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Simple Summary: Ewing sarcoma is a rare pediatric tumor characterized by chromosomal translo-
cations that give rise to aberrant chimeric transcription factors (e.g., EWSR1-FLI1). EWSR1-FLI1
defines a specific transcriptomic profile in Ewing sarcoma cells, which determines the tumorigenesis
process. Our study focused on the identification of transcription factors regulated by EWSR1-FLI1.
FEZF1 (FEZ family zinc finger protein 1), a transcription factor involved in neural cell identity, was
identified as one of the most strongly upregulated genes by EWSR1-FLI1. Functional studies were
carried out to characterize the involvement of FEZF1 in Ewing sarcoma pathogenesis. As a result,
the inhibition of FEZF1 diminished clonogenicity and cell proliferation in three Ewing sarcoma cell
lines. Transcriptomic analysis revealed several neural-specific genes transcriptionally regulated by
FEZF1 and concomitantly regulated by EWSR1-FLI1, which could explain the neural-like phenotype
observed in several Ewing sarcoma cell lines and tumors.

Abstract: Ewing sarcoma is a rare pediatric tumor characterized by chromosomal translocations that
give rise to aberrant chimeric transcription factors (e.g., EWSR1-FLI1). EWSR1-FLI1 promotes a spe-
cific cellular transcriptional program. Therefore, the study of EWSR1-FLI1 target genes is important
to identify critical pathways involved in Ewing sarcoma tumorigenesis. In this work, we focused
on the transcription factors regulated by EWSR1-FLI1 in Ewing sarcoma. Transcriptomic analysis
of the Ewing sarcoma cell line A673 indicated that one of the genes more strongly upregulated by
EWSR1-FLI1 was FEZF1 (FEZ family zinc finger protein 1), a transcriptional repressor involved in
neural cell identity. The functional characterization of FEZF1 was performed in three Ewing sarcoma
cell lines (A673, SK-N-MC, SK-ES-1) through an shRNA-directed silencing approach. FEZF1 knock-
down inhibited clonogenicity and cell proliferation. Finally, the analysis of the FEZF1-dependent
expression profile in A673 cells showed several neural genes regulated by FEZF1 and concomitantly
regulated by EWSR1-FLI1. In summary, FEZF1 is transcriptionally regulated by EWSR1-FLI1 in
Ewing sarcoma cells and is involved in the regulation of neural-specific genes, which could explain
the neural-like phenotype observed in several Ewing sarcoma tumors and cell lines.
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1. Introduction

Ewing sarcoma is an aggressive cancer affecting children and young adults. Ewing
sarcoma cells are highly undifferentiated, and although tumors initially respond well
to chemotherapy and radiotherapy, local and distant relapses are frequent [1]. From a
molecular point of view, Ewing sarcoma is characterized by chromosomal translocations
that give rise to chimeric proteins that act as aberrant transcription factors. The most
frequent chromosomal translocation is t (11,22), which produces an aberrant transcription
factor formed by the fusion of the EWSR1 gene with the ETS transcription factor FLI1.
The resulting aberrant transcription factor EWSR1-FLI1 affects the expression, directly
or indirectly, of hundreds of genes that globally induce cell proliferation and block cell
differentiation [2]. Since these chimeric transcription factors are present in all Ewing
sarcoma tumors, it is widely accepted that they are the main oncogenic driver in Ewing
sarcoma [1].

EWSR1-FLI1 is able to bind directly to the promoters of its target genes in two different
ways. On the one hand, EWSR1-FLI1 can recognize canonical ETS response elements in
the promoters of target genes. Interestingly, when EWSR1-FLI1 binds to such promoters,
it inhibits transcription of the target gene instead of activating it [3]. On the other hand,
EWSRI1-FLI1 binds to GGAA-microsatellites localized in gene promoters or intergenic
regions, where they are converted by EWSR1-FLI1 binding into de novo enhancers. In
these cases, EWSR1-FLI1 strongly actives the transcription of target genes [3]. EWSR1-FLI1
can also regulate the expression of other genes indirectly, for example, by regulating the ex-
pression of other transcription factors or transcriptional (co)regulators. Two good examples
of this are NROBI and NKX2-2 [4-6]; both genes, which encode transcriptional repressors,
are positively induced by EWSR1-FLI1. In consequence, the gene expression profile de-
pending on EWSR1-FLI1 is partially dependent on other transcriptional regulators. Thus,
EWSR1-FLI1 is placed at the summit of a complex network of hierarchized transcriptional
regulations that ultimately produce the oncogenic expression profile.

Although Ewing sarcoma was described by James Ewing one hundred years ago [6],
and arises in 85% of cases in bones, there are still controversies about the origin cells.
Experimental data, mainly based on the analysis of gene expression profiles regulated by
EWSR1-FLI1 in different cell contexts, suggest that Ewing sarcoma probably arises from
mesenchymal cell lineages resident in bones. Thus, EWSR1-FLI1 knock-down was able to
induce the expression of gene expression profiles characteristic of a different mesodermal
lineage [7]. However, other studies suggest that Ewing sarcoma maintains some properties
characteristic of cells from the neuro-ectodermal lineage. In fact, it is well known that
some Ewing sarcoma tumors and cell lines display neuro-ectodermal characteristics [8-11],
which are more clearly displayed in response to certain stimuli [12,13]. Additionally,
transcriptomic and functional analyses support the existence of a residual neural-like
phenotype in Ewing sarcoma [14-16].

Deciphering the transcriptional regulators that are under EWSR1-FLI1 control is
relevant to understanding the biology of Ewing sarcoma and identifying pathways that
could participate in Ewing sarcoma pathogenesis [17,18]. With this in mind, we looked for
transcriptional regulators that were positively or negatively regulated by EWSR1-FLI1 in
the Ewing sarcoma cell line A673 using the well-established cell model A673/TR/shEF in
which EWSR1-FLI1 is downregulated by a specific doxycycline-dependent shRNA [19].
FEZF1/ZNF312B (FEZ family zinc finger protein 1/Zinc finger protein 312B) was identified
as the transcriptional regulator most positively upregulated by EWSR1-FLI1.

FEZF1 is a highly conserved transcription factor belonging to the large family of C2H2
zinc finger proteins [20-22]. FEZF1 is expressed early during mouse development and is
important for brain development and cell identity [23,24]. Particularly, FEZF1 is involved
in axonal projection and proper termination of olfactory sensory neurons, as evidenced
by the fact that in FEZF1 knock-out mice, olfactory neurons fail to mature [24]. Beyond
its role in brain development, little is known about the involvement of FEZF1 in disease,
although some studies suggest a role of FEZF1 in cancer. Thus, FEZF1 knockdown reduced
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cell proliferation and migration in human cervical cancer cell lines and was shown to be an
independent predictive factor for recurrence in cervical cancer [25].

In this work, we showed that FEZF1 is highly expressed in Ewing sarcoma cells and
positively upregulated by EWSR1-FLI1. FEZF1 knock-down in three independent Ewing
sarcoma cell lines reduced cell proliferation. Finally, we show that FEZF1 regulates the
expression of a group of neural genes that include some of the genes regulated by EWSR1-
FLI1. We concluded that FEZF1 is a direct target of EWSR1-FLI1 in Ewing sarcoma and that
FEZF1 could be involved in the neural-like phenotype observed in some Ewing sarcoma
tumors by regulating a subset of neural-specific genes.

2. Materials and Methods
2.1. Cell Lines

A673/TR/shEF cells, which express a specific ShRNA inducible by doxycycline directed
against EWSR1-FLI1 mRNA, have been previously described in detail [19]. A673/TR/shEF
cells were maintained in DMEM supplemented with 10% tetracycline-free FBS (Capricorn
Scientific, Ebsdorfergrund, Germany), 50 U/mL penicillin, 50 pg/mL, 100 ug/mL zeocin
and 5 pg/mL blasticidin. A673/TR/shEF cells were stimulated with doxycycline (1 ug/mL)
(Formedium, Norfolk, UK) to induce the expression of EWSR1-FLI1 specific ShRNA. A673,
U2-OS and SAOS-2 cell lines were cultivated in DMEM. SK-N-MC cell line was maintained
in DMEM supplemented with 1XMEM non-essential amino acids. A4573, CADO-ES-1,
MHH-ES-1, RD-ES, and CAL-78 cell lines were maintained in RPMI 1640 medium. SK-
PN-DW and TC-71 were cultured in IMDM and SK-ES-1 in McCoy’s medium. CAL-72
cell line was maintained in DMEM supplemented with 1x insulin transferrin sodium
selenite (Merck Life Science, Darmstadt, Germany). All media were supplemented with
10-20% FBS, penicillin and streptomycin. All cells were periodically tested for mycoplasma
contamination (Mycoalert mycoplasma detection kit, #L.T07-318, Lonza, Basel, Switzerland)
and were authenticated by STR profiling at the Genomic Facility at Biomedical Research
Institute (IIB-CSIC, Madrid, Spain).

2.2. Establishment of EwingSarcoma Cell Lines Expressing Doxycycline-Inducible FEZF1 shRNA

BLOCK-iT lentiviral expression system (Invitrogen, Waltham, MA, USA) was used to
establish Ewing sarcoma cell lines harboring doxycycline-inducible small hairpin RNAs
(shRNA) against FEZF1, as previously described [19]. Ewing sarcoma cell lines A673,
SK-N-MC and SK-ES-1 were infected with lentiviruses containing the pLenti6/TR ex-
pression plasmid (Invitrogen) to establish stable cell lines expressing constitutively the
tetracycline repressor (TR). One clone for each cell line expressing the highest levels of
tetracycline repressor, as assayed by western-blot (designed A673/TR, SK-N-MC/TR and
SK-ES-1/TR), was chosen for the next steps. Target shRNA sequence for FEZF1 was
designed using the BLOCK-iT RNAi Designer web application (Invitrogen). Comple-
mentary oligonucleotide sequences, located between nucleotides 725-745 of the FEZF1
mRNA sequence (GenBank accession number: NM_001160264.2) were annealed and in-
serted into the pENTR-BLOCK-iT plasmid (Invitrogen), and afterward, the H1/shRNA
cassette was transferred by recombination to the pLenti4-BLOCK-iT plasmid according
to the manufacturer’s instructions (Invitrogen). The sequence of the oligonucleotides was
as follows: shFEZF1 (forward), GATCCCGGTCTTTAATGCGCACTATAATTCAAGAG
ATTATAGTGCGCATTAAAGACCTTTTTC; shFEZF1 (reverse), TCGAGAAAAAGGTCTT-
TAATGCGCACTATAATCTCTTGAATTATAGTGCGCATTAAAGACCGG. Subsequently,
1 x 10° cells were transfected by electroporation with 10 pg pLenti4/H1/shFEZF1 lentivi-
ral vector DNA in 100 puL Opti-MEM medium) using a NEPA-21 electroporator (Nepa
Gene, Ichikawa, Japan). Electroporation parameters were, for poring pulse: 150 V (SK-ES-1
and A673) or 125V (SK-N-MC), 5 ms pulse length, 50 ms pulse interval, 2 cycles, decay
rate 10%, polarity +; for transfer pulse: 20 V, 50 ms pulse length, 50 ms pulse interval,
5 cycles, decay rate 40%, polarity +/—. After electroporation, cells were maintained in
standard conditions for 24 h to allow recovery and then selected with zeocin (100 ug/mL).
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Stable clones were checked for FEZF1 knockdown by RT-qPCR and western-blot after 72-h
stimulation with doxycycline (1 ng/mL). Clones showing the highest levels of protein
inhibition upon doxycycline stimulation were selected for additional studies.

2.3. Western Blot Analysis and Antibodies

The procedure is described in detail elsewhere [26]. Primary antibodies were as
follows: anti-FLI1 rabbit monoclonal antibody from Abcam (#ab133485) (Cambridge, UK),
anti-FEZF1 mouse monoclonal antibody from Santa Cruz Biotechnology (#sc-515487) (Dallas,
TX, USA), and HRP-anti-o-tubulin antibody from Abcam (#ab185067) (St. Louis, MO, USA).
Goat anti-mouse (#sc-2055) and goat anti-rabbit IgG (#sc-2054) horseradish peroxidase-
conjugated secondary antibodies were purchased from Santa Cruz Biotechnology.

2.4. Immunofluorescence

A673/TR/shEF cells were seeded at 4000 cells on glass cover slides in 24-well plates
and stimulated with doxycycline (1 ug/mL) for 72 h. Then, cells were washed in PBS, fixed
in 4% paraformaldehyde for 15 min, and permeabilized with 0.1% Triton X-100. After that,
cells were incubated overnight with the primary antibody at 4 °C (anti-FEZF1 diluted in 4%
FBS in PBS), washed, and incubated with secondary antibody for 1.5 h at room temperature
(anti-mouse Alexa Fluor 488 conjugated). Cells were counterstained with 4,6-diamidino-2-
phenylindole (DAPI), washed 4 x 10 min with PBS and mounted on slides using ProLong "
Gold antifade mounting medium (#P36934, Thermo Fisher Scientific, Waltham, MA, USA).
Cells were visualized in a fluorescence microscope (Leica, Wetzlar, Germany).

2.5. Bromodeoxyuridine Proliferation Assay

Cells were seeded in 96 multi-well plates (2500-3500 cells/well, 8-replicates) and
cultured with or without doxycycline for 72 h (1 ug/mL). The incorporation of bromod-
eoxyuridine into DNA was quantified using a chemiluminescent assay (Roche, Basel,
Switzerland). Chemiluminescence was quantified using a microplate reader (Infinite M200,
Tecan, Mannerdorf, Switzerland).

2.6. Clonogenic Assay

A673/TR/shFEZF1, SK-ES-1/TR/shFEZF1 and SK-N-MC/TR/shFEZF1 cells were
plated in triplicate in a 24-well plate at 1 x 103, 2 x 103 or 4 x 103 cells per well. There-
after, they were treated with or without doxycycline (1 ng/mL) for 9-10 days in culture
medium, supplemented with 10% or 20% (SK-ES-1 cells) tetracycline-free FBS. Culture
medium containing fresh doxycycline, where appropriate, was changed every 3 days. At
the end of the experiment, colonies were first fixed and then stained with crystal violet
and photographed.

2.7. Proliferation Curve Assay

A673/TR/shFEZF1, SK-ES-1/TR/shFEZF1 and SK-N-MC/TR/shFEZF1 cells were
maintained in culture medium supplemented with 10% or 20% (SK-ES-1 cells) tetracycline-
free FBS, with or without doxycycline (1 ug/mL) for 30-34 days. When cells reached
70-80% confluence, were trypsinized, counted and re-plated in a new p 100 plate and
so on until completing 30-34 days. The culture medium containing fresh doxycycline
was changed every 3 days when necessary. The number of population doublings was
calculated with the formula: n° of population doublings = log2 (numbers of cells at the
initial time/number of cells at the final time). Cell doubling time was calculated in each
cycle of cell seeding—trypsinization as cell doubling time = time elapsed between cycles/n°
cell population doubling observed in this period of time.

2.8. Multiplex Real-Time Quantitative RT-PCR (RT-qgPCR)

RT-qPCR conditions, including primers and Tagman probes for EWSR1-FLI1 and TBP
are described elsewhere [19,26]. TagMan probes for FEZF1 (hs03987877_g1) and FEZF1-
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AS1 (hs00935566_m1) were purchased from Life Technologies (San Diego, CA, USA).
Reactions were run on a RotorGene 6000 (Qiagen, Hilden, Germany). Cycle threshold (Ct)
for each gene and TBP was calculated using the Rotor Gene Q Software (v.2.3.1, Qiagen,
Hilden, Germany). Relative expression for each gene was calculated as 2~¢, where
ACt = Ctgene — Ctrpp.

For the analysis of FEZF1 expression in control normal tissues, the FirstChoice®
Human Total RNA Survey Panel (Applied Biosystems, Waltham, MA, USA) was used.
This panel is made up of total RNA pools from 20 different human normal tissues. Each
pool consists of RNA from at least 3 tissue donors.

2.9. Transcriptomic Analysis (RNAseq)

RNA was extracted using TRI-REAGENT according to the manufacturer’s protocol
(Sigma-Aldrich, Sant Louis, MI, USA) and additionally purified using an RNeasy Mini
Elute Cleanup kit (Qiagen). RNAseq was perfomed at CNAG (Centro Nacional de Analisis
Genodmico, Barcelona, Spain). The mRNA library was obtained with the TruSeq Stranded
mRNA Library Prep Kit (Illumina, San Diego, CA, USA), and paired-end sequencing
(2 x 50 pb) was carried out in a NovaSeq 6000 (Illumina). On average, 39.9 x 10° reads
(range 30.8-48.4 x 10° reads) were obtained per sample. The average percentage of aligned
reads to a single location in the reference genome ranged from 61.8% to 64.8%. Data
analysis was carried out using Galaxy (usegalaxy.org), an open-source, web-based platform
that integrates many tools for data-intensive biomedical research [27]. Briefly, mapping
and transcript quantification were performed with Salmon quant script (v0.14.1.2), using
GRCh38 as transcriptome reference. Differences in expressed features from quantification
tables were calculated with DESeq2 (v2.11.40.6). Genes whose p-value (FDR) was <0.05
were considered differentially expressed between two experimental conditions. Gene
ontology functional annotation was carried out with PANTHER [28,29].

2.10. Analysis of ChIP-Seq (Chromatin Immunoprecipitation Followed by Sequencing) Data

ChlIP-seq data publicly available were retrieved from Gene Expression Omnibus (GEO
accession number GSE61944 and GSE176400) [3,30] and displayed in the UCSC browser
(genome.ucsc.edu).

Samples from GSE61944 correspond to the following accession numbers: GSM1517568_A
673.WCE, GSM1517569_A673.shGFP48.FLI1, GSM1517570_A673.shGFP48 H3K27ac, GSM151
7572_A673.shFLI148 FLI1, GSM1517573_A673.shFLI148 H3K27ac, GSM1517543_SKNMC.WCE,
G5M1517546_SKNMC.shGFP96.FLI1, GSM1517547_SKNMC.shGFP96.H3K27ac, GSM1517555
_SKNMC.shFLI196.FLI1, GSM1517556_SKNMC.shFLI196. H3K27ac.

Samples from GSE176400 correspond to the following accession numbers: GSM5363936

_A673_FLI1_ChIPSeq, GSM5364006_SKNMC_FLI1_ChIPSeq, GSM5364016_TC71_FLI1_Ch
IPSeq, GSM5363941_CHLA10_FLI1_ChIPSeq, GSM5363956_EW22_FLI1_ChIPSeq, GSM536
3961_EW24_FLI1_ChIPSeq, GSM5363981_MIC_FLI1_ChIPSeq, GSM5363986_POE_FLI1_Ch
IPSeq, GSM5363996_RH1_FLI1_ChIPSeq, GSM5364011_TC32_FLI1_ChIPSeq, GSM5363971_
EW7_FLI1_ChIPSeq, GSM5364001_SKES1_FLI1_ChIPSeq, GSM5363991_RDES_FLI1_ChIPSeq,
GSM5363976_MHHES1_FLI1_ChIPSeq, GSM5363951_EW1_FLI1_ChIPSeq, GSM5363946_CHL
A25_ERG_ChIPSeq, GSM5363966_EW3_ERG_ChIPSeq.

2.11. Identification of GGAA Microsatellites Inside or Next to Genes

Two scripts were developed in R to determine the presence of GGAA microsatellites
bound by EWSR1-FLI1 inside or next to genes. GGAA-inside-gene script [31] is able to
scan a list of genes and determines if there is a GGAA microsatellite inside the gene taken
from a list of experimentally confirmed EWSR1-FLI1 ChIPseq peaks. GGAA-near-promoter
script [32] scans a list of genes and, for each gene, identifies the ChIPseq peak closer to both
sides (upstream and downstream) of the gene, computing the distance to the transcription
start site (TSS).
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The following data sources were used to run the scripts. Differentially expressed genes
were obtained from A673 RNA-seq experiments. Gene location (chromosome number,
start and end of the gene and strand) was extracted from BioMart using R routines. GGAA
microsatellites bound by EWSR1-FLI1 were extracted from two published datasets of
EWSR1-FLI1 ChIPseq studies (GEO accession number GSE61944 and GSE176400) [3,30].
Output was stored in tables. All scripts have been stored in GitHub repository.

2.12. Determination of the Allele Sizes Containing the GGAA-Microsatellites Located in
FEZF1 Promoter

To characterize the length of the different alleles corresponding to the GGA A-microsatellite
located in the FEZF1 promoter in the different cell lines, a fluorescent DNA fragment cover-
ing this region was generated by PCR with primers FEZF1-F, 5-FAM-GTAAAACGACGGC
CAGTCTCTCCTAATGCCAAGCCCAAAG and FEZF1-R, 5'-CAGGAAACAGCTATGACA
CACGTAGAACAGGTTAGCCGCAC. PCR fragments were run in an ABI PRISM 3100 Ge-
netic Analyzer (Applied Biosystems, Waltham, MA, USA), and allele size was determined
with Peak Scanner 1.0 (Applied Biosystems).

3. Results
3.1. EWSR1-FLI1 Regulates the Expression of a Significant Number of Transcriptional Regulators

The main objective of this study was to identify transcriptional regulators that were in
turn regulated by EWSR1-FLI1 in Ewing sarcoma. As a first approximation, we looked for
transcription factors that were upregulated or downregulated upon EWSR1-FLI1 knock-
down in the well-characterized Ewing sarcoma cell model A673/TR/shEF. In this model,
EWSRI1-FLII can be efficiently downregulated upon doxycycline-mediated induction of
a specific EWSR1-FLI1 shRNA [19]. Thus, in the absence of doxycycline, A673 Ewing
sarcoma cells express high levels of EWSR1-FLI1 (EWSR1-FLI1"8"), while those in the
presence of doxycycline express low levels of EWSR1-FLI1 (EWSR1-FLI1!°W).

Firstly, we analyzed the expression levels (RNAseq data) of a total of 1674 transcrip-
tion factors that belong to the Gene Ontology term “DNA binding transcription factor
activity” (GO:0003700) [33] (Table S1), in A673/TR/shEF cells incubated in the absence
(EWSR1-FLI1high) or presence (EWSR1-FLI1!*") of doxycycline during 72 h. A total of
1635 transcription factors were present in the RNAseq dataset. Of these, 89 transcription
factors were downregulated (adjusted p-value < 0.05, log, fold change < —1) while 135
were upregulated (adjusted p-value < 0.05, logy fold change > 1) upon EWSR1-FLI1 knock-
down (Tables S2 and S3). Thus, near 14% of the 1635 transcription factors present in the
RNAseq dataset were regulated by EWSR1-FLI1 (Figure 1A). Consequently, EWSR1-FLI1
regulates the expression of a significant proportion of transcription factors, which sug-
gests that EWSR1-FLI1 exerts its function, at least in part, through the regulation of other
transcription factors. Some of these transcription factors, such as NROB1 or BCL11B, have
been previously shown to be regulated by EWSR1-FLI1 and play important functional
roles in Ewing sarcoma pathogenesis [4,34,35] (Figure 1B). However, the role of many other
transcription factors in Ewing sarcoma pathogenesis is absolutely unknown. The tran-
scription factor whose expression was more strongly downregulated upon EWSR1-FLI1
knock-down was FEZF1 (Figure 1B).
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Figure 1. EWSR1-FLI1 regulates the expression of a significant number of transcription factors/regulators. (A) A673/TR/shEF
cells were cultured in the absence or presence of doxycycline (DOX, 1 pg/mL, 72 h) and analyzed by RNAseq to identify
EWSR1-FLI1 regulated genes. EWSR1-FLI1 regulated genes were cross-referenced with a list of transcriptional regulators
obtained from the gene ontology term “DNA-binding transcription factor activity” to identify the transcriptional regulators
whose expression is downregulated or upregulated upon EWSR1-FLI1 knockdown. (B) Distribution of 1635 transcription

factors according to its expression level (Log, fold change). The table shows the Log, fold change and the adjusted p-value
from the top-fifteen transcriptional regulators that were downregulated upon EWSR1-FLI1 knockdown.

FEZF1 is a critical transcription factor in nervous system development that has been

recently involved in cancer progression [25]. However, the role played by FEZF1 in Ewing
sarcoma has not been explored until today.

3.2. FEZF1 Is Upregulated by EWSR1-FLI1 and Is Highly Expressed in Ewing Sarcoma Cell Lines

Quantitative RT-PCR and western-blot confirmed the results obtained with the RN Aseq
data. As shown in Figure 2, expression of FEZF1 mRNA (Figure 2A) and protein (Figure 2B,
Figure S4) were dramatically downregulated upon EWSR1-FLI1 knock-down in A673/TR/shEF
cells. As expected, FEZF1 was mainly expressed in the nucleus of A673/TR/shEF cells
(Figure 2C). Nuclear expression was notably reduced in A673/TR/shEF cells when EWSR1-
FLI1 expression was downregulated.

We next compared the expression of FEZF1 in a panel of bone sarcoma cell lines,
including Ewing sarcoma (1 = 9), osteosarcoma (1 = 3) and chondrosarcoma (1 = 1). Ewing
sarcoma cell lines expressed high levels of FEZF1 mRNA (Figure 2D) and protein (Figure 2E,
Figure 54). The only exception was the Ewing sarcoma cell line CADO-ES], in which FEZF1
was not detected. FEZF1 expression was undetectable at the mRNA and protein level in
osteosarcoma and chondrosarcoma cells. This indicates that FEZF1 is highly expressed in
Ewing sarcoma cells and that FEZF1 expression was specific for Ewing sarcoma, at least

when compared to other bone sarcomas. To strengthen these results, we analyzed the
datasets available from a study published during the preparation of this manuscript and in
which the authors carried out a multi-omics approach to characterize an extensive list of

Ewing sarcoma cell lines [30]. According to this study, FEZF1 is expressed at high levels in

all Ewing sarcoma cell lines studied, including cells expressing EWSR1-FLI1 and EWSR1-

ERG fusion proteins. In addition, FEZF1 was downregulated when the fusion proteins

were knocked down (Figure S1). These results clearly demonstrate that FEZF1 is robustly

regulated by EWSR1-FLI1 and EWSR1-ERG fusion proteins in Ewing sarcoma cells.
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Figure 2. FEZF1 expression correlates positively with EWSR1-FLI1 levels and is highly expressed in Ewing sarcoma cell
lines. (A) FEZF1 mRNA expression (RT-qPCR) in A673/TR/shEF cells stimulated with doxycycline (DOX, 1 ug/mL, 72 h).
FEZF1 mRNA levels decreased more than 80% upon EWSR1-FLI1 knockdown (mean =+ SD) (B) Western-blot analysis of
FEZF1 and EWSR1-FLI1 in A673/TR/shEF cells confirm downregulation of FEZF1 protein upon EWSR1-FLI1 knock-down
(asterisk denotes an unspecific band). (C) A673/TR/shEF cells were cultured in the absence or presence of doxycycline and
FEZF1 protein detected by immunofluorescence. FEZF1 is located in the nucleus in control cells (—DOX), but its expression
is lost when cells are stimulated with doxycycline to downregulate EWSR1-FLI1 levels. Scale bar: 10 pum. (D) FEZF1 mRNA
expression levels (RT-qPCR) in a panel of bone sarcoma cell lines including Ewing sarcoma (ES), chondrosarcoma (CS),
and osteosarcoma (OS). FEZF1 was exclusively expressed in Ewing sarcoma cells. FEZF1 expression in A673/TR/shEF
cells is included for comparative purposes (mean =+ SD). (E) Western-blot analysis of FEZF1 and tubulin (TUB) in the same
cell lines confirmed the expression of FEZF1 only in Ewing sarcoma cell lines. (F) FEZF1 mRNA levels (RT-qPCR) were
analyzed using a commercial source of human RNA from normal tissues. FEZF1 is expressed specifically in the testis and
brain, although even in these tissues, its expression is significantly lower than the observed in the Ewing sarcoma cell line

A673 (mean & SD). (*** p < 0.001, *** p < 0.0001; Student’s t-test).

Finally, we analyzed the expression levels of FEZFI mRNA in a panel of normal
human tissues. FEZF1 expression was highly tissue-specific. In fact, it was only expressed
in the brain and testis (Figure 2F). Remarkably, the expression in such tissues compared
to the TBP housekeeping gene was more than 10-fold lower than the expression levels
observed in Ewing sarcoma cell lines.

Altogether, FEZF1 expression correlated positively with that of EWSR1-FLI1, and as
a consequence, FEZF1 is highly expressed in Ewing sarcoma cells. Interestingly, FEZF1
expression was also demonstrated to be tumor- and tissue-specific.

3.3. The FEZF1 Promoter Contains a GGAA-Microsatellite

One of the main mechanisms through which EWSR1-FLI1 upregulates gene expression
is by binding to GGA A-microsatellites located in gene promoters or enhancers [3,36,37]. We,
thus, look for GGAA microsatellites in or near the FEZF1 gene. A long GGAA-microsatellite
was detected in the intron 1 of FEZF1 (Figure 3A) (chr7: 121943497-121943663, hg19). The
microsatellite was composed of 28 GGAA-repeats in the human reference genome, 16
of which were contiguous and the rest separated for GGAG-repeats intercalated among
GGAA-repeats. To determine if EWSR1-FLI1 binds to these GGAA-microsatellites, we
reviewed a published ChIP-seq dataset to identify EWSR1-FLI1 DNA binding sites [3]. As
shown in Figure 3A, EWSR1-FLI1 binds this DNA motif in A673 and SK-N-MC Ewing
sarcoma cell lines, confirming that FEZF1 is a direct target of EWSR1-FLI1. Interestingly,
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H3K27ac ChlPseq marks, which denote a transcriptionally active site [38], were detected
when EWSR1-FLI1 was bound to this GGAA microsatellite, but not when EWSR1-FLI1 was
silenced. This EWSR1-FLI1 binding site was also observed in the ChIP-seq dataset from
Orth et al. (Figure S1C). Altogether, these data strongly suggest that EWSR1-FLI1 actives
FEZF1 transcription by binding a large GGAA-microsatellite located into the FEZF1 gene.
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Figure 3. EWSR1-FLI1 binds a GGA A-microsatellite located into the FEZF1 gene, and the number of
GGAA-repeats correlates with FEZF1 expression levels. (A) The genomic region corresponding to
FEZF1 and FEZF1-AS1 genes is shown (UCSC genome browser). The location of GGA A-microsatellite
and its corresponding sequence is shown at the bottom of the figure. Publicly available ChIP-seq data
demonstrate the binding of EWSR1-FLI1 to GGAA-microsatellite in two different Ewing sarcoma cell
lines (A673 and SK-N-MC). H3K27ac ChIP-seq marks indicate that this site is transcriptionally active
when EWSR1-FLI1 is bound to the GGAA-microsatellite, but not when EWSR1-FLI1 is knocked-down.
(B) The length of GGAA-microsatellite was determined by PCR and fluorescent fragment analysis.
Mean allele length correlates with FEZF1 mRNA expression levels (for this analysis, CADO-ES1 was
excluded). (C) Correlation of FEZF1 and FEZF1-AS1 mRNA expression levels in Ewing sarcoma cells.
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This GGAA-microsatellite was located in the first intron of FEZF1, which can be
considered an unusual location for a transcriptional activator. Thus, we analyzed how
frequently GGA A-microsatellites were located in the introns of the genes regulated posi-
tively by EWSR1-FLI1. Using an in-house script, we determined that 180 out of 1456 genes
positively regulated by EWSR1-FLI1 (12%) had at least one GGA A-microsatellite detected
by ChIP-seq into the gene. Figure 52 shows two examples of genes regulated by EWSR1-
FLI1, PRKCB [39] and APCDD1 [40], in which GGAA-microsatellites were located in the
introns of these genes. According to these results, it seems that the location of active
GGAA-microsatellites downstream the canonical promoter of EWSR1-FLI1 target genes is
not unusual and is in agreement with the fact that enhancers can be located upstream or
downstream genes and also within introns [41].

Several studies have demonstrated a relationship between the number of GGAA-
repeats, the affinity of EWSR1-FLI1 and the levels of mRNA observed in the target genes
upregulated by EWSR1-FLI1 [4,36]. We thus analyzed the length of the FEZF1 GGAA-
microsatellite in a panel of Ewing sarcoma cell lines and its correlation with FEZFI mRNA
expression levels. As shown in Figure 3B, there was a direct correlation between the length
of GGAA-microsatellite and the FEZF1 expression level.

The FEZF1 GGAA-microsatellite is also located near FEZF1-AS1, a non-coding gene
that is synthesized in opposite orientation to FEZF1 [42] (Figure 3A). We thus hypothesized
that FEZF1-AS1 could be regulated by EWSR1-FLI1 in Ewing sarcoma cells in a similar
fashion as FEZF1. In fact, the expression levels of FEZF1-AS1 strongly correlated with
FEZF1 expression in Ewing sarcoma cells, suggesting that FEZF1 and FEZF1-AS] are
coordinately regulated by EWSR1-FLI1 in Ewing sarcoma cells (Figure 3C). Thus, FEZF1-
AS1 expression was also dramatically downregulated upon EWSR1-FLI1 knockdown in
A673 cells, as shown in Figure S3.

3.4. FEZF1 Knock-Down Impairs Ewing Sarcoma Cell Proliferation

Next, we analyzed the effect of FEZF1 on cell proliferation in Ewing sarcoma cell
lines. For this, we generate three different Ewing sarcoma cell lines (A673, SK-N-MC
and SK-ES-1) expressing a doxycycline-inducible shRNA directed against FEZF1 mRNA.
Induction of FEZF1 shRNA with doxycycline downregulated significantly FEZF1 mRNA
(Figure 4A) and protein (Figure 4B and Figure 54). Since FEZF1 and FEZF1-AS1 expression
correlated strongly (Figure 3C), we analyzed if FEZF1 downregulation affected FEZF1-AS1
expression. As shown in Figure 4A, the downregulation of FEZF1 mRNA did not affect the
levels of FEZF1-AS1 mRNA. In addition, EWSR1-FLI1 levels were not affected by FEZF1
downregulation (Figure 4A,B).

Once confirmed that FEZF1 knockdown did not affect EWSR1-FLI1 and FEZF1-AS1
expression, we analyzed the effect of FEZF1 downregulation on colony formation as a
measure of its oncogenic potential. As shown in Figure 4C, FEZF1 knock-down significantly
reduced the number of colonies formed when tumor cells were cultured at low density.
This effect was observed in the three Ewing sarcoma cell lines, although the effects of FEZF1
knock-down were greater in A673 and SK-ES-1 cells compared to SK-N-MC cells. Next, we
analyzed the effect of FEZF1 knock-down on cell proliferation. Firstly, we quantified the
number of cell duplications accumulated during a determined time in which cells were
continuously cultured in the absence or presence of doxycycline to the knock-down FEZF1
expression. As shown in Figure 4E, FEZF1 knock-down significantly reduced the number
of cell duplications in A673 and SK-ES-1 cells, while the effect of FEZF1 knock-down in
SK-N-MC was more modest.
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Figure 4. FEZF1 knockdown impairs Ewing sarcoma cell proliferation. (A) mRNA expression levels of FEZF1, FEZF1-AS1
and EWSR1-FLI1 in three Ewing sarcoma cell lines expressing a doxycycline-inducible shRNA directed against FEZF1
mRNA. Cells were cultured for 72 h in the absence or presence of doxycycline (1 ng/mL), and mRNA expression levels
were quantified by RT-qPCR (mean =+ SD). (B) Western-blot analysis of FEZF1 and EWSR1-FLI1 in the same cell lines,
confirming the downregulation of FEZF1. EWSR1-FLI1 protein levels were not affected by FEZF1 knockdown. (C) Cell
colony formation assays show a reduction in the number of cell colonies formed upon FEZF1 knockdown. Scale bar: 10 mm.
(D) The number of cell duplications accumulated over 30 days in which cells were cultured in the absence or presence of
doxycycline. (E) Cells were cultured in the absence or presence of doxycycline (1 pg/mL), and DNA synthesis was analyzed
by BrdU incorporation assay. FEZF1 knock-down significantly reduced DNA synthesis in the three Ewing sarcoma cell
lines analyzed. For comparative purposes, the effect of EWSR1-FLI1 knock-down in A673/TR/shEF cells is also shown
(mean = SD of one experiment out of four with equivalent results; * p < 0.05, *** p < 0.001; Student’s ¢-test).

To confirm the effect of FEZF1 knock-down on cell proliferation, we analyzed DNA
synthesis by using a bromodeoxyuridine (BrdU) incorporation assay. As we can be ob-
served in Figure 4D, BrdU incorporation was reduced significantly in all three Ewing
sarcoma cell lines upon FEZF1 knock-down (range 27-38%), although again, the effect
on SK-N-MC was smaller, in line with the previous results. Figure 4E also includes
a graph showing the effect of EWSR1-FLI1 knock-down on BrdU incorporation in the
A673/TR/shEF cell line. EWSR1-FLI1 knock-down produced a 57% reduction in BrdU
incorporation, greater than that observed after FEZF1 knock-down. Taken together, these
results suggested that FEZF1 is involved in promoting cell proliferation in Ewing sarcoma
cell lines. Interestingly, the effects of FEZF1 on cell proliferation were observed even in
the presence of EWSR1-FLI1 expression (Figure 4A), suggesting that FEZF1 is a relevant
downstream gene target in Ewing sarcoma oncogenesis.
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3.5. FEZF1 Regulates the Expression of a Subset of Genes Characteristic of Neural Cells

In its physiological setting, FEZF1 acts as a transcriptional repressor that plays a critical
role in nervous system development [21,24]. Thus, we analyzed the gene expression profile
induced upon FEZF1 silencing in the Ewing sarcoma cell line A673 in order to identify genes
and functional pathways regulated by FEZF1 in Ewing sarcoma. To overcome technical and
biological variability, we performed RNAseq experiments in three independent clones, and
a polyclonal population of A673/TR/shFEZF1 cells stimulated with doxycycline by 72 h to
downregulate FEZF1 expression. A subset of 174 genes (0.7% out of total) was differentially
regulated upon FEZF1 knock-down (p-value adjusted < 0.05; Table S4). We subjected this
list of genes to gene-ontology (GO) enrichment analysis to identify characteristic functional
pathways. The number of GO terms significantly enriched was low, probably because
of the low number of genes differentially expressed upon FEZF1 knock-down. However,
some interesting findings could be observed. Thus, genes classified in GO terms such as
growth cone (GO:0030426) and transport vesicle membrane (GO:0030658), associated with
neurotransmission and nervous system physiology, were enriched more than three times
with respect to what was expected (FDR < 0.05) (Table 1 and Table S5).

Table 1. Gene Ontology analysis of genes differentially regulated upon FEZF1 knock-down.

GO
Cellular Component

Fold FDR Downregulated Upon Upregulated Upon
Enrichment FEZF1 Knock-Down FEZF1 Knock-Down

growth cone (GO:0030426)

distal axon (GO:0150034)

axon (GO:0030424)

transport vesicle membrane

(GO:0030658)
transport vesicle (GO:0030133)

UNC5C, CALMS,

4.99 0.048 FMR1, MAP3K12, STMNS3. HAP1, NGFR, MYH14.
457 0016 UNC5C, CALM3, RAB5A, BLVRB, HAP1, VAT],
FMR1, MAP3K12, SYP, STMNS3. NGEFR, MYH14.
UNC5C, CALM3, SARM1, BLVRB, HAP1, VAT1, NGFR,
3.23 0.029 RAB5A, TENM3, ANK1, FMR1, MYH14, SEMAG6A,
MAP3K12, SYP, STMN3. ROGD], SYT2.
493 0.036 SREBF1, CALM3, RABSA, VAT1, ARFGEEF3,
SYP, AFTPH. CEACAM1I, SYT2.
365 0.047 SREBF1, CALM3, RAB5A, HAP1, VAT1, ARFGEF3,
RABI12, VGE SYP, AFTPH, SYT2. ROGDI, CEACAML1.

Finally, we compared the gene expression profile regulated by EWSR1-FLI1 and FEZF1
in A673 Ewing sarcoma cells. Notably, 67 out of 174 genes regulated by FEZF1 (38.5%)
were also regulated by EWSR1-FLI1, supporting the fact that FEZF1 is regulating a subset
of the genes regulated by EWSR1-FLI1. Of this group of genes, 39 genes were differentially
expressed in the same sense, that is, downregulated or upregulated by EWSR1-FLI1 and
FEZF1 (24 upregulated and 15 downregulated upon EWSR1-FLI1/FEZF1 knock-down).
Fisher’s exact test (p < 0.0045) confirmed that the number of genes that were regulated by
both EWSR1-FLI1 and FEZF1 in the same sense was much higher than the number of genes
that would be expected by chance alone.

Finally, we asked how many genes on this list had GGAA microsatellites bound by
EWSR1-FLI1 and, in this way, determined whether these genes were directly regulated
by EWSRI1-FLI1 or by FEZF1. For that purpose, we searched the list of 67 genes for
EWSRI1-FLI1 peaks at a maximum of 10 kb upstream and downstream TSS using an in-
house R script and the list of EWSR1-FLI1 ChIP-seq binding sites coincident with the
GGAA microsatellites described in Orth et al. [30]. We found that no FEZF1/EWSRI1-
FLI1 regulated genes had a peak of 10 Kb upstream TSS and only two genes (FEZF1 and
PHOSPHOL1) had a peak 10 Kb downstream TSS. These results suggest that EWSR1-FLI1
does not directly regulate the 67 common genes regulated by FEZF1 / EWSR1-FLI1, but
rather through FEZF1.
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4. Discussion

Ewing sarcoma is an aggressive tumor that arises mainly in the bones of children
and young adults. It is characterized by pathognomonic chromosomal translocations that
produce chimeric transcription factors, for example, EWSR1-FLI1. Since the discovery
of the fusion genes characteristic of Ewing sarcomas, there has been a strong interest in
identifying the genes regulated by these chimeric transcription factors and analyzing their
contribution to the development of Ewing sarcoma. Overall, these fusion genes induce a
gene expression profile that increases proliferation and blocks cell differentiation. While
this global pattern seems to be well-defined thanks to a multitude of functional genomics
studies, it is still necessary to identify and functionally analyze each of the genes regulated
by these fusion genes to further understand the molecular basis underlying this tumor
development. On this occasion, we have focused our interest on the identification of
transcription factors and/or transcriptional co-regulators that are also targeted genes of
EWSR-FLIL. Using the widely used A673/TR/shEF cell model system, we showed that
EWSRI1-FLII significantly regulates the expression of more than 200 transcription factors or
transcriptional regulators, accounting for approximately 15% of the known transcription
factors and co-regulators. These results suggest that EWSR1-FLI1 exerts an important part
of its regulatory activity through the regulation of other transcription factors that, in turn,
regulate its own set of target genes. The result is a complex network of interactions between
transcription factors and target genes that ultimately gives rise to the characteristic gene
expression pattern of Ewing sarcoma.

The transcription factor that showed the most significant regulation by EWSR1-FLI1
was FEZF1. FEZF1 is a transcriptional regulator belonging to the C2H2 zinc finger family of
transcription factors, involved in neurogenesis and, more specifically, in the maturation of
olfactory sensory neurons during embryonic development [20-24]. FEZF1 was upregulated
by EWSR1-FLI1 and was highly expressed in Ewing sarcoma cells when compared to
other bone sarcomas and normal tissues. The fact that FEZF1 was expressed at high
levels in all Ewing sarcoma cells tested, excepting the Ewing sarcoma cell line CADO-ES1
harboring an EWSR1-ERG fusion, suggest that FEZF1 can play a relevant role in Ewing
sarcoma pathogenesis. The low expression of FEZF1 observed in CADO-ES1 cells cannot
be attributed to the EWSR1-ERG fusion present in these cells since other cell lines with the
same type of fusion expressed high levels of FEZF1, and its expression was significantly
reduced when the expression of EWSR1-ERG was downregulated in other shRNA cell
models (Figure S1). CADO-ES1 cells show some characteristics that are rarely seen in
other Ewing sarcoma cell lines, as their ability to undergo chondrogenic differentiation
in vivo xenograft models. The low expression of FEZF1 observed in CADO-ES] cells can
represent other characteristics that differentiate these cells from other “normal” Ewing
sarcoma cells. To analyze the function of FEZF1 in Ewing sarcoma cells, we generated
three Ewing sarcoma cell lines in which FEZF1 expression can be knocked down using
a doxycycline-dependent shRNA system. Downregulation of FEZF1 expression in A673,
SK-N-MC and SK-ES-1 Ewing sarcoma cells decreased cell proliferation and their ability
to grow in clonogenic assays. As far as we know, this is the first time that a relationship
between FEZF1 and Ewing sarcoma has been described and also one of the few times that
FEZF1 has been studied in the cancer context. Lan et al. recently described that FEZF1
expression was associated with tumor relapse in cervical cancer patients and that FEZF1
knock-down in human cervical cancer cell lines reduced cell proliferation and cell migration
by interaction with the Wnt pathway [25]. Meanwhile, Yu et al. described that FEZF1
was an independent biomarker to predict reduced survival in gliomas and that FEZF1
promoted proliferation, migration and invasion of glioma cells in vitro [43]. Interestingly,
FEZF1 was shown to upregulate the expression of the oncogenic gene CDC25A, activating
the PI3K/AKT pathway and promoting the malignant behavior of glioma stem cells [44].
The exact mechanism through which FEZF1 regulates proliferation in Ewing sarcoma cells
is currently unknown, and therefore it will be important to determine in the future which
pathways are involved. While the studies on FEZF1 and cancer are very scarce, the studies
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focusing on FEZF1-AS1 are much more numerous. FEZF1-AS] is an IncRNA located
near FEZF1, which is transcribed in the opposite orientation to FEZF1 and expressed at
high levels in pancreatic cancer, colorectal cancer, lung adenocarcinoma and other human
malignancies. FEZF1-AS1 has been associated with poor prognosis and has been shown to
regulate proliferation, migration and invasion in various tumor cells (reviewed in [45]).

We have shown that FEZF1 and FEZF1-AS1 mRNA levels correlate strongly in Ewing
sarcoma cells and that EWSR1-FLI1 knock-down drastically reduces the levels of FEZF1
and FEZF1-AS1 mRNAs, suggesting a coordinated regulation of both genes, at least in
Ewing sarcoma cells. In the case of Ewing sarcoma, such coordinated regulation probably
involves the binding of EWSR1-FLI1 to the long GGAA-microsatellite located in the exon 1
of FEZF1, as demonstrated from publicly available ChIP-seq datasets [3,30]. Since we are
interested in analyzing the role of FEZF1 in Ewing sarcoma cells, we put special attention
into designing a specific ShRNA strategy to specifically knock-down FEZF1 mRNA without
affecting the expression of FEZF1-AS1. Thus, we were able to downregulate the expression
of FEZF1 without altering the expression of FEZF1-AS1. Downregulation of FEZF1 mRNA
did not affect the expression of FEZF1-AS1, and thus, the effects observed upon FEZF1
knock-down should be associated exclusively with FEZF1. Thus, the effect observed on cell
proliferation upon FEZF1 knock-down is attributable exclusively to the downregulation of
FEZF1 levels. This observation is even more valuable if it is taken into account that in our
cell models, levels of EWSR1-FLI1 remained high despite FEZF1 knock-down.

Despite Ewing sarcoma being described 100 years ago [6], the cell of origin of these
tumors remains unknown, and many controversial origins have been proposed. One of
the proposed hypotheses postulates that Ewing sarcoma tumors are from bone marrow-
derived human mesenchymal cells. Supporting this hypothesis are the findings that
ectopic expression of EWSR1-FLI1 in these cells is able to promote a transition to an Ewing
sarcoma-like phenotype [46,47]. Another possibility is that these tumors arise from cells
derived from the neural crest. In support of this, there is also some observational and
experimental evidence. For example, some Ewing sarcoma tumors display an immature
neural phenotype. Moreover, the Ewing sarcoma gene expression signature shows a
reminiscent of neural lineages, and some Ewing sarcoma cells are able to display neural
differentiation upon determined experimental conditions [8-13,15,48,49]. Finally, several
studies suggest that EWSR1-FLI1 itself is able to determine the phenotype of Ewing sarcoma
cells beyond the cell of origin. According to this hypothesis, EWSR1-FLI1 would be able to
impose an expression signature that would determine the phenotype of Ewing sarcoma
cells independently of the cell of origin. In other words, EWSR1-FLI1 would be able to
“erase” the phenotype of the cell of origin and impose a new phenotype controlled by
EWSR1-FLI1 [16]. The molecular mechanism involved in this reminiscent neural phenotype
is largely unknown. Interestingly, we have shown that FEZF1 is able to regulate a neural-
specific signature in Ewing sarcoma A673 cells by modulating the expression of genes
involved in the formation of axons and vesicle trafficking in neurons, which is in agreement
with the function of FEZF1 during embryonic development.

More importantly, some of the genes regulated by FEZF1 were regulated concomi-
tantly by EWSR1-FLI1. Although the number of this set of genes regulated concomitantly
by EWSR1-FLI1 and FEZF1 was small, some of these genes are particularly interesting. For
example, ZIC5 (ZIC family member 5), OLFM3 (Olfactomedin 3) and SALL2 (Spalt-like
transcription factor 2) were all downregulated upon EWSR1-FLI1 of FEZF1 knockdown
(i.e., these genes correlated with EWSR1-FLI1 and FEZF1 expression). These genes were ex-
pressed at high levels in Ewing sarcoma cells according to public datasets [50] and are genes
expressed in and related to the nervous system. Thus, ZIC5 is a putative transcriptional
repressor involved in neural crest development, converting cells from an epidermal fate
to a neural crest fate [51]. Interestingly, elevated expression of ZIC5 has been observed in
various human cancers and may contribute to cancer progression [52-54]. OLFM3 belongs
to the olfactomedin family. Although the exact function of these genes is largely unknown,
their elevated expression in the brain suggests that they may have an essential role in
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nervous tissue [55]. Interestingly, other members of the olfactomedin family, OLFM1, were
identified as one of the genes upregulated by EWSR1-FLI1 [15]. SALL2 is a transcription
factor that plays a role in neurogenesis and eye development. In addition, SALL2 dereg-
ulation has been associated with cancer [56]. The fact that these genes were regulated in
the same fashion upon EWSR1-FLI1 and FEZF1 knock-down suggests that they could be
under the control (direct or indirect) of FEZF1.

5. Conclusions

In summary, we have shown that EWSR1-FLI1 regulates a significant number of
transcription factors and transcriptional co-regulators. One of the most upregulated tran-
scription factors was FEZF1, which was specifically expressed at high levels in Ewing
sarcoma cell lines. Additionally, we have shown that the FEZF1 knock-down in three Ew-
ing sarcoma cell lines reduced cell proliferation, suggesting that FEZF1 plays a role in the
pathogenesis of this tumor. More interestingly, our results indicate that FEZF1 regulates, in
Ewing sarcoma cells, a neural-specific gene signature that could be involved in maintaining
the reminiscent neural phenotype observed in Ewing sarcoma. Our study highlights the
importance of studying the contribution of transcription factors that are in turn regulated
by EWSR1-FLI1 as a strategy to dissect the functional and genetic contribution of each of
them to the pathogenesis of Ewing sarcoma.
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