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Simple Summary: Finding prognostic biomarkers and associated models with high accuracy in
patients with pancreatic cancer remains a challenge. The aim of this study was to analyze whether
the combination of quantitative imaging biomarkers based on geometric and radiomics analysis of
whole liver tumor burden and established clinical parameters improves the prediction of survival
in patients with metastatic pancreatic cancer. In this retrospective study a total of 75 patients with
pancreatic cancer and liver metastases were analyzed. Segmentations of whole liver tumor burden
from baseline contrast-enhanced CT images were used to derive different quantitative imaging
biomarkers. For comparison, we chose two clinical prognostic models from the literature. We found
that a combined clinical and imaging-based model has a significantly higher predictive performance
to discriminate survival than the underlying clinical models alone (p < 0.003).

Abstract: Finding prognostic biomarkers with high accuracy in patients with pancreatic cancer
(PC) remains a challenging problem. To improve the prediction of survival and to investigate the
relevance of quantitative imaging biomarkers (QIB) we combined QIB with established clinical
parameters. In this retrospective study a total of 75 patients with metastatic PC and liver metastases
were analyzed. Segmentations of whole liver tumor burden (WLTB) from baseline contrast-enhanced
CT images were used to derive QIBs. The benefits of QIBs in multivariable Cox models were
analyzed in comparison with two clinical prognostic models from the literature. To discriminate
survival, the two clinical models had concordance indices of 0.61 and 0.62 in a statistical setting.
Combined clinical and imaging-based models achieved concordance indices of 0.74 and 0.70 with
WLTB volume, tumor burden score (TBS), and bilobar disease being the three WLTB parameters
that were kept by backward elimination. These combined clinical and imaging-based models have
significantly higher predictive performance in discriminating survival than the underlying clinical
models alone (p < 0.003). Radiomics and geometric WLTB analysis of patients with metastatic PC
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with liver metastases enhances the modeling of survival compared with models based on clinical
parameters alone.

Keywords: computed tomography; radiomics; quantitative imaging biomarker; whole liver tumor
burden; spatial analysis; metastatic pancreatic cancer; prognostic biomarker

1. Introduction

Pancreatic cancer (PC) is one of the major causes of cancer-related death and its high
mortality rate has been unchanged for years [1]. Most patients are diagnosed with locally
advanced or metastatic PC and the five-year survival rate is lower than 10% [2,3].

Finding prognostic biomarkers and associated models with high sensitivity and speci-
ficity for survival prediction remains a challenging problem [4]. Various studies have
suggested prognostic biomarkers, such as levels of CA19-9, CRP and LDH, the ratio of
neutrophils to lymphocytes, and performance status [5–11]. Moreover, several studies have
evaluated clinical models for survival prediction in PC [5,6,12–14]. Xue et al. [6] designed a
prognostic index model, helping to divide patients with metastatic PC into two risk groups
in terms of survival, based on three clinical parameters (ECOG score, CA 19-9 level, and
CRP level). Haas et al. [5] showed in a multivariable analysis of pretreatment prognostic
factors statistical significance for the endpoint overall survival for the values log [CA 19-9],
Karnofsky Performance Status (KPS; 90–100% vs. 60–80%), log [bilirubin] and log [CRP].

Besides genetic and biologic biomarkers, recent work suggests the use of radiomics
signature and geometric measures of computed tomography imaging as biomarkers for
the prediction of survival and therapeutic response [15–19]. Radiomics is an emerging field
that extracts high-dimensional features from imaging data and uses them in statistical or
machine-learning models with the goal of improving prediction accuracy in diagnosis and
therapy responses [20,21]. Research data from radiomics studies on detecting quantitative
imaging biomarkers (QIBs) for survival prediction in PC patients is scarce.

In order to estimate the overall survival or therapy response for different tumor
types, in recent years, advances in automatic segmentation have enabled giving increasing
consideration to analyzing the whole liver tumor burden (WLTB), instead of individual
liver metastases, to more accurately assess holistic tumor heterogeneity [22,23]. Moreover,
for patients with metastatic colorectal cancer, the tumor-burden score (TBS), assessing
liver tumor burden, has become a prognostic tool [24,25]. The TBS is defined as the
Pythagorean addition of the lesion number and the diameter of the largest lesion. This
measurement was able to better estimate the survival of patients with colorectal liver
metastases than the number of lesions or the diameter of the largest lesion alone [24,25].
Recently, the geometric metastatic spread (GMS) of the WLTB, i.e., the maximum spatial
distance between liver metastases, has been found to be a promising predictor for survival
in colorectal cancer patients [26]. The relevance of TBS and GMS of WLTB has not yet
been evaluated for metastatic PC patients. Since PC is a tumor that frequently affects
the liver in the metastatic situation, the WLTB seemed to be a suitable value for analysis.
However, since the predictive value of radiomics or geometric analyses of WLTB for
PC patients is unknown, we have compared the predictive performance of established
clinical and quantitative imaging biomarkers based on WLTB in PC patients using a
statistical approach.

The aim of this study was to investigate the prediction of one-year survival (1-YS)
in patients with metastatic pancreatic cancer with the use of a systematic comparative
analysis of quantitative imaging biomarkers (QIB) based on the geometric and radiomic
analysis of whole liver tumor burden (WLTB) in comparison with predictions based on the
tumor-burden score (TBS), WLTB volume alone, and two clinical models



Cancers 2021, 13, 5732 3 of 14

2. Materials and Methods
2.1. Patient Cohort

The retrospective study was approved by and performed according to the guidelines
of the local ethics committee (blinded). Written informed consent was obtained from all
patients. We used a database of 325 patients with histologically proven metastatic PC from
September 2015 to June 2017. For 180 patients, CT imaging data was available. Of these
patients, 107 had reported metastatic liver disease. However, 13 patients had to be excluded
because no contrast-enhanced CT imaging of the complete liver had been performed. In
16 further patients, no liver metastases were visible on baseline CT scans. Finally, three
patients had to be excluded due to extensive metastatic liver disease that made a WLTB
segmentation infeasible. The final study cohort consisted of 75 patients (Figure 1).
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Figure 1. Flowchart illustrating patient exclusion criteria leading to the final study cohort of
75 metastatic PC patients.

Clinical information (ECOG, CRP, Bilirubin, CA19-9) was obtained from the case files,
information on survival data from the case file or register of residence.

2.2. Imaging Studies

Baseline CT scans were acquired with various multidetector-row CT scanners from
different manufacturers, using a default tube voltage of 120 kV. An intravenous contrast
agent was applied in a weight-adapted manner. The images were acquired in portal venous
phase and a standard soft-tissue kernel was used for the reconstruction. Slice thickness
varied between 0.6 and 5 mm.

2.3. WLTB Segmentations and QIBs

Only contrast-enhanced CT scans were used for further evaluation. All CT scans were
reviewed blinded to clinical data independently in a randomized manner. Screening for
metastases was performed by two board-certified radiologists (blinded) with more than six
years of experience in oncologic imaging. Automatic WLTB segmentations were created
with a pre-trained U-Net [27] in a customized software based on MeVisLab (MeVis Medical
Solutions, Bremen, Germany [28,29]). The U-Net was trained on images with a wide range
of slice thicknesses and scanners and its performance does not depend on these factors.
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Both radiologists were able to revise the automatic WLTB segmentations, if necessary, by
segmenting additional tumors or adapting tumor contours.

Imaging features were extracted using MeVisLab and PyRadiomics [30]. These fea-
tures include previously discovered QIBs, such as the mean attenuation and the volume,
both absolute and as a percentage of the liver volume, the TBS, and bilobar disease, i.e.,
presence of metastases in both the left and right functional liver lobes. Moreover, we
evaluated the established four-feature radiomics signature described by Aerts et al. [21] for
the WLTB because of the good predictive performance of this model when applied to target
lesions in multiple oncological imaging studies [20,30–32]. These four quantitative image
features (energy, compactness, GLRLM nonuniformity, wavelet nonuniformity) describe
the tumor heterogeneity and compactness and have been defined by the Image Biomarker
Standardization Initiative [33].

Additionally, we also evaluated the spatial geometric distribution of the tumors within
the liver with geometric metastatic spread (GMS) features [26]: they measure the maximum
distance of liver metastases along the three scanner axes (MSx, MSy, MSz) as well as the
surface-area-to-volume ratio (SA/V), which quantifies the dispersion of metastases within
the liver.

2.4. Clinical Baseline Models

Two models for survival prediction in PC, based on clinical parameters from the
literature, were used as a baseline for investigating the benefit of adding WLTB QIBs. Both
are multivariable Cox proportional hazard models and use those baseline parameters that
were found to be significant in a multivariable Cox model in the original studies. The first
model is based on results by Haas et al. [5] and uses

• ECOG [34] 0 vs. ECOG 1-2 at the time of diagnosis of metastatic PC; this is roughly
equivalent to the Karnofsky performance score (KPS) 90–100% vs. 60–80%, as used in
the original study [5]

• Baseline log(CRP), where the natural logarithm is applied to the continuous value of
CRP in mg/dl

• Baseline log(bilirubin), analogously

The stage of disease (locally advanced vs. metastatic pancreatic cancer) is omitted
from the original model because we consider metastatic patients only. A CPH model with
these three parameters was fitted to our data and the concordance index (C-index) was
computed to estimate the predictive performance.

The second model uses baseline parameters from the prognostic index model of
Xue et al. [6]:

• ECOG 0-1 vs. two at the time of diagnosis of metastatic PC
• Baseline CA19-9 ≥1000 U/mL vs. <1000 U/mL
• Baseline CRP ≥5 mg/L vs. <5 mg/L
• Again, a CPH model is fitted and evaluated by the C-index.

2.5. Statistical Analysis

Survival time was defined as the time from the date of the first baseline CT at the initial
diagnosis of metastatic disease to the date of death (if applicable). Descriptive statistics,
such as median and range for continuous variables and frequencies for categoric variables,
were used to summarize the data and features defined above.

Univariable CPH models were computed for all image-based features. Significant
features (p < 0.2, Wald test) were candidates for being combined with parameters from the
clinical baseline models into a multivariable CPH model. Backward elimination, based
on the Akaike information criterion (AIC) was used to select the final parameter set for
the combined models. The likelihood ratio (LR) test was used to compare the C-indices
of models. This test requires nested models, i.e., the parameters in one model must be a
subset of the parameters of the other model. Therefore, all clinical parameters from the
baseline model were kept in the combined model. For the final model, high and low risk
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groups were defined by splitting the cohort at the median survival. Survival differences
between the two groups were visualized by a Kaplan–Meier curve and quantified by the
log-rank test. The whole analysis pipeline is illustrated in Figure 2.
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Figure 2. Flowchart illustrating the statistical analysis pipeline.

For a deeper understanding of the features, a univariable Spearman correlation
heatmap and dendrogram were generated to quantify associations between clinical and
imaging variables.

Data analysis was done with R (version 3.6, packages survival, glmnet, MASS) and
Python (version 3.7.1, packages pandas, numpy, scipy, lifelines). Academic radiologists
had full control over the data and no product or commercial software was tested in the
current study.

3. Results
3.1. Demographic Data

Baseline characteristics of the included patients are shown in Table 1.

Table 1. Baseline characteristics of 75 included metastatic PC patients. ns: not specified. Continuous
variables are given as median and range. T stage/N Stage according to AJCC (American Joint
Commission on Cancer), tumor grading according to [35].

Characteristic Value

No. of patients 75
age (y) 64 (41–83)

sex male 50 (66.7%)
female 25 (33.3%)

primary tumor location head 26 (34.7%)
body 15 (20.0%)
tail 13 (17.3%)
ns 21 (28.0%)
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Table 1. Cont.

Characteristic Value

tumor grading G1 1 (1.3%)
G2 12 (16.0%)
G3 59 (78.7%)
G4 3 (4.0%)

T stage T1 1 (1.3%)
T2 9 (12.0%)
T3 46 (61.3%)
T4 19 (25.3%)

N stage N0 19 (25.3%)
N1 55 (73.3%)
N2 1 (1.3%)

CA 19-9 (U/mL) 463 (0–422,000)
CEA (ng/mL) 6.3 (0.2–1697.0)
CRP (mg/dL) 1.0 (0.0–18.2)

LDH (U/L) 226 (128–937)
bilirubin (mg/dL) 0.6 (0.3–39.8)

ECOG 0 33 (44.0%)
1 38 (50.7%)
2 3 (4.0%)
3 1 (1.3%)

overall survival (d) 304
whole liver tumor burden volume (cm3) 9.3 (0.3–2832.5)

affected liver lobes left 61 (81.3%)
right 67 (89.3%)
both 53 (70.7%)

A Kaplan–Meier curve of overall survival is shown in Figure 3. The median survival was
10.0 months (95% confidence interval: 7.9 to 11.6 months). Six patients were right-censored.
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Figure 3. KaplanMeier curve and 95% confidence interval of the overall survival of patients of
75 included metastatic PC patients.

3.2. WLTB Segmentations

In total, 1135 liver metastases were segmented, ranging from 1 to 113 (median 7) per
patient. In Figure 4, three representative patients spanning the range of overall survival are
shown. A comparison of Figure 4a,b illustrates the different WLTB parameters. While the
patient who lived longest (a) has a larger WLTB volume, the median patient (b) has a higher
number of metastases. Also, the GMS is different between them: patient (b) has a larger
metastatic spread on the frontal axis (MSx), i.e., metastases are located over the whole
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width of the liver, whereas in patient (a) metastases are predominantly located within the
right liver lobe, resulting in a lower MSx. Patient (b) also has a higher tumor burden score,
which, in this case is dominated by the number of metastases, although patient (a) has
larger metastases. The patient shown in Figure 4c exceeds the others in both WLTB volume
and number of metastases, but still has a lower MSx than patient (b).
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after 9.9 months), and (c) shortest overall survival (died after 0.9 months).
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3.3. Survival Models

The univariable CPH models for WLTB parameters are shown in Table 2. Of all 13
imaging-based parameters, 8 were significantly associated with survival.

Table 2. Univariable CPH models for WLTB parameters with hazard ratio (HR), 95% confidence
interval (CI), and p-value (Wald test). * Parameters with p < 0.2 were candidates for extended models.

Parameter HR [CI] p

attenuation (HU) 1.00 (0.98–1.01) 0.632
volume (cm3) 1.00 (1.00–1.00) 0.127 *

relative volume (%) 0.99 (0.96–1.02) 0.428
TBS 1.02 (1.01–1.03) 0.002 *

bilobar disease 2.25 (1.31–3.84) 0.002 *
energy 1.00 (1.00–1.00) 0.196 *

compactness 0.09 (0.02–0.44) 0.002 *
GLRLM nonuniformity 1.00 (1.00–1.00) 0.203
wavelet nonuniformity 1.00 (1.00–1.00) 0.283

MSx (cm) 1.03 (1.00–1.07) 0.083 *
MSy (cm) 1.04 (1.00–1.08) 0.081 *
MSz (cm) 1.05 (1.01–1.10) 0.018 *

SA/V (1/cm) 1.03 (0.92–1.14) 0.618

To visualize the univariable associations of imaging and clinical variables, a correlation
heatmap with dendrogram is shown in Figure 5. The highest association between clinical
parameters and imaging was found between CA 19-9 and TBS.
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Table 3 summarizes the results of the clinical baseline models and the models extended
with WLTB parameters.
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Table 3. Multivariable CPH models with hazard ratio (HR), 95% confidence interval (CI), p-value (Wald test) and C-index
for clinical baseline models and models extended with WLTB parameters as well as p-value for C-index of extended model
vs. baseline model (likelihood ratio test): * significant (p < 0.05).

Parameter
Baseline Model (Haas et al. [5]) Extended Model 1

HR (CI) p C-Index HR (CI) p C-Index

ECOG 0 vs. 1–3 1.59 (0.98–2.57) 0.06
0.614

1.49 (0.91–2.42) 0.11

0.736 (p = 0.0003 *)

log(CRP) 1.00 (0.97–1.03) 0.99 0.99 (0.96–1.02) 0.35
log(Bilirubin) 1.18 (0.98–2.57) 0.13 1.16 (0.93–1.45) 0.20
volume [cm3] 1.00 (1.00–1.00) 0.06

TBS 1.01 (1.00–1.03) 0.04 *
bilobar disease 2.02 (1.09–3.75) 0.03 *

energy 1.00 (1.00–1.00) 0.10

Parameter
Baseline Model (Xue et al. [6]) Extended Model 2

HR (CI) p C-Index HR (CI) p C-Index

ECOG 0–1 vs. 2 3.75 (1.27–11.14) 0.02 *
0.621

2.79 (0.94–8.30) 0.07

0.699 (p = 0.003 *)

CA19-9 ≥ 1000
[U/mL] 1.58 (0.98–2.55) 0.06 1.01 (0.57–1.77) 0.98

CRP ≥ 5
[mg/dl] 1.53 (0.77–3.06) 0.23 1.52 (0.76–3.05) 0.24

volume [cm3] 1.00 (1.00–1.00) 0.22
TBS 1.02 (1.00–1.03) 0.03 *

bilobar disease 1.86 (1.02–3.37) 0.04 *

For both baseline models, C-indices of roughly 0.62 were found. The only significant
parameter was ECOG in the model of Xue et al. [6].

For both models, WLTB volume, TBS, and bilobar disease (plus energy in the Haas et al.
model, respectively) were the remaining WLTB parameters after backward elimination
and were thus used in the extended multivariable models (extended model 1 based on [5],
extended model 2 based on [6]). This resulted in C-indices of 0.736 and 0.699, which are
both significantly higher than those of the respective baseline models. TBS and bilobar
disease were the only significant parameters in both final models.

Both extended models (extended models 1 and 2) were used to stratify patients
into high- and low-risk groups with significantly different survival (p < 0.0001). The
Kaplan–Meier curves are shown in Figure 6. Median survival in the risk groups was for
the extended model 1 (b) 6.0 vs. 14.3 months and for the extended model 2 (d) 6.4 vs.
14.3 months. For comparison, we also show the Kaplan–Meier curves for risk stratification
using the baseline models.
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4. Discussion

In this work, we investigated whether the whole liver tumor burden (WLTB) and
especially different quantitative imaging biomarkers (QIB) of WLTB could be used as
prognostic biomarkers in patients with metastatic pancreatic cancer (PC).

We therefore analyzed contrast-enhanced CT scans of 75 patients with PC and liver
metastases scheduled for first-line therapy. In detail, we compared different WLTB-based
imaging biomarkers including already discovered discriminative QIBs found in oncological
imaging with two clinical baseline models [5,6] for predicting overall survival. Our goal
was to explore if potential and robust predictors of patient survival could be identified
based on the quantitative imaging in baseline CT scans, which may serve as early imaging
biomarkers for risk stratification. In this study, for both clinical baseline models, C-indices
of roughly 0.62 were found. After the addition of WLTB imaging parameters, the C-index
increased from 0.62 to 0.74. These extended models (1 and 2) had a significantly higher
predictive performance in discriminating survival than the underlying clinical models
alone (p < 0.003). The results of this study suggest that WLTB imaging parameters are
informative in terms of predicting survival in patients with metastatic PC.

Patients with PC have a very poor prognosis. The identification of specific tumor
characteristics associated with prognosis is important for treatment decisions. Several
studies with different cancer entities have already applied radiomics for survival predic-
tion [18–21,32,36–40]. Until now, there are only a few other studies on the prognostic utility
of imaging parameters in PC [15–19]. For example, in a study by Attiyeh et al. [17], an asso-
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ciation between the quantitative analysis of 255 texture features from the primary tumor
region representing different aspects of image heterogeneity and survival could be shown
for patients with resected PC using two models with clinical data (CA 19-9, Brennan-Score)
and radiomics features. Another study by Chakraborty et al. [18] showed an association
between a model of 255 well-established first- and second-order intensity and edge-based
features and the prediction of two-year survival for patients with resectable PC. Moreover,
in a study by Parr et al. [19] a six-feature radiomics signature of primary pancreatic tumors
was identified that achieved better overall survival prediction performance than the clinical
model alone for patients undergoing stereotactic body radiotherapy. Since there are some
studies on the prognostic utility of imaging parameters of primary pancreatic tumors,
research data of radiomics studies to detect QIBs for survival prediction for patients with
PC and liver metastases are warranted.

To the best of our knowledge, this work is the first study that compared WLTB, the
percentage of total tumor in the liver, and especially WLTB-based imaging biomarkers
for predicting survival in patients with metastatic PC. In this study, segmentations of
WLTB from baseline contrast-enhanced CT images were used to derive different QIBs. The
extracted WLTB imaging features include the whole liver tumor burden volume, bilobar
disease, i.e., presence of metastases in both left and right functional liver lobes, four features
of the established radiomics signature by Aerts et al. [21], and the geometric metastatic
spread (GMS).

We decided to use WLTB because it has been shown to be an independent predictor of
prognosis in patients with metastatic colorectal cancer and for other solid tumors [22,23].
Since PC is a tumor that frequently affects the liver in the metastatic situation, the WLTB
seemed to be a suitable value for analysis. Since there are no established biomarkers
of WLTB for patients with PC to date, we decided to use these WLTB QIBs, which are
reliable predictive biomarkers and show higher predictive values than clinical parameters
in patients with hepatic metastatic colorectal cancer in a study by Mühlberg et al. [26].
Since the added predictive value of radiomics or geometric analysis of WLTB for patients
with metastatic PC is unknown, we compared the predictive performance of established
clinical and quantitative imaging biomarkers based on WLTB, using a statistical approach.
In the extended models, WLTB volume, TBS, bilobar disease and energy (in the extended
model 1) were the WLTB parameters that were kept, by backward elimination, and were
thus used in the extended multivariable model.

The TBS, incorporating maximum tumor size and number of lesions, was analyzed
for survival discrimination in metastatic colorectal cancer patients and was outlined as an
accurate tool to account for the impact of tumor morphology on long-term survival [24].
In a study by Mühlberg et al. [26] the TBS represents a reliable predictive QIB and shows
higher predictive values than all clinical models for patients with metastatic colorectal
cancer. Furthermore, TBS was strongly associated with the risk of recurrence after resection
in patients with HCC and pancreatic neuroendocrine tumors [41–43].

We applied the TBS for our collective patients with PC and a significant correlation
between TBS and prognosis was shown. Therefore, TBS seems to be a suitable prognostic
marker for patients with metastatic PC. External validation cohorts and further studies are
needed to clarify the prognostic role of TBS in patients with PC and liver metastases.

In addition to TBS, GMS (except SA/V) was significantly associated with survival
in the univariable CPH models. However, TBS performed best in multivariable statistics
and GMS contained no remaining WLTB parameters, after backward elimination, and
was not used in the extended multivariable models. As in our study, TBS and GMS were
features with significant discriminative performance in univariable statistics in the study
by Mühlberg et al. [26]. Moreover, in that study TBS also showed the best discriminative
performance whereas GMS was superior to TBS in the machine-learning approach [26].

Moreover, we evaluated the four features (energy, compactness, GLRLM nonunifor-
mity, wavelet nonuniformity) of the established radiomics signature by Aerts et al. [21].
Aerts et al. [21] defined a four-feature signature by focusing on the most robust features for
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prognostication in a lung dataset, and validated their signature using independent lung,
head or neck cancer patient cohorts. The performance of the four features appears plausi-
ble, since this data has often been shown to be of high and reproducible predictive value
across various cancer types [21,25–27,31,32]. In this study, all parameters were significantly
associated with survival in the univariable CPH models for WLTB parameters. Energy
was, in the Haas et al. case, a remaining WLTB parameter after backward elimination and
was used in the extended multivariable model. External validation cohorts and further
studies are needed to find out the prognostic role of the established radiomics signature by
Aerts et al. in PC.

Our study had some potential limitations. First, the study is only of medium sample
size. Second, no external validation cohort was available. External validation cohorts and
further prospective studies are needed to determine the prognostic role of WLTB-derived
QIBs. Another problem may arise from the variety of different CT scan protocols, especially
for texture quantifications. Another limitation of the segmentation of WLTB is that it can
only be used if liver metastases can be detected with the currently available software.
In this study, 16 patients had to be excluded because no liver metastases were visible in
baseline CT imaging and three patients had to be excluded because they were so extensively
metastasized that a WLTB segmentation was not feasible. According to the current state of
technology, its use is therefore not possible in all patients. However, despite the variety of
different CT-scan protocols in this study, in most of the cases, segmentation of the WLTB
was possible.

Combined clinical and imaging-based risk scores using radiomics may be useful in the
future for patient risk stratification and the support of treatment decisions in patients with
metastatic PC. Currently, WLTB is not analyzed in clinical routine, however, appropriate
software is under development [27], so an application in clinical routine would be possible
in the future. This makes the WLTB and WLTB QIBs an interesting tool to be used as
prognostic biomarkers in patients with metastatic PC.

5. Conclusions

Clinical models for predicting survival in metastatic PC have limited prognostic value.
WLTB–based measures from CT-images such as whole liver tumor volume, tumor burden
score, bilobar disease and radiomics features, such as energy, are significantly associated
with the outcome of patients with metastatic PC. Therefore, extending established clinical
models with the image-based parameters of WLTB significantly increases prognostic value.
The results of this study conclusively underline that the roles of WLTB and QIBs of the
WLTB as potential predictive biomarkers for survival require further study.
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