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Simple Summary: Rectal cancer is the 8th most common cancer globally. Most patients with
locally advanced rectal cancer receive neoadjuvant therapy based on 5-fluorouracil and radiotherapy
showing variable responses. About 70-90% of patients present partial response, while 20% show
treatment resistance. Repositioning drugs approved by regulatory agencies or drugs currently
in clinical trials is a strategy to accelerate the development of drug-based cancer therapies. We
compared rectal cancer gene expression signatures with reverse drug-induced gene-expression
profiles of cancer cell lines to identify potential drugs for repositioning. Our analyses revealed that
approved topoisomerase II inhibitors are candidate drugs for rectal cancer treatment. We also verified
TOP2A copy number gains and increased expression in rectal tumors. These TOP2A alterations were
independent predictive markers of topoisomerase inhibitor efficacy in colorectal cancer cells that
closely represent rectal cancer signatures. Topoisomerase inhibitors are potentially helpful to treat
rectal cancer patients with TOP2A imbalances.

Abstract: Rectal cancer is a common disease with high mortality rates and limited therapeutic
options. Here we combined the gene expression signatures of rectal cancer patients with the reverse
drug-induced gene-expression profiles to identify drug repositioning candidates for cancer therapy.
Among the predicted repurposable drugs, topoisomerase II inhibitors (doxorubicin, teniposide,
idarubicin, mitoxantrone, and epirubicin) presented a high potential to reverse rectal cancer gene
expression signatures. We showed that these drugs effectively reduced the growth of colorectal
cancer cell lines closely representing rectal cancer signatures. We also found a clear correlation
between topoisomerase 2A (TOP2A) gene copy number or expression levels with the sensitivity
to topoisomerase II inhibitors. Furthermore, CRISPR-Cas9 and shRNA screenings confirmed that
loss-of-function of the TOP2A has the highest efficacy in reducing cellular proliferation. Finally, we
observed significant TOP2A copy number gains and increased expression in independent cohorts of
rectal cancer patients. These findings can be translated into clinical practice to evaluate TOP2A status
for targeted and personalized therapies based on topoisomerase II inhibitors in rectal cancer patients.

Keywords: rectal cancer; drug repositioning; reverse expression of signature genes; gene expression
features; drug reversal potency scoring
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1. Introduction

Cancer is one of the leading causes of death worldwide [1]. Unfortunately, the dis-
covery and translation of new drugs for cancer treatment is costly [2], requires years of
research and development [3,4], and only a few drugs entering clinical trials are eventually
approved for clinical use [5,6]. Drug repositioning has provided emerging opportunities
for cancer therapeutic discoveries [7,8]. The definition of drug repositioning (also called
drug repositioning, reprofiling, or re-tasking) has been explored since the publication of
Ashburn and Thor in 2004 [9]. According to these authors, drug repositioning is the process
of identifying and developing new uses for approved drugs or those under investigation
outside the original indication [9]. The major advantages of repurposing old drugs are
the use of de-risked compounds, with potentially shorter development time and reduced
costs [8]. Therefore, repositioning drugs approved by regulatory agencies or currently
in clinical trials are valuable alternatives for finding new cancer therapies that can be
rapidly translated to the clinic [10]. This approach can benefit cancer patients by increas-
ing the number of new therapeutic indications to non-oncology drugs or improving the
effectiveness of personalized and targeted therapies [11].

Rectal cancer (ReCa) is the 8th most common cancer globally, with more than 300,000 deaths
annually [1], and its incidence has risen exponentially in individuals aged between 18 and
50 years [12-14]. Most patients with locally advanced ReCa receive a complex multimodal
therapy based on 5-fluorouracil and radiotherapy before surgery [15-17]. This treatment
strategy was implemented in the mid-1990s [18] and has yielded an effective reduction in
recurrence rates and improved survival [15]. Despite these improved outcomes, patients
still suffer from high morbidity of the surgery [19,20], diverse side effects, and poor
functional results of the treatment [21,22]. A complete pathological response is observed
in only ~15% of patients after neoadjuvant chemoradiotherapy [23] a positive prognostic
marker [24]. In the postoperative setting, medical treatment aims to decrease the risk of
relapse and death [16,17]. However, only a minor fraction of the patients will benefit [25],
culminating in the metastatic spread of ReCa, which is the leading cause of death [26].
More effective systemic treatments may increase the resectability of metastases and increase
overall survival time. Thus, it is critical to identify new molecular markers to select patients
for therapy and additional therapeutic strategies to treat ReCa.

Global gene-expression profiles are valuable resources for discovering potential ther-
apeutic drug targets in human cancers [27,28]. Cancer gene-expression profiles are ac-
cumulating and available for exploration and reuse [29] through databases such as the
Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) [30], and the Can-
cer Cell Line Encyclopedia (CCLE) [31,32]. The integration of these cancer profiles with
publicly available open data containing the effect of drugs on gene expression [28,33,34] or
growth-inhibitory activity in human cancer cell lines [27] provides a valuable framework
to computationally identify novel therapeutic candidates [33,35]. Different studies have
combined drug-induced gene expression profiles with a cancer-specific expression profile
to select compounds with high potency to reverse the expression of cancer-associated
genes [36—42]. These drug-disease relationships found among anticorrelated expression
profiles can benefit from using robust cancer gene expression signatures, which can be ob-
tained by systematically analyzing cancer transcriptome datasets from several sources [43].
A data-mining of tumor gene-expression datasets allows the comparison of similar studies
for consistency and identification of gene expression patterns [44], leading to biological
discoveries and more accurate predictions of drug candidates for cancer treatment.

In this study, we first followed well-established criteria to select and reanalyze publicly
available gene expression datasets of ReCa. Then, six signatures were obtained and used
in a drug-repositioning bioinformatics approach to identify novel US Food and Drug
Administration (FDA)-approved or investigational candidate drugs to treat ReCa. Using
this strategy, we found that topoisomerase and cyclin-dependent kinase (CDK) inhibitors
potentially reverse ReCa signatures and inhibit the growth of colorectal cancer (CRC) cell
lines closely representing ReCa signatures. Thus, we demonstrate the reversal of ReCa
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gene expression as a strategy to rapidly identify drugs that are FDA-approved or currently
in clinical trials to treat the disease.

2. Methods
2.1. Acquisition and Processing of Publicly Available ReCa Transcriptomic Datasets

We manually curated the GEO repository (https://www.ncbi.nlm.nih.gov/geo/) on
7 March 2021 to select the ReCa transcriptome datasets. The search strategy used the
Medical Subject Headings (MeSH; https://www.ncbi.nlm.nih.gov/mesh/) (accessed on
2 March 2021) unique ID D012004 for Rectal Neoplasms (tumor or cancer of the rectum)
from PubMed (Tables S1 and S2). We applied the following filters to select the datasets:
Homo sapiens, gene expression platforms (Affymetrix, Agilent, and Illumina), with at
least 30 rectal tissue samples (excluding formalin-fixed, paraffin-embedded tissues) from
pre-treatment patients, with the surrounding normal tissues, studies indexed in PubMed
and published in peer-reviewed journals from 2010 to 2021, and with standardized and
annotated metadata. We also compared TCGA (https://www.cancer.gov/tcga) (accessed
on 20 March 2021) RNA sequencing data from primary rectal adenocarcinoma (READ) [45]
with RNA-Seq data from normal samples available in The Genotype-Tissue Expression
(GTEXx) program [46].

2.2. Generation of ReCa Signatures

We performed differential gene expression analyses between tumor and normal tissues
for each cDNA microarray dataset using the interactive web tool GEO2R (https://www.
ncbinlm.nih.gov/geo/geo2r/) (accessed on 10 March 2021), which is based on the limma
package [47]. Next, we removed probes matching the same gene symbol by selecting the
one with the lowest p-value. For the TCGA RNA-Seq dataset, the differential expression
analysis between TCGA tumor and GTEx normal samples was performed using EdgeR [48]
in the workspace Open Cancer TherApeutic Discovery (OCTAD) [49]. For this analysis,
OCTAD uses a deep learning approach to select the top 50 highly correlated normal samples
based on their gene expression profiles [50]. The final gene expression signature for each
dataset was determined by applying the statistical cutoffs of Fold-change >1 and Adjusted
p-value < 0.001.

2.3. Gene Set Enrichment Analysis

The final gene expression signature for each selected dataset and the list of differ-
entially expressed genes (DEG) shared among all ReCa signatures were inputted into
the EnrichR tool [51-53] for a comprehensive gene set enrichment analysis. Gene On-
tology (Biological Process and Molecular Function), Kyoto Encyclopedia of Genes and
Genomes (KEGG), NCI-Nature 2016 Pathway Interaction Database, ARCHS4 (Kinases
Co-expression), and DisGeNET EnrichR libraries were used to identify genes compatible
with drug targets potentially applicable to ReCa. The top five gene set enrichment terms
for each library were included in consensus lists when satisfying the criteria of overrep-
resentation (Adjusted p-value < 0.05) in at least one signature. The enrichment results
were represented by the p-value (Fisher’s exact test) and Z score (correction to the test) in
a combined score computed by EnrichR [51,52]. To further explore commonly-enriched
terms and their relationships, we used Metascape (https://metascape.org/) (accessed on
9 April 2021) [54] to perform a comparative analysis of all ReCa signatures. The enriched
terms were represented by clusters with a similarity metric >0.3 determined by Kappa
scores [55] and were displayed as nodes connected by edges in a network of overlapping
enriched terms. Metascape selects the most statistically significant term within a cluster to
represent the cluster. We also used Metascape [54] to identify protein-protein interaction
(PPI) networks that were consistently altered in all ReCa signatures. Metascape uses PPI
networks containing 3-500 proteins to detect densely connected network components
using the Molecular Complex Detection (MCODE) algorithm [56].
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2.4. Screening Drugs Targeting ReCa Using Gene Expression Signatures

The gene expression signature for each dataset was virtually screened for therapeutic
targets using the OCTAD tool [49]. This platform matches cancer-specific expression
signatures to compound-induced gene expression profiles (66,612 drug-induced gene
expression profiles derived from 71 cell lines and 12,442 drugs) of the Library of Integrated
Network-based Cellular Signatures (LINCS; L1000 dataset) [28,33,34]. The analysis is based
on prioritizing small molecules with high potency to reverse the gene expression signature
of the disease. OCTAD employs a summarization method to reduce bias and calculates
the summarized Reversal Gene Expression Score (sSRGES) [49]. The sRGES represents the
reversal potency of a drug to a specific cancer signature. We selected the top 100 drug
candidates based on the sRGES scores (lowest values < —0.25 in more than two drug-
induced gene expression profiles) for the LINCS compounds (drugs in clinical trials or
FDA-approved). These lists were compared with the results from the gene set enrichment
analysis to generate a final list of drugs for further evaluation.

2.5. Genetic Dependencies of Target Drugs in CRC Cell Lines

To identify target genes for anticancer drugs and to discover the mechanistic basis
of essentiality in specific cell types, we assessed the web tool shinyDepMap (https://
labsyspharm.shinyapps.io/depmap) (accessed on 17 May 2021) [57]. This tool combines
CRISPR and shRNA data available at the Cancer Dependency Map (DepMap; dataset
version 19Q3) [58] to define, for each drug target gene, the growth reduction caused by
knockdown/knockout (efficacy) and the selectivity of this effect across 423 cancer cell lines.

To systematically identify cancer vulnerabilities of selected drug targets, we further
analyzed in vitro genetic dependencies in 53 CRC cell lines using DepMap CRISPR/Cas9
knockout screenings (DepMap 21Q2 Public + Score dataset) [59-61].

2.6. Drug Sensitivity in CRC Cell Lines

We also queried DepMap [58] to compare drug sensitivity between cancer cell lines
to the selected drugs. We collected sensitivity data (PRISM Repurposing Primary and
Secondary Screenings—19Q4) [27] for selected drugs showing high potency to reverse the
ReCa-specific expression signatures in 35 CRC cell lines. PRISM is a 2-stage screening
strategy that first screened 4518 drugs at a single dose (2.5 uM, in triplicate), and then
1448 drugs screened positive were re-screened in an 8-point dose-response (from 10 pM
to 600 pM, in triplicate). Our drug sensitivity analysis based on these data prioritized
drugs that effectively inhibited the growth of CRC cell lines with similar gene expression
signatures to ReCa.

To measure this transcriptional similarity of the ReCa signatures and cancer cell
lines to model anticancer drug sensitivity, we first used EnrichR to generate a consensus
list based on the CCLE [31,32]. This CCLE consensus list includes the top 20 gene set
enrichment terms (cell lines) from each signature that fulfilled the criteria of overrepresen-
tation (Adjusted p-value < 0.05). We also compared the consensus list with tumor-cell line
similarities estimated by Celligner (https://depmap.org/portal/celligner) (accessed on
6 May 2021) [62] and OCTAD [49]. Finally, the cancer cell lines were further classified into
consensus molecular subtypes, according to Yu et al. 2019 [63].

2.7. Identification of Predictive Markers of Drug-Based Neoadjuvant Chemotherapy Efficacy

Copy number [log?2 (relative to ploidy +1)] and RNA-Seq expression (TPM+1) data
of CRC cell lines from the CCLE [31,32] were extracted from the DepMap [58] data portal
(Copy Number 21Q2 Public and Expression 21Q2 Public datasets). Next, we calculated
Pearson correlation coefficients for TOP2A and TOP2B copy number and gene expression
with drug sensitivity data. This analysis was performed with topoisomerase inhibitors
(doxorubicin, daunorubicin, idarubicin, epirubicin, teniposide, and mitoxantrone) in eight
CRC cell lines, using the Correlation Matrix—online software: analysis and visualization
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(Statistical tools for high-throughput data analysis—STHDA; http://www.sthda.com/
english/) (accessed on 19 May 2021).

Copy number alterations involving TOP2A were evaluated in 32 cases of locally
advanced ReCa, as previously described [64]. Briefly, genomic profiling of the fresh-frozen
pre-treatment biopsies was performed using the CytoScan HD array platform and analyzed
with the Chromosome Analysis Suite (ChAS v.3.1, Affymetrix, Santa Clara, CA, USA). We
considered significant alterations containing at least 25 probes altered for losses, 50 for
gains, and a minimum of 5 Mb for cnLOH (copy-neutral loss of heterozygosity).

We analyzed the frequency of gene copy number and gene expression alterations of
TOP2A in colorectal adenocarcinoma (TCGA, Firehose Legacy) patients using the cBioPortal
(https:/ /www.cbioportal.org/) (accessed on 20 May 2021) [65,66] database. Putative copy-
number calls were determined using GISTIC 2.0 considered as —2: homozygous deletion,
—1: hemizygous deletion, 0: neutral/no change, 1: gain, and 2: high-level amplification.
Gene expression was represented by mRNA expression z-scores (RNA Seq V2 RSEM)
compared to the expression distribution of each gene in tumors diploid for this gene.
We included READ (n = 92), colon adenocarcinomas (COAD, n = 242), and mucinous
adenocarcinomas of the colon and rectum (MUAD, n = 40).

2.8. Data Representation and Analysis

The intersection of DEG or drug lists among all signatures was analyzed using the
Intervene Shiny App (https://intervene.shinyapps.io/intervene/) (accessed on 19 August
2021) [67]. This tool was also applied to determine the top DEG among the ReCa signatures
based on the Manhattan distance. DEG shared by all signatures were displayed using a
circos plot based on Metascape analysis [54]. The upstream regulatory network analysis of
DEG shared among all signatures was generated with the eXpression2Kinases2 (X2K) Web
(https:/ /maayanlab.cloud /X2K/) (accessed on 14 April 2021) tool [68]. Heatmaps were
created using the web tool Morpheus [69] (https:/ /software.broadinstitute.org/morpheus).
The ranking of the top 20 DEG and the volcano plots for each signature were generated
in VolcanoseR (https://huygens.science.uva.nl/VolcaNoseR /) (accessed on 19 August
2021) [70].

3. Results
3.1. Acquisition and Processing of Publicly Available Transcriptomic Datasets for ReCa

We explored and compared publicly available gene expression profiles of ReCa with
those of multiple cancer cell lines treated with drugs in clinical trials or FDA-approved
to identify drugs with potency to reverse gene expression signatures of the disease. The
workflow of our analysis is summarized in Figure 1.

A total of six ReCa data sets comparing tumor (1 = 468) and normal tissue (n = 347)
samples was selected. Five of these ReCa datasets were generated using microarrays
(GSE90627 [71], GSE87211 [72], GSE68204 [73], GSE60331 [74], and GSE20842 [75]) and one
using RNA sequencing (RNA-Seq; TCGA;READ [45]) (Supplementary Data S1). The ReCa
sample set comprises pre-treatment biopsy specimens, and the majority is represented
by locally advanced ReCa. The description of each ReCa dataset and the corresponding
clinical-pathological information is detailed in Tables S3 and S4, respectively.
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Figure 1. Schematic representation of the bioinformatics drug-repositioning approach (steps I-IV)
using open data to identify drugs with potency to reverse gene expression signatures of rectal cancer
(ReCa). The signatures were defined as the list of differentially expressed genes (DEG; log2-fold
change > 1 and Adjusted p-value < 0.001) between tumor and normal samples. Step I: The reanalysis
of microarrays transcriptome data available at Gene Expression Omnibus (GEO; GSE90627 [71],
GSES87211 [72], GSE68204 [73], GSE60331 [74], and GSE20842 [75]) using GEO2R (https://www.
ncbi.nlm.nih.gov/geo/geo2r/) (accessed on 10 March 2021) generated five signatures. Step II: The
reanalysis of The Cancer Genome Atlas (TCGA) RNA-Seq data from primary rectal adenocarcinoma
(READ) [45] resulted in one additional signature, which was created using the workspace “Open
Cancer TherApeutic Discovery” (OCTAD; http://octad.org) (accessed on 5 May 2021) [49]. Step III:
gene-set enrichment analysis was performed using EnrichR (https://maayanlab.cloud /Enrichr/)
(accessed on 29 March 2021) [51-53]. OCTAD was also used to compare the six ReCa signatures to all
the Library of Integrated Network-based Cellular Signatures (LINCS) drug-induced gene expression
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profiles [28,33,34]. OCTAD calculates the drug reversal potency based on a summarization method
that quantifies a summarized Reversal Gene Expression Score (sRGES) to match anticorrelated
signatures and drug-induced expression profiles. OCTAD was also used to generate target and
chemical structure enrichment. Steps IV and V: The Cancer Dependency Map (DepMap; https:
//depmap.org/) (accessed on 11 June 2021) [27,58] was queried for discoveries of cancer cell lines
vulnerabilities. The in vitro genetic dependencies of selected drug targets in cancer cell lines were
analyzed using DepMap CRISPR/Cas9 knockout screenings (DepMap 21Q2 Public + Score, CERES
dataset) [60,61] (Step IV). Colorectal cancer cell lines that present the most correlated transcriptomic
profiles with primary ReCa samples, as determined by EnrichR [51-53] Cancer Cell Line Encyclopedia
(CCLE) [31,32] library, Celligner [62], OCTAD [49], and Yu et al. [63] were selected for further analysis.
The DepMap PRISM drug repurposing resource was used to validate the predictions using drug
sensitivity data (PRISM Repurposing Primary and Secondary 19Q4 Screenings) [27] for the selected
drugs showing high potency to reverse the ReCa-specific expression signatures in selected cancer cell
lines (Step V). Step VI: Copy number and gene expression alterations of selected drug targets were
assessed in colorectal cancer (CRC) cell lines (CCLE [31,32]) and tissues (TCGA [45] and in-house [64])
datasets to identify potential predictive markers of drug efficacy.

Each selected microarray dataset was analyzed by comparing the ReCa samples with
the respective normal tissues using the web tool GEO2R. For the TCGA RNA-Seq dataset,
ReCa samples were compared with RNA-Seq data from normal samples available at GTEx
Project [46]. The GTEx normal samples were selected using a deep learning approach
based on gene expression profiles, available at the workspace OCTAD (http://octad.org)
(accessed on 5 May 2021) [49]. The top 50 GTEx normal samples highly correlated with
TCGA tumor samples [50] (Figure S1) were selected to perform differential gene expression
analysis with OCTAD. The list of DEG (fold-change > 1 and adjusted p-value < 0.001)
between ReCa and normal samples was defined as a ReCa signature for each dataset
(Supplementary Data S2, Figure S2).

Among all microarrays-based signatures, the number of DEG in ReCa, relative to
normal samples, varied from 2019 to 3326 genes (Figure S3a). As expected, RNA-Seq
technology identified the highest number (4604) of DEG for the disease (Figure S3a).

3.2. Integrative Transcriptomic Analysis Reveals Cell Cycle Genes as Potential Drug Targets
for ReCa

The essential idea of our bioinformatics strategy was to identify drugs that potentially
reverse the ReCa signatures by decreasing genes that are overexpressed while stimulating
those under-expressed. The key to such success is identifying specific targeted therapies,
selecting drugs that influence the action or activity of a particular signaling pathway [76].

To this aim, we first selected genes significantly deregulated in each signature to
perform enrichment analysis using EnrichR. To facilitate a multi-platform analysis, we
generated a consensus list comprising the top five pathways or terms for each category
when satisfying the criteria of over-representation (Adjusted p-value < 0.05) in at least
one signature. We observed a comprehensive spectrum of pathways and functional mod-
ules associated with cell cycle genes over-represented in all ReCa signatures (Figure 2a,
Figures 54 and S5). The list of pathways includes the ATR signaling pathway, E2F tran-
scription factor network, Betal integrin cell surface interactions, Syndecan-1-mediated
signaling events, Aurora B signaling events, and DNA replication (Figure 2a). The gene
ontology of the ReCa signatures also revealed the enrichment of biological processes and
molecular functions associated with the cell cycle (Figure S6). The ARCHS4 kinase analysis
showed an enrichment of several cell cycle kinases genes such as CDK1, BUB1, AURKB,
PBK, MELK, BUB1B, MASTL, PLK4, TKK, and PLK1 (Figure 2b), which constitute therapeu-
tic targets for cancers [77]. BUB1 and MELK were confirmed consistently deregulated in all
ReCa signatures.
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Figure 2. Integrative transcriptomic analysis reveals cell cycle genes as potential drug targets for
rectal cancer (ReCa). (a) Top-ranked combined scores for The Kyoto Encyclopedia of Genes and
Genomes (KEGG) and NCI-Nature 2016 pathway categories determined by the gene set enrichment
analysis tool EnrichR [51,52]. The top five pathways for each category were included in a consensus
list when satisfying the criteria of over-representation (Adjusted p-value < 0.05) in at least one
signature. Columns and rows were clustered based on the Euclidean distance of log2 combined score
values. (b) Top-ranked combined scores for kinase genes co-expressed with each ReCa signature in
the ARCHS4 [78] database determined by the gene set enrichment analysis tool EnrichR [51,52]. The



Cancers 2021, 13, 5492

9 of 22

top five gene set enrichment terms were included in a consensus list when satisfying the criteria
of over-representation (Adjusted p-value < 0.05) in at least one signature. Columns and rows were
clustered based on Euclidean distance of log2 combined score values. (c) Circos plot visualization of
the differentially expressed genes (DEG) that overlap among the ReCa signatures: Gaedcke et al.,
GSE20842 [75]; Guo et al., GSE90627 [71]; Hu et al., GSE87211 [72]; Millino et al., GSE68204 [73]; Rectal
Adenocarcinoma from The Cancer Genome Atlas (TCGA) [45]; and Verstraete et al., GSE60331 [74].
The purple lines in the Circos plot connect DEG among multiple signatures. Each color in the
outer circle represents one signature. The dark orange in the inner circle represents the number of
overlapping DEG among the signatures. (d) The eXpression2Kinases2 (X2K) upstream regulatory
network analysis [68] for a signature of 372 genes differentially expressed among all six ReCa
signatures. The network includes transcription factors, proteins, and kinases predicted to regulate
the expression of these 372 genes. (e) Protein-protein interaction network of the top enriched
terms associated with DNA replication identified in all ReCa signatures by the Molecular Complex
Detection (MCODE) algorithm in Metascape (https:/ /metascape.org/) (accessed on 9 April 2021) [54].

We found that most of the DEG are shared by at least two signatures (Figure 2c,
Table S5), and 372 genes are deregulated in all six signatures (Figure S3a, Table S6). The
upstream regulatory networks that regulate these 372 genes include transcription factors,
proteins, and kinases associated with the cell cycle and DNA replication (Figure 2d,e).
CLDN1, CDH3, FOXQ1, and KRTS0, previously associated with CRC, were consistently
placed in the top-ranked DEG among the signatures (Figures S2 and S3b). Interestingly,
CDK4 and the topoisomerases TOPIMT and TOP2A were included in the list of genes
deregulated shared by all six signatures (Table S6). Additionally, TOP1, the target of the
topoisomerase inhibitor irinotecan, was deregulated in four (Gaedcke et al. [75], Guo
etal. [71], Hu et al. [72], and Verstraete et al. [74]) of six signatures (Table S5).

3.3. Topoisomerase and CDK Inhibitors Are Candidate Targets for Drug Repositioning in ReCa

We used a systems-based approach, available at the OCTAD [49], to compare ReCa
signatures and drug-induced gene expression profiles from cancer cell lines (LINCS; L1000
dataset) to predict new therapeutic candidates. This analysis revealed the top compounds
(in clinical trials or FDA-approved) that present high potency in reversing the expression
of ReCa signatures (Supplementary Data S3, Figure S7).

To prioritize drugs predicted to reverse the ReCa gene expression signatures, we
selected the top 100 compounds with the highest reversal potency score determined by
OCTAD among all signatures (Table S7). Drugs that appeared in more than one signature
were included once, resulting in a final list of 64 drugs (Table S8). Drugs targeting cell cycle
pathways such as topoisomerase and CDK inhibitors had the highest number of drugs
with a similar mechanism of action (six each) in our final list of top compounds (Figure 3a).

Topoisomerase and CKD inhibitors are also among the drugs with the highest drug
reversal potency score (Figure 3b). The top-scored drugs predicted to reverse the ReCa gene
expression are FDA-approved for cancer treatment, such as the topoisomerase inhibitors
(daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, and teniposide) and the
CDK inhibitor (palbociclib) (Figure 3b). The list of these top-scored drugs also includes
the CDK inhibitors currently in clinical trials (BMS-387032, alvocidib, purvalanol-a, JNJ-
7706621, and PHA-793887) (Figure 3b). The six predicted topoisomerase inhibitors target
TOP2A and TOP2B, whereas the CDK2, CDK4, and CDKI1 are the main targets of the six
CDK inhibitors (Figure 3c).

Next, we used the shinyDepMap tool to evaluate the most promising topoisomerases
and CDK genes as therapeutic targets by predicting their efficacy and selectivity in cancer
cell lines. Among the CDK and topoisomerase inhibitors, those targeting CDK1, CDK4,
or TOP2A showed the highest efficacies (Figure 3d). CDK4 also presented high selectivity
among 15.847 genes (Figure 3e), suggesting that this gene is a promising drug target for
selective synthetic lethality of cancer cells. By explicitly analyzing CRISPR screening
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in 53 CRC cell lines, TOP2A, CDK1, CDK?7, and CDK9 presented the highest efficacies
demonstrated by the most negative or toxic CERES effects (Figure S8).
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Figure 3. Topoisomerase and cyclin-dependent kinase (CDK) inhibitors as candidate targets for drug
repositioning in rectal cancer (ReCa). (a) Drugs sharing similar mechanism of action (MOA) included
among the top 100 compounds with the highest summarized Reversal Gene Expression Score
(sRGES) determined by Open Cancer TherApeutic Discovery (OCTAD; http://octad.org) (accessed
on 5 May 2021). (b) Heatmap of representative scores of overall reversal potency of a compound
(sRGES) to ReCa signatures. The sSRGES were clustered by the k-means clustering algorithm, and
only the three clusters with the highest SRGES were displayed in the heatmap. The clinical phase of
the drug development process for each compound is indicated in grayscale on the left side of the
heatmap. Compounds targeting CDK and topoisomerase inhibitors are in the same two clusters with
the highest SRGES. CDK1, CDK2, CDK4, CDK5, CDK6, CDK7, CDKS, and CDK9 genes are indicated
by 1,2,4,5,6,7,8,and 9, respectively. ReCa signatures are clustered by Euclidean distance between
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sRGES. (c) Drug targets for the top 100 compounds with the highest drug reversal potency score
determined determined by OCTAD. We included only drug targets sharing the same specific target
in the graph. (d) To predict the efficacy and selectivity of candidate drugs, the growth reduction
caused by the loss of function of the CDK1, CDK2, CDK4, CDK5, CDK6, CDK7, CDK8, CDKO9,
TOP2A, and TOP2B genes (efficacy), and the selectivity of this effect across all cancer cell lines
available at Cancer Dependency Map (DepMap) [58] were analyzed with the shinyDepMap tool
(https:/ /labsyspharm.shinyapps.io/depmap) (accessed on 17 May 2021) [57]. (e) Considering CDK
and topoisomerase inhibitors, CDK1 (1), CDK4 (4), and TOP2A (A) showed high efficacy among
15.847 genes (blue dots). CDK4 also presents high selectivity and constitutes a promising drug target
for synthetic lethality of cancer cells.

We investigated similarities between gene expression profiles of ReCa and cancer cell
lines. Using this in silico analysis, we tested the effects of selected drugs in cancer cell
lines with the highest correlations to ReCa signatures. We first selected genes significantly
deregulated in each signature to perform enrichment analyses using the CCLE [31,32]
library in EnrichR [51-53] (Figure S9a). Our selection of representative cancer cell lines
as models of rectal tumor signatures further used Celligner [62] data, which confirmed
the alignment of the enriched CCLE CRC cell lines with ReCa tumor samples (Figure
S9a,b). These similarity analyses allowed us to select a list of CRC cell lines with drug
sensitivity data in the PRISM Repurposing Primary 1904 (SW1463, HT115, and CW2) or
Primary and Secondary 19Q4 Screenings (HT55, SNUC4, LS80, LS51034, HCC56, SW498,
CL34, and SNU61), available at DepMap (https://depmap.org/) [27,58] (Supplementary
Data S4). The gene expression profiles for the cell lines SW948, CL34, HT115, and SNUC4
from the L1000 dataset were highly correlated with TCGA-READ gene expression profiles
(Figure S9c¢), according to OCTAD results. The consensus molecular subtypes (CMS)
classification, as described by Yu et al. [63], revealed cell lines matching the subtypes CMS1
(CW2), CMS2 (HCC56, HT55, LS1034, SW1463, SW948), and CMS3 (LC34, LS180, HT115,
and SNU61) (Figure S9d). Moreover, the cell lines HCC56, HT55, and CL34 integrate the
cancer cell line panel TCGA-110-CL, proposed by Yu et al. [63] for pan-cancer studies.

We used primary and secondary PRISM data available at DepMap [27,58] to ver-
ify the drug sensitivity of 11 cancer cell lines that presented similar transcriptional pro-
files to ReCa signatures. Fifty-eight of 64 drugs with the highest drug reversal po-
tency score had available data in the PRISM (Supplementary Data S4). PRISM repur-
posing primary screening (single dose) had data for these 11 cell lines, and the sec-
ondary screening (8-point dose-response) had data for eight of them (Figures S10a,b,
Supplementary Data S4). Notably, drugs that induced the highest sensitivity in these
selected cancer cell lines in both primary and secondary screenings are inhibitors of topoi-
somerase (doxorubicin, idarubicin, epirubicin, daunorubicin, mitoxantrone, and teniposide)
and CDK (BMS-387032, JNJ-7706621, alvocidib, PHA-793887, and palbociclib) (Figure S10).
Among these drugs, idarubicin, BMS-387032, doxorubicin, epirubicin, teniposide, and
mitoxantrone induced high sensitivity even at low doses (Figure S10).

3.4. TOP2A Gene Expression and Copy Number Gene Are Potential Predictive Markers of
Topoisomerase Inhibitors Efficacy in ReCa

We used the secondary PRISM Repurposing dataset containing cell line drug-perturbation
viability screens for 11 topoisomerases and CDK inhibitors tested in eight CRC cell lines
(CL34, SNU61, HCC56, LS1034, LS180, HT55, SNUC4, and SW948) that presented similar
transcriptional profiles to ReCa signatures. Figure 4a depicts the treatment of these cell
lines with eight concentrations of topoisomerases and CDK inhibitors (4-fold dilution
starting from 10uM). By comparing the cellular vulnerabilities to topoisomerases and CDK
inhibitors, we found that these cells were more sensitive to low doses of FDA-approved
topoisomerase inhibitors (Figure 4a, Figure S10). Three cell lines (CL34, SNU61, and
HCC56) showed the highest sensitivity and similar response to topoisomerase inhibitors
(Figure 4a). Low doses of the CDK inhibitors BMS-387032 and JNJ-7706621 also induced
high sensitivity in the eight selected CRC cell lines, but the FDA has not yet approved
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these two drugs. Based on the specific cellular vulnerabilities to FDA-approved topoi-
somerase inhibitors, we next focused on predictors of anticancer sensitivity for drugs
targeting TOP2A and TOP2B. The genetic predictions of drug response can speed up
the development of “personalized” therapeutic regimens [31]. Therefore, we examine
TOP2A and TOP2B genes’ copy number and expression levels in CRC cell lines and tissues.
Using CCLE data, we found gains of TOP2A and TOP2B in the cell lines CL34, HCC56,
and LS1034; and increased TOP2A gene expression level in the cell lines CL34, SNU61,
HCC56, LS51034, HT55, SNUC4, and SW948 (Figure 4b). We found clear inverse correlations
between TOP2A gene copy number or expression levels with the sensitivity for topoiso-
merase inhibitors but not for TOP2B. Significantly, gains of TOP2A inversely correlated
with the sensitivity of doxorubicin, daunorubicin, idarubicin, epirubicin, teniposide, and
mitoxantrone (Figure 4c). Moreover, the expression levels of TOP2A inversely correlated
with the sensitivity of daunorubicin, idarubicin, epirubicin, teniposide, and mitoxantrone
(Figure 4c). Considering that some ReCa patients presented TOP2A gains (Figure 4d,e)
or increased expression in ReCa compared to other colorectal tumors (Figure 4e), these
events might constitute specific predictive markers of topoisomerase inhibitors efficacy in
ReCa patients.
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Figure 4. TOP2A gene expression and copy number are potential predictive markers of the efficacy
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of topoisomerase inhibitors in rectal cancer (ReCa). (a) Heatmaps of sensitivity (log2 fold change)
for Topoisomerase and cyclin-dependent kinase (CDK) inhibitors in eight colorectal cancer (CRC)
cell lines to validate the predictions using the PRISM Repurposing Secondary 19Q4 Screen [27,58].
The data were obtained in CRC cell lines with transcriptomic profiles similar to rectal tumor samples
(Figure S8) and were downloaded from the Cancer Dependency DepMap; https://depmap.org/)
(accessed on 11 June 2021) [58]. Columns (cells) and rows (drugs) for each compound were clustered
based on the Euclidean distance of the log2 fold change values. The drug dose is represented
in color bars and increases from light (0.001 uM) to dark red (10.0 uM). (b) Relative expression
(TPM+1) and gene copy number [log?2 (relative to ploidy +1)] of TOP2A and TOP2B in eight CRC
cell lines from CCLE [31,32] database. The data (Copy Number 21Q2 Public and Expression 21Q2
Public datasets) were obtained in CRC cell lines with transcriptomic profiles highly correlated with
rectal tumor samples (Figure S8) and downloaded from DepMap [58]. (c) Pearson correlation plot
showing a negative correlation between TOP2A and TOP2B copy number and gene expression (Copy
Number 21Q2 Public and Expression 21Q2 Public datasets) and drug sensitivity of topoisomerase
inhibitors (doxorubicin, daunorubicin, idarubicin, epirubicin, teniposide, and mitoxantrone) (PRISM
Repurposing Secondary 19Q4 Screen) in CRC cell lines (CL34, HCC56, HT55, LS1034, LS180, SNU61,
SNUC4, and SW948). These colorectal cell lines present transcriptomic profiles highly correlated
to rectal tumor samples (Figure S8). The molecular [31,32] and drug sensitivity [27] data were
downloaded from DepMap [58]. (d) Frequency of copy number alterations (gain/loss) of TOP2A
gene in a cohort of locally advanced rectal adenocarcinoma patients (n = 33) [64]. (e) Frequency
of copy number and gene expression alterations of TOP2A gene in colorectal adenocarcinoma
(TCGA, Firehose Legacy) patients using the cBioPortal (https://www.cbioportal.org/) (accessed on
20 May 2021) database. The alterations include amplification (red), mRNA high (pink), mRNA low
(blue), and multiple alterations (gray). Putative copy number calls were determined using GISTIC
2.0 and considered the following values: —2 = homozygous deletion; —1 = hemizygous deletion;
0 = neutral/no change; 1 = gain; 2 = high level amplification. Gene expression is represented by
mRNA expression z-scores (RNA Seq V2 RSEM) compared to the expression distribution of each
gene tumor that is diploid for this gene. The analysis was performed using rectal adenocarcinoma
(READ, n = 92), colon adenocarcinoma (COAD, n = 242), and mucinous adenocarcinomas of the
colon and rectum (MUAD, n = 40).

4. Discussion

The treatment option for most patients with locally advanced ReCa is neoadjuvant
chemoradiation and surgery followed by adjuvant chemotherapy in selected cases [16,17].
However, only a few patients benefit from the treatment. Using a computational drug
repositioning approach, we found that FDA-approved or investigational candidate drugs
as new therapeutic options that may rapidly be translated to the clinics to treat ReCa.
Among these drugs, topoisomerase (doxorubicin, idarubicin, epirubicin, daunorubicin,
mitoxantrone, and teniposide) and CDK (BMS-387032, JNJ-7706621, alvocidib, PHA-793887,
and palbociclib) inhibitors potentially reverse ReCa signatures and inhibit the growth of
CRC cell lines with transcriptional profiles similar to ReCa. These cell lines presented
higher sensitivity at low doses of topoisomerase inhibitors, which were correlated with the
TOP2A gene expression and copy number. Therefore, we also propose TOP2A as a potential
predictive marker of higher efficacy of topoisomerase inhibitors in ReCa patients. Together,
our findings demonstrated that reversal gene expression analysis evinced drug targets
and therapeutic alternatives for patients with ReCa. We consider that the computational
workflow presented here can be applied with success to drug repositioning predictions in
other cancer types.

Here, we present a global transcriptomic approach that used the OCTAD [49] tool
to connect six ReCa signatures from GEO [71-75] and TCGA [45] datasets to 66,000 drug-
induced gene expression profiles from the LINCS L1000 dataset [28,33,34]. Similar com-
putational system biology approaches have been used to identify potential therapeutic
targets for repositioning for hepatocellular carcinoma [38,42], Ewing sarcoma [39], basal
cell carcinoma [40], renal cell cancer [41], small cell lung cancer, and neuroendocrine
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tumors [36]. Additionally, it has been demonstrated that the use of drug-induced gene
expression profiles to determine the potency of a drug to reverse cancer gene expression
signatures correlates with drug efficacy in preclinical models of breast, liver, and colon
cancer [42]. The use of drug-induced gene expression profiles matched to inverse disease
profiles has identified citalopram, an antidepressant, as a potential therapeutic option for
patients with metastatic CRC [37]. Our approach generated a list of 64 FDA-approved or
investigational candidate drugs that may potentially reverse the gene expression signature
of ReCa. The topoisomerase and CKD inhibitors predominate among the FDA-approved
drugs with the highest drug reversal potency score. Thus, the synergistic interaction of
these drugs, when combined, should be better investigated.

To validate the effects of these 64 compounds in cancer cell lines as potential drugs to
treat ReCa, we selected DepMap data from clinically relevant cancer cell lines, aiming to
increase the likelihood of translating the preclinical findings. Recent studies have shown
that cell lines differ in their ability to model primary tumors and that selecting cancer cell
lines that recapitulate the pathobiology of tumors is critical [62,63]. Although some cancer
cell lines are derived from ReCa, it is not possible to determine whether they were derived
from patients undergoing multimodal therapy or from the actual anatomic rectum [79].
Therefore, we used cancer cell lines and tumor transcriptomics data [31,32,62,63] to select
eight cell lines HT55, SNUC4, LS80, LS1034, HCC56, SW498, CL34, and SNU611 for dose-
response screenings. These colorectal cell lines present gene expression profiles highly
correlated with the gene expression signatures of ReCa samples.

Among our list of 64 compounds, inhibitors of topoisomerase (daunorubicin, dox-
orubicin, epirubicin, idarubicin, mitoxantrone, and teniposide) and CDK (palbociclib) are
among the most potent drugs that induce cell sensitivity in selected cell lines. These results
provide proof of the concept of our bioinformatics approach. Most notably, these drugs
available for repurposing are FDA-approved or are in late-phase clinical trials for several
malignancies. Although topoisomerases 2 and CDK4/6 inhibitors have emerged as a
potent strategy for cancer treatment [80,81], few studies have tested these compounds in
clinical trials for ReCa treatment. The CDK inhibitor palbociclib is under clinical trials
phases 1 and 2 to treat CRC (ClinicalTrials.gov; NCT03981614, NCT01037790, NCT02465060,
and NCT02897375). These studies warrant further attention considering that we found
CDK4 consistently deregulated across all ReCa signatures. The topoisomerase 2 inhibitor
doxorubicin has also been tested in a terminated phase III clinical trial that evaluated
the effectiveness of chemoembolization in treating patients with CRC metastatic to the
liver (ClinicalTrials.gov; NCT00023868). Unfortunately, the results of this study were
not published.

Topoisomerase 1 inhibitors are relevant drugs for ReCa treatment [80]. The combina-
tion of topoisomerase 1 inhibitor irinotecan with 5-fluorouracil has been proven effective
for treating CRC [82]. Moreover, previous studies have demonstrated improved therapy
efficacy combining irinotecan to the capecitabine or 5-fluorouracil chemoradiotherapy of
locally advanced ReCa [83-86]. We found changes in the expression of the TOP1 gene in
four ReCa signatures, while TOPIMT and TOP2A were altered in all six signatures. Interest-
ingly, two clinical trials (phases 1 and 2) that evaluated the use of topoisomerase 2 inhibitor
epirubicin in CRCs highlighted that it induces better responses to rectal tumors [87,88].

The mechanisms involved in this specific response remain unclear and deserve further
investigation. However, all cancer cell lines with transcriptional profiles comparable
to ReCa signatures presented high sensitivity to topoisomerase inhibitors (idarubicin,
doxorubicin, epirubicin, teniposide, and mitoxantrone), even at low doses. Based on the
high sensitivity of the cell lines tested to topoisomerase inhibitors and that these drugs are
all approved by the FDA, rectal cancer patients may also be benefited from this treatment.
Moreover, the dysregulation of TOP2A found in all ReCa signatures suggests its role as a
marker of anticancer sensitivity for these drugs. TOP2A amplification is a known predictive
marker of anthracycline-based neoadjuvant chemotherapy efficacy in patients with breast
cancer [89,90]. We found correlations between TOP2A gene imbalances and expression
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levels and the sensitivity of CRC cell lines for topoisomerase inhibitors. We also confirmed
that TOP2A gene amplification and increased expression are frequently detected in ReCa
samples [91-94]. Therefore, testing the TOP2A status may predict more accurately the
patients that likely benefit from treatments based on topoisomerase inhibitors. Accordingly,
the clinical benefit of epirubicin treatment was recently tested in patients with metastatic
CRC resistant to oxaliplatin and TOP2A amplification [95]. However, only six patients were
enrolled in the study, and the results were not conclusive. Based on our data, we propose
that topoisomerase inhibitors identified here are promising candidates for repositioning
to advance the ReCa treatment. These drugs may specifically benefit ReCa patients with
amplification and increased expression of the TOP2A gene.

Besides predicting drug candidates, our comprehensive and integrated characteri-
zation of the six ReCa signatures revealed marked similarities in gene expression and
pathways deregulated in the disease. Pathways associated with cell cycle and DNA repli-
cation genes were over-represented in all ReCa signatures. The list of oncogenic pathways
that can be targeted to treat ReCa includes the ATR signaling pathway [96], E2F transcrip-
tion factor network [97], Betal integrin cell surface interactions [98], Syndecan-1-mediated
signaling events [99], Aurora B signaling events [100,101], and DNA replication [102,103].
We identified genes consistently altered in all ReCa signatures, such as the top-ranked DEG
CLDN1, CDH3, FOXQ1, and KRT80, all previously associated with CRC [104-107]. The
consistent deregulation of these pathways and genes such as CDK4 and TOP2A reinforces
their relevance as potential therapeutic targets for ReCa.

In conclusion, we showed that mining and integrating publicly available open data of
cancer gene expression profiles with the effect of drugs on gene expression or inhibitory
activity in human cancer cell lines is a promising strategy for the computational reposi-
tioning of compounds to ReCa treatment. Based on the generated data, we propose that
topoisomerase inhibitors (such as idarubicin, doxorubicin, epirubicin, teniposide, and
mitoxantrone) should be tested in a specific cohort of ReCa patients with increased expres-
sion or amplification of the TOP2A gene. Alternatively, these drugs or their combinations
with the top hits here identified can be screened in rectal cancer-derived organoids [108].
Pre-clinical studies using cancer-derived organoids to drug testing are valuable in pre-
dicting drug responses in a clinical setting. These in vitro models are known to more
accurately recapitulate the tumoral biological heterogeneity associated with patient-specific
cancers [109], allowing a diversity of drug-screening applications [110].

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ cancers13215492 /s1: Supplementary Data S1: Microarrays (GEO) and RNA-Seq (TCGA)
data of rectal cancer datasets included in this study, Supplementary Data S2: List of differentially
expressed genes (fold-change > 1 and adjusted p-value < 0.001) between rectal cancer and normal
samples, Supplementary Data S3: OCTAD output files with the sSRGES (summarized Reversal Gene
Expression Score) for rectal cancer gene expression signatures, Supplementary Data S4: Sensitivity
data (PRISM Repurposing Primary and Secondary Screenings—19Q4) for selected drugs showing
high potency to reverse the rectal cancer-specific expression signatures in 35 colorectal cancer cell
lines, Table S1: Medical Subject Headings (MeSH) unique ID D012004 for Rectal Neoplasms (tumors
or cancer of the rectum) retrieved from PubMed (https:/ /www.ncbi.nlm.nih.gov/mesh) (accessed
on 2 March 2021), Table S2: Medical Subject Headings (MeSH) unique IDs and GEO datasets Study
IDs for rectal cancer, Table S3: Description of the rectal cancer GEO datasets included in this study,
Table S4: Clinical and pathological data of rectal cancer patients investigated in this study. Table S5:
Differentially expressed genes (fold-change > 1 and adjusted p-value < 0.001) shared in rectal cancer
signatures, Table S6: Differentially expressed genes (fold-change > 1 and adjusted p-value < 0.001)
shared in six rectal cancer signatures, Table S7: Top 100 compounds with the highest reversal potency
score (sSRGES < —0.25; n > 2) determined by OCTAD among the six rectal cancer signatures, Table S8:
Top 64 compounds (unique, from the top 100) with the highest reversal potency score determined by
OCTAD among the six rectal cancer signatures, Figure S1: Selection of reference normal samples from
The Genotype-Tissue Expression (GTEx) to generate rectal cancer (ReCa) gene expression signature
for primary rectal adenocarcinoma (READ) samples from The Cancer Genome Atlas (TCGA) [45].
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The GTEx normal samples that highly correlated with READ samples were selected in the workspace
“Open Cancer TherApeutic Discovery” (OCTAD; http:/ /octad.org) (accessed on 5 May 2021) [49].
This OCTAD analysis selected the top 50 normal samples (red dots) using the Spearman correlation
test of top varying genes between each READ-TCGA sample and all GTEx normal samples (gray
dots), Figure S2: Rectal cancer (ReCa)-specific gene expression signatures, Volcano plots showing fold
changes (Log2 FC > 1) for differentially expressed genes (DEG; FDR-adjusted p-value < 0.01) between
ReCa and normal samples. The volcano plots summarize results for Gaedcke et al. (GSE20842) [75],
Millino et al. (GSE68204) [73], Verstraete et al. (GSE60331) [74], Hu et al. (GSE87211) [72], Guo
et al. (GSE90627) [71], and TCGA-READ [45]. The top 20 ranking genes indicated in the volcano
plots for each signature were calculated using the Manhattan distance. CLDN1, CDH3, FOXQ1, and
KRT80, previously associated with CRCs, were consistently placed in the top-ranked DEG (green
dots), Figure S3: Differentially expressed genes shared among all rectal cancer (ReCa) signatures
identified as top-deregulated genes previously described in colorectal cancer (CRC). (a) Upset plot
showing the number of differentially expressed genes (DEG; red bars) shared by all ReCa signatures.
The blue bar graphs depict the number of DEG in each signature. The combinations of shared DEG
among bar plots are indicated in the grid (bottom). (b) Upset plot showing the intersections of the
top 20 DEG (red bars) among ReCa signatures determined based on the Manhattan distance. CLDN1,
CDH3, FOXQ1, and KRT80 genes (bold), previously associated with CRCs, were consistently placed
in the top-ranked DEG among the signatures, Figure S4: Network of overlapping enriched terms
among rectal cancer (ReCa) signatures, performed by Metascape (https://metascape.org/) (accessed
on 9 April 2021) [54]. (a) The enriched terms are colored according to the ID of each cluster. The
clusters consist of enriched terms with a similarity metric > 0.3 determined by Kappa scores and are
connected by edges. The nodes sharing the same cluster ID are generally next to each other. (b) The
enriched terms are colored according to p-values. Terms containing more genes tend to have a more
significant p-value, Figure S5: Protein-protein interaction network analysis based on overlapping
significant differentially expressed genes (DEG) in all rectal cancer (ReCa) signatures, performed by
Metascape (https:/ /metascape.org/) (accessed on 9 April 2021) [54]. Networks containing between
3 and 500 proteins were used to detect densely connected network components using Molecular
Complex Detection (MCODE) algorithm, Figure S6: Top-ranked combined scores for gene ontologies
(GO) terms determined by the gene set enrichment analysis tool EnrichR [51-53]. The top five terms
for each biological process (BP) and molecular function (MF) were included in a consensus list
according to the adopted criteria of over-representation (Adjusted p-value < 0.05) in at least one
signature. Columns and rows were clustered based on Euclidean distance based on log2 combined
score values, Supplementary Figure S7: Identification of top compounds in clinical trials or FDA-
approved that present high potency to reverse the expression of six rectal cancer (ReCa) signatures.
The first column of each heatmap shows a ReCa signature: Gaedcke et al., GSE20842 [75]; Millino et al.,
GSE68204 [73]; Verstraete et al., GSE60331 [74]; Hu et al., GSE87211 [72]; Guo et al., GSE90627 [71];
and Rectal Adenocarcinoma (READ) from The Cancer Genome Atlas (TCGA) [45]. In this first
column, genes that are upregulated and downregulated in ReCa, compared to normal samples,
are shown in red and blue, respectively. The remaining columns of each heatmap show the top
LINCS L1000 drug signatures [28,33,34] with a reverse expression profile of the corresponding ReCa
signature (first column). In these drug signature columns, red and blue indicate genes with high and
low expression induced by drug treatment, respectively, Figure S8: CERES [60] effects for CRISPR
knockout screening of CDK1, CDK2, CDK4, CDK5, CDK6, CDK7, CDK8, CDK9, TOP2A, and TOP2B
genes among 53 colorectal cancer (CRC) cell lines available at Cancer Dependency Map (DepMap;
21Q2 Public + Score dataset) [58]. Columns and rows were clustered using Euclidean distance based
on the gene effect (CERES) values, Figure S9: Selection of representative cancer cell lines as models
for rectal tumors. (a) Top-ranked combined scores for colorectal cancer (CRC) cell lines from Cancer
Cell Line Encyclopedia (CCLE) [31,32] presenting the most correlated transcriptomic profiles with
primary rectal cancer (ReCa) samples. This gene set enrichment analysis was performed using
EnrichR (https://maayanlab.cloud/Enrichr/) (accessed on 13 April 2021) [51-53]. Cell lines with
drug sensitivity data in the PRISM Repurposing Primary 19Q4 (gray arrowhead) or Primary and
Secondary 19Q4 Screenings (black arrowhead) available at the Cancer Dependency Map (DepMap;

https:/ /depmap.org/) (accessed on 11 June 2021) [27,58] were selected for further analyses. The cell
lines that closely resembled rectum adenocarcinomas (shown in b—connecting lines) were queried
to discover cancer cell line vulnerabilities for selected drugs showing high potency to reverse the
ReCa-specific expression signatures. (b) ReCa cell lines from CCLE [31,32] that closely resemble rectal
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adenocarcinomas, as determined by Celligner [62] (https://depmap.org/portal/celligner/) (accessed
on 6 May 2021). This method applies an unsupervised approach that corrects differences when
integrating large-scale cell line and tumor RNA-Seq datasets. The distance between a cell line and
rectal adenocarcinomas, based on median Euclidean distances, decreases from blue to red according
to the color bars. The cell lines with drug sensitivity data in the PRISM Repurposing Primary
19Q4 (gray arrowhead) or Primary and Secondary 19Q4 Screenings (black arrowhead) available
at the DepMap [27,58] were selected for further analyses. (c) Spearman rank correlation between
gene expression profiles from the Library of Integrated Network-based Cellular Signatures (LINCS)
L1000 data set [28,33,34] and The Cancer Genome Atlas (TCGA) RNA-Seq data for primary rectal
adenocarcinoma (READ) [45] samples was estimated by the workspace “Open Cancer TherApeutic
Discovery” (OCTAD; http:/ /octad.org) (accessed on 5 May 2021) [49]. This OCTAD analysis is
based on the average of correlations between the LINCS cell lines and individual tumors. This
analysis also revealed cell lines with drug sensitivity data in the PRISM Repurposing Primary 19Q4
(gray arrowhead) or Primary 19Q4 and Secondary 19Q4 Screenings (black arrowhead), available
at the DepMap [27,58]. (d) Prediction of cancer cell line subtypes using gene expression-based
consensus molecular subtypes (CMS) of colorectal adenocarcinoma tumors. The data obtained
from Yu et al. [63] is based on correlations between transcriptomic profiles from TCGA [45] and
the CCLE [31,32]. Selected cell lines (in bold) with drug sensitivity data in the PRISM Repurposing
Primary 19Q4 or Primary 19Q4 and Secondary 19Q4 Screenings available at the DepMap [27,58] are
indicated as gray or black arrowheads, respectively. The cell lines HCC56, HT55, and CL34 (indicated
as asterisks) are included in the cancer cell line panel TCGA-110-C [63], Figure S10: Drug sensitivity
for the 58 selected drugs showing high potency to reverse rectal cancer (ReCa)-specific expression
signatures. The data were obtained from colorectal cancer (CRC) cell lines with transcriptomic
profiles highly correlated with rectal tumor samples (Figure S9) (downloaded from the Cancer
Dependency Map, DepMap; https://depmap.org/) (accessed on 11 June 2021) [27,58]. (a) Heatmap
of drug sensitivity (log2 fold change) in 11 CRC cell lines to validate the predictions using the PRISM
Repurposing Primary 19Q4 Screen [27,58]. (b) Heatmaps of drug sensitivity (log2 fold change)
in eight CRC cell lines to validate the predictions using the PRISM Repurposing Secondary 190Q4
Screen [27,58]. Columns (cells) and rows (drugs) were clustered based on the Euclidean distance of
the log?2 fold change values. The complete heatmap on the right has 280 rows intervals; however,
only the first top 74 (selection indicated by red dashed line), with the corresponding drug dose, are
shown on the left for visualization purposes. According to the color bars, drug dose increases from
light (0.001 uM) to dark red (10.0 uM).
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