto-
chemistry, IQR: Interquartile Range, Lea/c/x: Lewisa/c/x, LN+: positive lymph node, LN−: negative
lymph node, MRI: Magnetic Resonance Imaging, MUC1: Mucin-1, MUC5AC: Mucin-5AC, NAT:
Neoadjuvant Therapy, NPV: Negative Predictive Value, PanIN: Pancreatic Intraepithelial Neopla-
sia, PBS: Phosphate-Buffered Saline, PDAC: Pancreatic Ductal Adenocarcinoma, PET/CT: Positron
Emission Tomography/Computed Tomography, PPPD: Pylorus-Preserving Pancreatoduodenectomy,
PPV: Positive Predictive Value, ROC: Receiver Operation Characteristic, ROI: Region-Of-Interest,
SD: Standard Deviation, sdi-Lea: sialyl-di-Lewisa, Sens.: Sensitivity, sLea: sialyl-Lewisa, sLex: sialyl-
Lewisx, Spec.: Specificity, sTn: sialyl-Thomsen-Nouveau.
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