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Simple Summary: Pediatric acute lymphoblastic leukemia is the most common malignancy in
children. Based on the genetic characteristics of the tumor, patients are risk-stratified and treated
with different treatment intensities. However, in a proportion of cases, known as B-other, no genetic
alterations relevant for risk stratification are found with routine diagnostic procedures. In this study,
we performed RNA sequencing, a comprehensive and cutting-edge method, of 185 children with
B-other leukemia and analyzed gene fusions, expression profiles and mutations. Furthermore, we
validated our findings using commonly used diagnostic techniques. Our results identified a subgroup
of cases clustering with known leukemia subtypes, e.g., DUX4-positive, and subgroups characterized
by mutations in PAX5 and IKZF1, resulting in more cases being assigned to a defined subgroup.
Moreover, we identified new fusion partners of ETV6, IKZF1 and PAX5. Our data demonstrate the
applicability and technical considerations for the use of RNA sequencing to personalize genetic
diagnostics in pediatric leukemia.

Abstract: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in
children, and significant progress has been made in diagnostics and the treatment of this disease
based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent
BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures.
In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and
mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed
that a subset of B-other samples partially clusters with some of the known subgroups, particularly
DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of
distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver
genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage
transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection
thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects
on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability
of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative
classification of the B-other cases that are difficult to diagnose using conventional methods.
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1. Introduction

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) represents the most com-
mon childhood malignancy [1–4]. Improvements in the treatment strategies and the
introduction of new drugs have resulted in a dramatic increase in the overall survival of
children with BCP-ALL, reaching around 90% in contemporary treatment protocols [5–7].
The treatment of BCP-ALL is based on the identification of genetic and clinical markers
in order to risk stratify children with the disease into different treatment arms. The goal
of this approach is to provide more intensive treatment for patients at risk of developing
a relapse, e.g., BCR-ABL1-positive or KMT2A rearranged, while limiting toxic effects for
patients with favorable prognoses, e.g., ETV6-RUNX1-positive or hyperdiploid [8–10].
Historically, in a relevant proportion of BCP-ALL, no major genetic alteration could be
detected with conventional cytogenetic approaches, and these cases were referred to as
B-other subtype [9,11,12]. With the advent of the high-throughput and next-generation
sequencing (NGS) techniques, new leukemia-driving alterations emerged from the B-other
subgroup, enabling their further risk-based stratification. For example, the identification
of the BCR-ABL1-like (Ph-like) BCP-ALL was made based on the expression signature in
the subset of B-other cases, which was similar to the one observed in BCR-ABL1-positive
BCP-ALL, and shared unfavorable prognoses [13,14]. Later studies revealed that this group
is characterized by heterogeneous genomic alterations but also includes cases with good
outcomes, despite the BCR-ABL1-like expression signature [15,16]. This enabled further
treatment optimization and identification of cases that may benefit from targeted therapies,
e.g., tyrosine kinase inhibitors (TKI), imatinib and dasatinib, in cases with ABL1 class
fusions [17,18]. In the subsequent studies, the heterogeneous B-other subgroup was further
dissected, resulting in the discovery of new leukemia driving alterations, e.g., MEF2D,
ZNF384 and NUTM1 rearranged [19–23], as well as heterogeneous subgroups with expres-
sion profiles similar to classic BCP-ALL subtypes, e.g., ETV6-RUNX1-like [24]. In addition,
other alterations emerged as prognostically relevant, e.g., IKZF1 deletions resulting in a
further personalization of the standard treatment protocols [14,25,26]. However, despite
this remarkable progress, BCP-ALL remains one of the leading causes of mortality in child-
hood [27]. Furthermore, in the contemporary protocols, chemotherapy intensity was raised
to the maximal levels of tolerability, and further improvements in the outcome will depend
on the characterization and re-classification of cases in the B-other subgroup, as well as the
development of new drugs targeting frequently altered pathways in the BCP-ALL.

In order to further deconvolute the heterogeneous B-other subtype and show the ap-
plicability of whole-transcriptome sequencing for the routine diagnostics and personalized
medicine in pediatric ALL, we performed whole-transcriptome sequencing of 185 BCP-ALL
cases at diagnosis, treated in contemporary AIEOP-BFM ALL trials. We subsequently ana-
lyzed their fusion transcripts, expression profiles and mutational landscapes and validated
our findings using karyotyping, FISH, immunophenotyping, arayCGH and Sanger se-
quencing. In addition, we tested the applicability of RNA-sequencing (RNA-seq) in cases
with a low blast count and the use of EDTA tubes for sample collection instead of PAXgene
RNA stabilizing tubes.

2. Materials and Methods
2.1. Patient Cohort, Sample Preparation, DNA and RNA Extraction

In this study, we included 185 patients diagnosed with pediatric BCP-ALL, of which
174 patients were treated according to the Associazione Italiana Ematologia Oncologia
Pediatrica (AIEOP)-Berlin-Frankfurt-Münster (BFM) ALL 2009 (n = 168) or Interfant 06
(n = 6) treatment protocols, in the differential gene expression analysis, mutation calling
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and gene fusion analysis. Furthermore, 12 samples from 6 patients treated according to
the AIEOP-BFM ALL 2017 protocol were included for comparison between PAXgene RNA
stabilizing and tubes containing EDTA. Finally, in order to test whether samples with a
low blast count can be used to detect the fusion transcript, we included samples from five
cases diagnosed with pediatric ALL and low blast count (range: 48–7%). The usage of
leukemic samples was approved by the institutional review board of the Medical Faculty
of the Christian-Albrechts-University Kiel (BFM-ALL 2000: B257/01; AIEOP-BFM ALL
2009: A177/09; INTERFANT 06: A103/08, AIEOP-BFM ALL 2017: A105/18).

According to the above-mentioned study protocols, each sample was tested for the
presence of BCR-ABL1, ETV6-RUNX1, rearrangements involving the KMT2A gene, hyper-
diploidy and hypodiploidy. The absence of these risk-stratifying rearrangements was the
prerequisite for inclusion into the study. The median tumor cell content was 93.5% (range:
41–98.5%). Patient characteristics are summarized in Table S1.

DNA and RNA were isolated from mononuclear cells obtained from bone marrow
(BM) aspirate or peripheral blood (PB) at the time of diagnosis and viably frozen in the
DMSO. The isolation of DNA from EDTA BM was performed using the QIAamp DNA
Blood Midi Kit (Qiagen, Hilden, Germany), while RNA was isolated using the RNeasy
Kit (Qiagen, Hilden, Germany). For each of the six patients, matched PAXgene and EDTA
samples were obtained from the same bone marrow aspirate, and RNA was isolated within
24 h from the bone marrow sampling. The concentration of the isolated RNA was measured
using Qubit, while the quality assessment was performed with a bioanalyzer using the
RNA 6000 Nano kit.

2.2. Whole-Transcriptome RNA Sequencing

Whole-transcriptome RNA sequencing was performed using the TruSeq Stranded
Total RNA Library Prep kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions using 200 ng of RNA, with an RIN score ≥9. Sequencing was done on an
Illumina NovaSeq sequencer using S4 Flow Cell. The average number of read pairs per
sample was 121.3 million (median ± standard deviation (SD): 118.6 ± 25.9 million).

2.3. Karyotyping, FISH Analysis and Array CGH

For selected samples, fusions detected via RNA sequencing were validated using
karyotyping, FISH analysis on metaphase and interphase nuclei and ArrayCGH analysis
(Table S2). Karyotyping, fluorescence R-banding and FISH were performed as previously
described [28]. In brief, short-term cultures (24–48 h) were set up from viably frozen cells. For
karyotyping and fluorescence R-banding, cells in metaphases were harvested and fixed using
the HANABI P2Plus Metaphase Chromosome Harvester (ADS Biotec, Omaha, NE, USA).
Cell suspension was added on microscope slides, dried and stained using Chromomycin A3
(Merck, Darmstadt, Germany) for 45 min at 4 degrees Celsius, following counterstaining
using Methyl Green (Sigma-Aldrich, Burlington, MA, USA) for five minutes. Chromosome
analysis was performed using Axioplan 2 imaging and Axio Imager.Z2 microscopes (Zeiss,
Jena, Germany). For FISH analysis, cells were fixed on microscope slides with cold methanol
(Chemsolute, Renningen, Germany) for five minutes, following three minutes of digestion
with pepsin (Sigma-Aldrich, Burlington, MA, USA) and 10 min of fixation with formalin
(Carl Roth, Karlsruhe, Germany). FISH probes were mixed with hybridization buffer and
added to fixed nuclei, following denaturation for 10 min at 80 degrees Celsius. FISH analysis
was done using the following probes: Vysis ETV6 Break Apart FISH, Vysis LSI BCL2 Break
Apart FISH, Vysis LSI MLL Dual Color, Break Apart Rearrangement Probe (ASR) (Abbott,
Wiesbaden, Germany), IGH Plus Breakapart, E2A (TCF3) Break Apart, EPOR Breakapart,
PAX5 Breakapart, CRLF2 Breakapart, ABL1 Breakapart, PDGFRB Breakapart (Cytocell,
Cambridge, UK) [29]. Upon overnight incubation at 37 degrees Celsius in a humidified dark
chamber, slides were washed and counterstained for 10 min with DAPI (Sigma-Aldrich,
Burlington, MA, USA). The evaluation of signals was carried out using an Axioskop 2 plus
microscope (Zeiss, Jena, Germany).
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ArrayCGH analysis was performed by hybridizing 500 ng of patient DNA using
a 400K SurePrint G3 Custom CGH Human Genome Microarray (e-Array design 84704,
Agilent Technologies, Waldbronn, Germany) according to the manufacturer’s instructions.

2.4. Immunophenotyping

Immunophenotyping was done using the diagnostic standards developed and ap-
proved by the AIEOP-BFM ALL FLOW-Study Group, which are based on the WHO 2016
criteria, the EGIL classification and the Bethesda 2006 recommendations [30,31]. To vali-
date the DUX4-positive subtype, the expression of CD371 (CLL1) was determined with an
8-color combination of antibodies against CD45, CD19, CD34, CD2, CD10, CD14, CD33
and CD371 at diagnosis [32].

2.5. Fusion Detection

The sequencing data were processed using the megSAP RNA-seq pipeline (https:
//github.com/imgag/megSAP; accessed on 1 May 2019), which includes pre-processing
(QC and adapter trimming), aligning to the GRCh38 genome reference and annotation.
Fusions were detected using megSAP (release 0.2) and Arriba (version 2.0.0) [33] and
filtered based on the presence of the fusion partners in a “white list” of ALL-relevant genes
obtained from the literature (Table S3). Other fusions were only kept if they had more than
10 supporting reads (i.e., junction or spanning reads). Furthermore, we kept only known
fusions from the Mitelman Database of Chromosome Aberrations and Gene Fusions in
Cancer. Fusions were further prioritized based on the relevant literature [11,19,34].

2.6. Mutation Analysis

Single base substitutions (SBS) and indels were identified using the Mutect2 of GATK
(version 4.1.8.1) [35], with modified settings for RNA-seq data (using the SplitNCigarReads
utility and adding-read-filter NotSupplementaryAlignmentReadFilter and –disable-read-
filter ReadStrandFilter as flags for the FilterMutectCalls utility). Somatic variant calling by
Mutect2 was performed using a panel of normals from the GATK resource bundle. Somatic
variants were further processed by the Mutect2 filter (FilterMutectCalls utility), and addi-
tional filters were applied to remove variants with (1) less than six alternative allele reads;
(2) allele frequency in tumor (as determined by Mutect2) less or equal 0.1; (3) co-occurrence
in at least 40% of the samples; (4) indels positioned within 20 bp of each other. Furthermore,
we removed variants located in introns, IGR, 5′ flanking, splice site as well as silent variants
upon annotation with Funcotator (GATK). A separate dataset was created, in which silent
variants were retained, for further analyses using MAFTools [36]. Variants were further
annotated using VEP (release 103), and we filtered out the variants that had an allele
frequency >0.01% (>1 in 10,000) in at least one ethnic group in 1000 Genomes, ExAC or
GnomAD datasets, a CADD PHRED score <15 or were classified as benign, tolerated or neu-
tral (PolyPhen-2, SIFT and Condel, respectively). Furthermore, we only kept variants rated
to have high or moderate impact (i.e., “transcript_ablation”, “splice_acceptor_variant”,
“splice_donor_variant”, “stop_gained”, “frameshift_variant”, “stop_lost”, “start_lost”,
“transcript_amplification”, “inframe_insertion”, “inframe_deletion”, “missense_variant”,
and “protein_altering_variant”). In the second set that was created for the MAFTools
analyses, only variants that had an allele frequency >0.01% in at least one of the ethnic
groups (GnomAD) were removed. The remaining variants are reported for each BCP-ALL
subgroup in Table S4. We used MAFTools to query the mutational composition of the
BCP-ALL subgroups based on: (i) variant classification (missense, nonstop, nonsense);
(ii) variant type (SNP, DNP, TNP, etc.); (iii) single base substitution type (T > C, C > T, etc.);
(iv) top genes with the highest number of mutations co-occurring in the highest number of
samples; (v) and co-occurrence of genes with mutations.

https://github.com/imgag/megSAP
https://github.com/imgag/megSAP
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2.7. Gene Expression Profiling

To perform gene expression profiling, we first generated read alignments translated
into transcript coordinates using the STAR aligner (version 2.7.0f) [37], which is integrated
into our slightly modified version of megSAP (the modification was limited to the addition
of the quantMode TranscriptomeSAM parameter to the STAR command line). Gene-level
quantification was performed using RSEM (version 1.3.0) [38]. The heatmaps are based on
variance stabilized transformed expression values generated using the DESeq2 R package [39].

2.8. Sample Classification

Upon mutation calling and gene expression profiling, we classified the samples based
on the presence of fusions and mutations previously known from the literature [11,19,34].
Further, we used karyotyping, FISH, ArrayCGH, Sanger sequencing and flow cytometry
data to validate assigned groups. The resulting sample annotation was further validated
by dimensionality reduction techniques for data visualization: t-Distributed Stochastic
Neighbor Embedding [40] (t-SNE; R package Rtsne, version 0.15) and Uniform Manifold
Approximation and Projection [41] (UMAP; R package umap, version 0.2.7.0). The Rtsne
function was used with the following parameters set: perplexity = 20 and max_iter = 50000.
The umap function was used with default parameters. The input for these algorithms
was generated by within-lane GC normalization (R package EDASeq [42]) and variance
stabilization (vst function in DESeq2 [39]) of the expression count data generated by
RSEM. T-SNE and UMAP sample clustering was performed on 650 of the most variable
differentially expressed genes (DEGs) that were identified using median absolute deviation
(R mad function) of the variance stabilized expression data. The most variable DEGs were
selected from the union of DEGs (FDR < 0.05) from comparisons of each subgroup with at
least three samples vs. all other samples in the study. We have tried a range of the most
variable DEGs from 300 to 3000 in increments of 50, and the set with the top 650 DEGs
produced the best separation of all subgroups in both t-SNE and UMAP clustering.

2.9. Differential Gene Expression

For differential gene expression analysis, we used the EDASeq/DESeq2 pipeline
mentioned above. The identified subgroups were compared against all the other samples
combined. Additionally, we performed GO and pathway overrepresentation analysis of
the identified DEGs using the online tool Erichr [43–45].

To compare gene expression profiles of the samples collected using PAXgene RNA
stabilizing and tubes containing EDTA from the same patients, we ran DESeq2 with the
design setting applicable for paired data (design = ~patient + condition). The resulting
differential expression data with a q-value < 0.05 (i.e., p-value adjusted for false discovery
rate (FDR) using the Benjamini–Hochberg procedure) were considered significant. To
determine which genes and respective pathways are affected most by the different sample
collection tubes (PAXgene vs. EDTA), we created three subgroups of DEGs based on
the effect size cutoff formulated as the absolute value of the log-normalized fold change:
|Log2(fold change)| >1 (fold change >2 or <0.5), |Log2(fold change)| > 2 (fold change >4 or
<0.25) and |Log2(fold change)| > 3 (fold change >8 or <0.125). The resulting gene sets
were analyzed using the pre-ranked analysis option in GSEA with the default gene num-
ber range (15–500) [46,47]. The ranking was based on the expression score calculated as
Log2(fold change) × (−Log10(q-value)). GSEA was run on the complete hallmark gene
set collection (h.all.v7.2.symbols.gmt). The enriched gene sets with the FDR-adjusted
p-value < 0.05 are reported in this manuscript.

2.10. Differential Splicing Analysis

To perform differential splicing analysis, we first generated read alignments translated
into transcript coordinates using the STAR aligner (–quantMode TranscriptomeSAM),
which is integrated into our slightly modified version of megSAP. RSEM was used to
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quantify the isoform-level expression data. Differential splicing analysis was performed
using NBSplice (version 3.13) [48] for the analysis of the isoform-level output from RSEM.

3. Results

A total of 174 cases (102 male and 72 female) with BCP-ALL and treated according to
AIEOP-BFM ALL 2009 (n = 168) or Interfant 06 (n = 6) treatment protocols were included
in this study. The median age at diagnosis was 7 years (range: 0.2–18.6; Table S1). In
addition, 12 samples from six patients treated according to the AIEOP-BFM ALL 2017
treatment protocol were included for comparison between PAXgene RNA stabilizing and
tubes containing EDTA (Table S1). Furthermore, five samples from the patients with low
blast counts were used to examine the applicability of whole-transcriptome analysis to
detect fusion transcripts in samples with low blast counts. Following the RNA sequencing
of samples obtained at diagnosis, we performed analysis and filtering of the detected
fusion transcripts, which resulted in the identification of 203 fusions known to frequently
occur in BCP-ALL (distribution by subgroup is shown in Table S5; for complete fusion
detection output, see File S1). These 203 fusions were used for sample classification (prior
to manual review) based on the highest percent of supporting reads. The most frequently
identified gene fusion was P2RY8-CRLF2 (n = 19), followed by the fusions involving
ZNF384 (n = 10), PAX5 (n = 10), ETV6 (n = 5), NUTM1 (n = 4), EBF1-PDGFRB (n = 4),
MEF2D-BCL9 (n = 3) and IGH-EPOR (n = 2). To our surprise, we also identified six cases
with cryptic KMT2A rearrangements, which were not detected by FISH analysis. These
KMT2A rearrangements involved two cases of each MLLT1, MLLT3 and USP2 genes as
fusion partners. Other identified gene fusions were non-recurring. Furthermore, we have
identified 13 fusions involving lymphoid lineage transcriptional factors ETV6, IKZF1 and
PAX5, with fusion partners, which, to best of our knowledge, were previously not reported
in pediatric ALL (Table S2). Mutation calling analysis identified 4108 predicted pathogenic
variants (distribution by subgroup is shown in Table S4), including hotspot mutations
in known ALL drivers PAX5 and IKZF1. In order to confirm these findings (obtained
after detection of fusion transcripts, mutation analysis, and gene expression analysis) and
to further characterize samples that were not assigned to any of the known BCP-ALL
subtypes, we performed additional validation using karyotyping, FISH, arrayCGH and
immunophenotyping in distinct samples with the available material (Table S2). Upon the
completion of all analysis and validation steps, we assigned the samples to the following
BCP-ALL subgroups: BCR-ABL1 (Ph)-like (n = 31), DUX4-positive (n = 16), ETV6-RUNX1-
like (n = 3), IKZF1 (p.N159Y) (n = 1), KMT2A-rearranged (n = 6), MEF2D-BCL9 (n = 3),
NUTM1-rearranged (n = 4), PAX5 (p.P80R) (n = 6), PAX5 alt (n = 6), TCF3-HLF (n = 1), TCF3-
PBX1 (n = 1), ZNF384-rearranged and like (n = 10) and iAMP21 (n = 3), while 84 samples
remained unassigned at this point (Table S2).

3.1. B-Other Samples Cluster with Known B-ALL Subgroups Based on Gene Expression

Previous studies have demonstrated that a subset of B-other cases with heterogeneous
genomic fusions tend to cluster with known subtypes, e.g., BCR-ABL1-like and ETV6-
RUNX1-like. In order to examine the presence of these subgroups and classify the remaining
unassigned samples, we selected the union of the top 650 DEGs (see Methods) and per-
formed data dimensionality reduction using t-SNE and UMAP on the well-defined and
validated BCP-ALL subtypes in our cohort (Figure 1a,b). Upon examining the distribution
of the clusters formed by individual samples and confirming that these are represented
by their respective genomic fusions, we performed the same analysis using both samples
with the known BCP-ALL subtypes and a group of cases without known major genomic
aberrations (Figure 1c,d). Cases with distinctive and confirmed BCP-ALL subtypes again
clustered together, while for a subset of cases without known genomic alterations, we
observed their co-clustering with these confirmed BCP-ALL subtypes, namely BCR-ABL1
(n = 59), ETV6-RUNX1 (n = 13) and ZNF384-rearranged (n = 1), representing a previously
reported subgroup of cases with expression profiles similar to the mentioned subtypes.
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Notably, for the DUX4-positive subtypes (n = 13), we observed 27 cases without detectable
genomic alterations clustering together, a finding which may be relevant for risk treatment
stratification (Figure 1c,d). Of note, differential expression analysis of the DUX4 group
and the B-other subgroup clustering together with DUX4-positive cases showed that their
differential expression profiles, though distinct, were still the closest compared to the pro-
files of the other subgroups. Particularly, the DUX4 co-clustering B-other subgroup had
14 pathways significantly overrepresented by DEGs shared with the DUX4 group, while the
next closest subgroup was BCR-ABL1 with 11 shared overrepresented pathways (File S2). In
summary, through our approaches, we were able to assign 172 samples into one of the B-ALL
subgroups, including the majority (82/84; 98%) of previously unassigned B-other cases.
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clustering the samples of the entire cohort, excluding the unknown samples (a,b) and including the unknown samples (c,d).
Many unknown samples cluster with known subgroups, particularly DUX4, thereby providing the means for tentative
classification of such unknown (B-other) samples.

3.2. Splicing Profiles of the Known BCP-ALL Subgroups Provide Additional Information for
Potential Improvement in Diagnostics of B-Other Samples

To further unravel differences between ALL subtypes, as well as B-other cases co-
clustering with known BCP-ALL subtypes, we performed differential splicing analysis and
identified isoforms that were differentially expressed in a particular ALL subtype com-
pared to the rest of the cohort. Overall, we did not observe many significantly differentially
expressed isoforms (FDR < 0.05) in the investigated subgroups, and the highest number of
such isoforms was 11 for the cases with iAMP21. Nevertheless, differential splicing analysis
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proved to be useful for extending expression signatures of the known BCP-ALL subgroups
and validation of the co-clustering of B-other sample subsets unassigned to any known sub-
groups. In particular, we performed differential splicing analysis on the subset of B-other
cases co-clustering with the DUX4-positive cases. Interestingly, we found 12 identical,
differentially expressed isoforms (of which three were significant (FDR < 0.05) and nine
were not significant (FDR < 1)), with 100% concordance in the direction of regulation in the
DUX4 subgroup (Table S6). When we compared the differentially expressed isoforms of
the DUX4 subgroup with the other subgroups, there were, at most, four non-significant
(FDR < 1) co-occurring isoforms in most cases regulated in the opposite directions. This
specific correspondence between the differential isoform profiles of the DUX4-positive
cases and B-other cases co-clustering with DUX4-positive cases provides additional lever-
age in the resolution of the unclassified B-other cases. The complete differential splicing
analysis output is presented in File S3.

3.3. Mutation Analysis of Whole-Transcriptome BCP-ALL Data Has Limited Applicability Due to
High Level of RNA Editing Events

In addition to structural rearrangements, previous studies have also identified recur-
rent and mutually exclusive mutations in the group of B-other cases, e.g., PAX5 p.P80R
and IKZF1 p.N159Y, for which it was shown to drive the development of ALL [34,49,50].
Furthermore, various studies have shown that somatic mutations associated with treatment
resistance and the development of relapse can already be present at diagnosis [26,51,52].
In order to identify patients with ALL driving mutations in PAX5 and IKZF1, as well as
to examine the applicability of the whole-transcriptome data to identify relapse-driving
mutations in ALL, we performed mutation analysis. To our surprise, we observed a large
number of T > C substitutions in all the samples included in this cohort (Figure 2). The
relative abundance of T > C substitutions is consistent with the presence of a previously
described post-transcriptional RNA editing of adenine to inosine, resulting in mainly T > C
and A > G substitutions [53,54].
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substitutions or C > T (G > A) substitutions (b).
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Despite these RNA editing events, our analysis unraveled six cases in total with PAX5
p.P80R mutation, as well as one case with IKZF1 p.N159Y. In addition to leukemia-driving
mutations, we have identified recurrent pathogenic mutations CRLF2 p.F232C (n = 7), TYK2
p.A413T (n = 7), JAK2 p.R683G (n = 4), KRAS p.G12D (n = 4), FLT3 p.Y842C (n = 3) and
PTPN11 p.D61V (n = 3), previously frequently found in pediatric ALL (Table S4 and Figure S1).

3.4. EDTA Tubes Are a Viable Alternative to PAXgene RNA Stabilizing Tubes

Extraction of the high-quality RNA is pivotal for the reliable detection of fusion
transcripts and differential expression analysis. However, obtaining high-quality RNA can
be hampered by storage and shipping conditions of the biological material to diagnostic
laboratories. Although the introduction of sampling tubes containing RNA stabilizing
agents may be beneficial when RNA cannot be extracted in a short time after sampling,
the use of different tubes for the samples that will be analyzed with different techniques
is logistically complex and connected with higher expenses. In order to examine the
suitability of commonly used EDTA and PAXgene RNA stabilizing tubes for extracting
high-quality RNA and analysis of whole transcriptomes, we collected 12 bone marrow
samples from six children. Two matched samples for each child were obtained from the
same bone marrow puncture and stored in EDTA and PAXgene RNA stabilizing tubes.
We subsequently performed RNA extraction (<24 h after BM puncture), confirmed the
quality of RNA and performed RNA sequencing in order to investigate the differences
in the detected fusion transcripts, mutations and differentially expressed genes of RNA
obtained from material stored in EDTA or PAXgene RNA stabilizing tubes.

3.4.1. Comparison of Sequencing Output (PAXgene vs. EDTA) Showed Slightly Higher
Duplication Rate in PAXgene Samples

Using FastQC [55] and Picard-tools [56], we compared sequencing characteristics
of the samples stored in PAXgene RNA stabilizing tubes and EDTA tubes. We did not
observe major variations in sequencing characteristics between the samples. In addition,
as measured by the MarkDuplicates tool of Picard-tools, the mean duplication rate of
samples derived from PAXgene RNA stabilizing tubes was 37.68% (26.03–51.38%), while
the mean duplication rate of samples derived from EDTA tubes was 34.54% (24.40–43.31%).
However, this difference is not statistically significant (p-val = 0.70, Mann–Whitney U test).
Of note, these high duplication rates do not only represent PCR duplicates but also natural
duplication due to high sequencing coverage associated with gene expression.

3.4.2. Influence of the Different Storage Tubes on the Overall Gene Expression

Previous studies showed that the lack of RNA stabilization can result in expression bias
for particular transcripts in the EDTA tubes [57]. Therefore, we conducted differential gene
expression analysis customized for paired data (see Methods). Only genes with an average
read count >10 were considered. Without filtration based on the fold change (PAXgene vs.
EDTA), we found 2626 upregulated and 2643 downregulated DEGs. We further identified
three groups of DEGs based on the effect size, showing DEGs progressively more affected
by the tube technology. In group 1 with the fold change cutoff (Log2(fold change) >1, we
had 4135 DEGs (2075 upregulated and 2060 downregulated). In group 2 with the fold
change cutoff (Log2(fold change) >2, we had 1202 DEGs (607 upregulated and 595 down-
regulated). In group 3 with the fold change cutoff (Log2(fold change) >3, we had 310 DEGs
(143 upregulated and 167 downregulated). We further performed hierarchical clustering
and principal component analysis (PCA) on expression data of the samples derived from
PAXgene RNA stabilizing tubes and EDTA tubes (Figure 3a,b). The expression data in-
cluded all genes with at least 10 mapped reads in every sample. Hierarchical clustering
revealed that the majority of the samples derived from the same individual cluster to-
gether. Interestingly, PCA analysis revealed that the groups are primarily separated by
the second component, explaining 15.8% of variance. Conversely, the first component
(23.6%) and third component (13.2%) had lower influence on sample separation by the
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RNA stabilization technology and likely represent biological characteristics of the samples.
These findings suggest that the use of different sample storage tubes needs to be carefully
considered in the applications that require differential expression analysis. Although PCA
analysis and hierarchical clustering demonstrated high similarity between samples from
the same individual stored in the PAXgene RNA stabilizing tubes or EDTA tubes, diag-
nostic laboratories should abstain from using different sample storage tubes in order to
avoid batch effects.
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Figure 3. PAXgene RNA stabilized samples and EDTA samples of the same individuals vary in gene expression and
mutation (RNA editing) rates. A heatmap of the top 1000 most variable genes and hierarchical clustering revealed that,
despite the differences in the gene expression between PAXgene RNA stabilizing tubes and EDTA tubes, samples from the
same individual cluster together (a). This was further reinforced with the principal component analysis (b), with the second
component reflecting the gene expression variability caused by the sample storage tubes.

3.4.3. No Appreciable Correlation between Expression and Decay Constants Exists in
Either EDTA or PAXgene Stored Samples

We next tested the correlation of TPM expression values and decay constants of the
DEGs in both PAXgene and EDTA samples. We used the decay constants published by
Romero et al. [58]. The corresponding scatter plots with regression lines are shown in
Figure S2. Interestingly, as shown in Figure S3, upregulated DEGs (PAXgene vs. EDTA),
i.e., the downregulated DEGs in the EDTA vs. PAXgene, have somewhat lower decay
rates, suggesting that genes over-abundant in EDTA samples are not dominated by slow-
degrading transcripts. Therefore, gene expression analysis appears to be unaffected by the
expected higher rate of RNA degradation in EDTA samples.
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3.4.4. Fusion Detection Assessment (PAXgene vs. EDTA)

Next, we examined if the use of EDTA or PAXgene RNA stabilizing tubes may hamper
our ability to accurately detect the presence of fusion transcripts. Of note, read coverage was
not significantly different in the PAX vs. EDTA samples (median ± SD: 117.7 ± 6.7 million
read pairs in PAXgene vs. 118.7 ± 17.7 million read pairs in EDTA). Using karyotyping
and FISH, we detected ETV6-RUNX1 fusion in two cases, IGH-CRLF2 in one, while in
the remaining three, no relevant B-ALL stratifying alterations were identified (B-other
subgroup). Using whole-transcriptome data, we detected ETV6-RUNX1 fusions in both
EDTA samples, while this fusion was only detected in one of the corresponding PAXgene
samples. The PAXgene sample where we failed to detect this fusion had 115.3 million read
pairs compared to 120.9 million read pairs in the corresponding EDTA sample. The IGH-
CRLF2 fusion was not detected in either of the corresponding samples by RNA sequencing,
which is in line with previous studies, indicating that the fusions involving non-transcribed
IGH loci are challenging to detect [29,59].

3.5. Low Blast Count Samples Can Be Reliably Profiled by Whole-Transcriptome RNA-seq Given
Sufficient Sequencing Depth

The major issue in the routine diagnostics are samples with low numbers of leukemic
blasts, which can hamper the reliable detection of fusion transcripts. In order to determine
the ability of our analysis pipeline to detect gene fusions present in a limited number of
leukemic blasts, we analyzed five samples with known fusions. These included three
BCR-ABL1-positive samples (blast count: 33%, 20% and 7%; read coverage in millions of
read pairs: 89.4, 113.6 and 88.4) and two ETV6-RUNX1-positive samples (blast count 20%
and 7.5%; read coverage in millions of read pairs: 94.3 and 102.7). In all cases, our fusion
pipeline reliably detected the fusions.

4. Discussion

BCP-ALL is a genetically heterogeneous disease, in which different alterations show
strong associations with the treatment outcome [9,11,14,25,26,51,52]. Therefore, improve-
ments in genetic characterization of the BCP-ALL are relevant for risk stratification of
patients with genetic compositions associated with unfavorable prognoses, as well as the
identification of new and potentially targetable genetic alterations. The detection of rare
genomic alterations is frequently limited by the approaches currently used in the routine
diagnostics, and the introduction of high-throughput, genome-wide next generation se-
quencing assays in the routine diagnostic can improve the detection of these rare alterations
and aid risk-based treatment stratification. In this study, we examined the applicability of
the whole-transcriptome analysis for the routine diagnostics and validated our findings
using independent approaches. We specifically focus on the B-other ALL cases, in which
relevant risk stratification markers cannot be detected using conventional cytogenetic
methods. The most obvious example of previously unassigned B-other samples clustering
with a known BCP-ALL subgroup are the unknown samples in the DUX4-positive cluster.
Differential splicing analysis showed a high degree of overlap in differential isoform ex-
pression between DUX4-positive and the co-clustering B-other samples, highlighting the
utility of differential splicing analysis in addition to expression clustering in diagnostics
and personalized patient care. Previous studies have shown that the presence of ERG
deletions, an event characterizing DUX4-positive ALL, neutralizes the otherwise adverse
prognostic effect of IKZF1 deletions [60,61]. In combination with other genes involved in
the B-cell development (IKZF1plus signature), the presence of IKZF1 deletions represents
a marker currently used for risk stratification in different treatment protocols, including
AIEOP-BFM ALL 2017 [62]. It remains to be explored whether in DUX4-positive ALL, the
IKZF1plus signature maintains its association with a poor prognosis, and, if this is not the
case, whether unnecessary treatment intensification can be avoided.

In this study, we demonstrated that the detection of relevant risk-stratifying genomic
alterations, i.e., ETV6-RUNX1 and BCR-ABL1, could be reliably performed even in the
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samples with a low blast percentage. However, the detection of lowly expressed fusion
transcripts may be more challenging, particularly in the samples with very low blast
percentages. Furthermore, the diminishment of unique expression patterns by a low
number of blasts may render classification impossible in cases without discerning genomic
alterations, e.g., ETV6-RUNX1-like and BCR-ABL1-like.

As reported in the Results section, the detected variants in whole-transcriptome sam-
ples are dominated by RNA editing events and, therefore, have limited value. Nevertheless,
mutation analysis in our study still identified the key diagnostic mutations, such as PAX5
p.P80R and IKZF1 p.N159Y.

While RNA stabilization qualities of the PAXgene RNA stabilizing tubes are likely to
prolong sample viability and minimize effects of long-term storage on RNA expression [57],
their use is connected with higher costs and is logistically complex. Therefore, in this
study, we analyzed the applicability of commonly used EDTA tubes for short-term sample
storage (<24 h) prior to RNA extraction. Our PCA analysis and hierarchical clustering
revealed high similarity between samples obtained from individual patients. Furthermore,
we were able to confirm all expected fusion transcripts, suggesting that EDTA tubes are
a viable alternative to the PAXgene RNA stabilizing tubes for short-term sample storage.
This finding is particularly relevant for hospitals and diagnostic laboratories since the
use of broadly available EDTA tubes reduces the costs and simplifies sample acquisition
and sample processing. RNA isolation from PAXgene RNA stabilizing tubes is connected
with a longer processing time, which represents important considerations in situations
when the time to conduct the necessary diagnostic procedures is limited. Furthermore,
samples taken using EDTA tubes can be processed for multiple techniques simultaneously,
e.g., FISH, karyotyping and immunophenotyping, while viable mononuclear cells can
be isolated and DMSO frozen for later use. Finally, the ability to perform the isolation
of mononuclear cell fraction and subsequent enrichment for the tumor population are
particularly important for samples with a low blast percentage due to the limited number
of fusion transcripts and the dilution of expression patterns in the bulk bone marrow
sample. On the other hand, when prolonged storage cannot be avoided, PAXgene RNA
stabilizing tubes outperform EDTA tubes in terms of preserving RNA concentration and
RNA yield in blood samples [57]. Therefore, consideration regarding the usage of PAXgene
RNA stabilizing or EDTA tubes largely depends on the needs of diagnostic centers and
speed in which samples can be processed. While the discoveries presented here may affect
experimental and diagnostics routines, we have to concede that this sub-study is somewhat
preliminary due to a relatively low cohort size (six patients). In summary, we can state that
the use of EDTA tubes for sample collection instead of PAXgene RNA stabilizing tubes does
not have adverse effects on sequencing and downstream analysis for diagnostic purposes.

5. Conclusions

Taken together, our data demonstrate the applicability and limitations of whole-
transcriptome analysis for routine diagnostics and further refinement of cases without
known risk stratification markers. This was particularly relevant for a large portion of ALL
samples co-clustering together with DUX4-positive cases. Furthermore, we have demon-
strated that the whole-transcriptome analysis can be successfully implemented, even in
samples with a low blast percentage, and that the use of tubes with EDTA does not hamper
the quality of the RNA and the whole-transcriptome data generated using this material.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225653/s1, Figure S1: Heatmap showing mutation status in the genes frequently
mutated in the diagnosis samples of B-other patients included in the study. Figure S2: No appreciable
correlation between expression (TPM) and decay constant exists in either EDTA or PAXgene samples,
Figure S3: Slow degrading DEGs are not overrepresented in genes upregulated in the EDTA samples,
Table S1: Clinical characteristics of patients included in the study, Table S2: Validation of detected
fusions using karyotyping, FISH analysis on metaphase and interphase nuclei, arrayCGH analysis
and immunophenotyping, Table S3: The “white list” of acute lymphocytic leukemia (ALL)-relevant

https://www.mdpi.com/article/10.3390/cancers13225653/s1
https://www.mdpi.com/article/10.3390/cancers13225653/s1


Cancers 2021, 13, 5653 13 of 16

genes obtained from the literature, Table S4: Pathogenic mutations by subgroup, Table S5: Detected
fusions by BCP-ALL subgroup, Table S6: Differentially spliced isoforms in the DUX4 subgroup and
their counterparts in the other subgroups (including samples co-clustering with the DUX4 subgroup
based on gene expression), File S1: Output of the fusion detection programs, File S2: Differentially
expressed genes between ALL subtypes, File S3: Differentially spliced genes per ALL subgroups.
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