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Simple Summary: Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET)
signaling plays an important role in the metastatic formation and therapeutic resistance to uveal
melanoma. Here, we review the various functions of MET signaling contributing to metastatic
formation, as well as review resistance to treatments in metastatic uveal melanoma.

Abstract: Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling
promotes tumorigenesis and tumor progression in various types of cancer, including uveal melanoma
(UM). The roles of HGF/MET signaling have been studied in cell survival, proliferation, cell motility,
and migration. Furthermore, HGF/MET signaling has emerged as a critical player not only in the
tumor itself but also in the tumor microenvironment. Expression of MET is frequently observed
in metastatic uveal melanoma and is associated with poor prognosis. It has been reported that
HGF/MET signaling pathway activation is the major mechanism of treatment resistance in metastatic
UM (MUM). To achieve maximal therapeutic benefit in MUM patients, it is important to understand
how MET signaling drives cellular functions in uveal melanoma cells. Here, we review the HGF/MET
signaling biology and the role of HGF/MET blockades in uveal melanoma.

Keywords: hepatocyte growth factor (HGF); mesenchymal-epithelial transition factor (MET); uveal
melanoma; metastasis

1. Introduction

Uveal melanoma (UM), which arises from melanocytes in the choroid (85–90%), ciliary
body (5–8%), and iris (3–5%), is the most common primary intraocular malignant tumor
in adults [1]. Five-year overall survival (OS) across all stages is about 80% and has not
changed in three decades [2,3]. Despite successful treatments of the primary tumor, up
to 50% of patients with primary UM develop metastasis by hematogenous spread. The
liver is the most predominant metastatic site of UM, with approximately 90% of patients
metastasizing to the site [4–6]. Other common sites of metastasis include the lung at 29%,
the bone at 17%, and skin/soft tissue at 12%. Once patients were diagnosed with metastatic
uveal melanoma (MUM), 80% of them died within one year [4]. A clinical database in
our institution demonstrates that the median survival of MUM patients improved from
5.3 months (1971–1993) to 17.8 months (2008–2017) with the shift of treatment modalities
from DTIC-based chemotherapy to liver-directed therapies [7]. Unfortunately, MUM is
almost always fatal.

Unlike cutaneous melanoma, which has driver mutations in v-raf murine sarcoma viral
oncogene homolog B1 (BRAF), neuroblastoma RAS viral oncogene homolog (NRAS), and
neurofibromatosis type 1 (NF1), more than 90% of UM cases commonly harbor mutations
in the alpha subunit of heterotrimeric G proteins, GNAQ/GNA11, that are involved in early
UM development. These G proteins play an essential role in cellular signal transduction,
and GNAQ/GNA11 mutations drive carcinogenesis and cell proliferation [8–10]. The muta-
tions of cysteinyl leukotriene receptor 2 (CYSLTR2) and phospholipase C beta 4 (PLCB4)

Cancers 2021, 13, 5457. https://doi.org/10.3390/cancers13215457 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4331-6366
https://orcid.org/0000-0003-2221-0415
https://doi.org/10.3390/cancers13215457
https://doi.org/10.3390/cancers13215457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13215457
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13215457?type=check_update&version=3


Cancers 2021, 13, 5457 2 of 15

were also found, and these lead to the activation of GNAQ/GNA11 signaling [11,12]. Sec-
ondary somatic alterations affect BRCA1 associated protein 1 (BAP1), splicing factor 3b
subunit 1 (SF3B1), or eukaryotic translation initiator factor 1A X-linked (EIF1AX), and
these mutations tend to correlate with the development of metastasis [10,13]. Inactivating
somatic mutations were identified in BAP1 on chromosome 3p21.1 in 26 of 31 (84%) metas-
tasizing UM tumors and was correlated with the development of systemic metastasis and
poor outcome [14]. Loss of 1 copy of chromosome 3 and BAP1 aberrancy may result in a
metastasis-prone DNA methylation state [15].

SF3B1 mutations appear to be associated with the development of delayed metastasis,
with a median duration of 8.2 years from diagnosis of primary UM to metastasis [16].
In contrast, EIF1AX mutations were rarely found in MUM [17]. In addition, serine- and
arginine-rich splicing factor 2 (SRSF2) has also been found in 3 of 80 UM samples from
The Cancer Genome Atlas (TCGA) and 2 of 42 UM tumors from the Rotterdam Ocular
Melanoma Study group (ROMS) database [15,18]. Due to the small population of UM
patients with SRSF2 somatic mutation, the correlation of this mutation with the develop-
ment of metastasis is unknown. Other research data indicated that 8q amplification in UM
tumors was associated with the high risk of metastasis [13].

In non-malignant situations, hepatocyte growth factor (HGF)/mesenchymal-epithelial
transition factor (MET) signaling is essential for embryogenesis, muscle development, ner-
vous system formation, hematopoietic cell differentiation, and bone remodeling [19,20]. In
malignant disease, the activation of the HGF/MET signal pathway results in cell prolifera-
tion, survival, inhibition of apoptosis, migration, invasion, and metastasis [21–23]. This is
also true for UM. Previous publications indicated that HGF/MET signaling correlates with
metastasis formation in UM. For example, Gardner et al. reported that MET expression
was significantly higher in metastatic tissues than in primary tissues [24]. Barisione et al.
reported that patients with metastatic disease had significantly higher serum levels of
soluble c-Met [25]. Furthermore, Surriga et al. revealed that a MET inhibitor prevented
liver metastasis in xenograft mouse models [26]. These data indicate that HGF/MET sig-
naling may be involved in the formation of UM metastasis, and the inhibition of this signal
pathway might be important in the treatment of MUM. In this review, we investigate how
HGF/MET is involved with MUM and discuss the role of HGF/MET pathway inhibition
as a treatment strategy for MUM.

2. Structure and Biological Function of Hepatocyte Growth Factor

HGF is a large multidomain protein that was discovered more than three decades ago.
The gene-encoding HGF is located on chromosome 7q21.11 and consists of 18 exons and
17 introns. HGF was discovered as a mitogen of hepatocytes for liver regeneration. It was
identified in the sera of 70%-hepatectomized rats as a mitogen of adult rat hepatocytes [19].
HGF is produced and secreted in the form of pro-HGF by hepatic stellate cells [27], fibrob-
last, and smooth muscle cells [28]. Pro-HGF is in its biologically inactive form. HGF is
synthesized as a pro-HGF form of 728 amino acids comprising a single chain, including α-
and β-subunits, and consisting of 6 domains: an N-terminal domain (N), four copies of the
kringle domain (K1–K4), and a C-terminal domain (SPH) [29] (Figure 1a).

To activate pro-HGF, a single-chain HGF is cleaved between Arg494 and Val495 by
three serine proteinases: the soluble HGF activator (HGFA), the type II transmembrane
enzymes matriptase, and hepsin [20,30,31] (Figure 1a). HGFA is a soluble proteinase that
is activated by thrombin, while matriptase and hepsin are expressed on the surface of
MET-expressing target cells. Although α-subunit of both active-HGF and pro-HGF can
bind to MET with high affinity, only active-HGF has signal transduction activity [29].
When cleavage occurs between Arg494 and Val495, α- and β-subunits are bound with a
disulfide bond. It is speculated that the conformational change in N-terminal Val495 of
SPH facilitates better functional binding to the MET molecule and activates MET signaling
pathways [32]. Additionally, two fragment forms of HGF (NK1, NK2) occur naturally as
splice variants. NK1 and NK2 consist of the N-domain and one (K1, NK1) or two (K1
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and K2) kringle domains (NK2). Both NK1 and NK2 bind MET directly with high affinity.
NK1 generally works as a MET agonist under the presence of heparin but could work
as an antagonist without heparin. In contrast, NK2 has no agonistic activity but rather
antagonizes HGF [33,34]. The mechanism of how HGF binding results in MET dimerization
and signal transmission into cells remains unclear.
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Figure 1. Structure of HGF and MET. (a) Structure of HGF; Secreted pro-HGF form a single chain, 
consisting of six domains: an N-terminal domain, four copies of the kringle domain (K1–K4), and a 
C-terminal domain (SPH). Pro-HGF is cleaved between Arg494 and Val495 by serine proteinases. 
In active HGF, α-subunit and β-subunit are bound with a disulfide bond. (b) Structure of MET; HGF 
binds to SEMA domain of MET, followed by dimerization and activation. Y1234 and Y1235 in the 
TK domain are phosphorylated, and then phosphorylation of Y1349 and Y1356 in the C-terminal 
docking site leads to the recruitment of adaptor proteins and signaling molecules. HGF: hepatocyte 
growth factor; MET: mesenchymal epithelial transition; PSI: plexin-semaphorin-integrin; IPT: im-
munoglobulin-like fold-plexin-transcription factor; JM: juxtamembrane; TK: tyrosine kinase. 
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an N-terminal domain, four copies of the kringle domain (K1–K4), and a C-terminal domain (SPH). Pro-HGF is cleaved
between Arg494 and Val495 by serine proteinases. In active HGF, α- and β-subunits are bound with a disulfide bond. (b)
Structure of MET; HGF binds to SEMA domain of MET, followed by dimerization and activation. Y1234 and Y1235 in the
TK domain are phosphorylated, and then phosphorylation of Y1349 and Y1356 in the C-terminal docking site leads to the
recruitment of adaptor proteins and signaling molecules. HGF: hepatocyte growth factor; MET: mesenchymal epithelial
transition; PSI: plexin-semaphorin-integrin; IPT: immunoglobulin-like fold-plexin-transcription factor; JM: juxtamembrane;
TK: tyrosine kinase.

HGF is produced in various pathological events in the liver. For example, when 70%
of the liver was removed, HGF mRNA levels markedly increased in intact distant organs,
such as the lung, kidneys, and spleen. Pro-inflammatory cytokines such as interleukin
(IL)-1, IL-6, interferon-gamma, and tumor necrosis factor-alpha (TNF-α) are involved in the
upregulation of HGF gene expression in stroma cells. These pro-inflammatory cytokines
trigger HGF production in intra-hepatic tissues via the paracrine loop and in extra-hepatic
organs via the endocrine loop [19].

3. Structure and Biological Function of MET

Proto-oncogene MET codes a tyrosine kinase transmembrane receptor of HGF, com-
posed of a 50-kDa α-subunit and 145-kDa β-subunit (Figure 1b). The proto-oncogene
MET is located on chromosome 7q21-q31. MET has two domains, the extracellular and
intracellular domains. The extracellular domain is composed of an α-subunit and a
part of a β-subunit consisting of SEMA domain, plexin-semaphorin-integrin (PSI), and
immunoglobulin-like fold-plexin-transcription factor (IPT) domain [35,36]. The α-subunit
and SEMA domain of the β-subunit binds to HGF. The SEMA domain is necessary for
receptor dimerization and activation [37]. The intracellular region of MET β-subunit com-
prises three segments: a juxtamembrane segment (JM), a tyrosine kinase (TK) domain, and
a C-terminal docking site (Figure 1b). By binding HGF to MET, two subunits are dimerized,
leading to the phosphorylation of Y1234 and Y1235 in the TK domain. Dimerization of
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MET is followed by phosphorylation of Y1349 and Y1356 in the C-terminal docking site,
leading to the recruitment of adaptor proteins and growth factor receptor-bound protein
2 (GRB2). This then recruits multiple other proteins, including the docking protein Grb2-
associated binder 1 (GAB1) and the CbI ubiquitin ligases, and signaling pathway-related
molecules such as Son of Sevenless (SOS), Rous sarcoma oncogene cellular homolog (Src),
Src homology 2 domain-containing (SHC), phosphatidylinositol 3 kinase (PI3K), signal
transducer and activator of transcription 3 (STAT3), and others [35] (Figure 2). It is of note
that the JM domain contains two protein phosphorylation sites, S985 and Y1003, and acts
as a negative regulator. The Cbl ubiquitin ligase binds phosphorylated Y1003, and this
Cbl binding results in MET ubiquitination, endocytosis, and subsequent degradation by
the lysosome. S985 is phosphorylated by HGF-induced MET activation, and biological
responses are suppressed [38]. Exon 14 of MET encodes the JM region, which contains key
regulatory elements, including Y1003. MET dysregulation through splice-site alterations
causes loss of transcription of exon 14, which leads to exon 14 skipping. MET activation
with exon 14 skipping inhibits MET negative regulation, demonstrating uncoupled Cbl
protein binding, decreased ubiquitination, and inefficient targeting for degradation of
MET. Therefore, this exon 14 skipping enhances HGF-induced MET phosphorylation and
prolongs MET activation. In this regard, cancer cells which have exon 14 skipping are
sensitive to a MET inhibitor [39]. In addition to alterations, overexpression and gene
amplification of MET is present in a variety of tumors and have been shown to correlate
with poor prognosis [40,41]. HGF/MET signaling mediates the mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK), PI3K/protein kinase B (AKT),
focal adhesion kinase (FAK), and STAT3/5 signaling pathway (Figure 2). HGF and MET
expression can be upregulated by basic fibroblast growth factor (b-FGF), TNF-α, IL-1, IL-6,
and several other cytokines [28].

The complexity of MET signaling is a crosstalk with other receptors and membrane
proteins. In complex multi-cellular organisms, the formation of a heterodimeric complex
permits interaction and crosstalk between different receptors of the same subfamily. In
some cases, HGF/MET signaling is mediated by other membrane proteins that respond
to extracellular signals. A single (monomeric) MET interacts with these various cell-
surface proteins. These membrane proteins include integrins, the proteoglycan CD44, G
protein-coupled receptors (GPCRs), and other tyrosine kinase receptors such as insulin-like
growth factor 1 receptor (IGF-1R), epidermal growth factor receptor (EGFR), and Erb-B2
receptor tyrosine kinase 3 (ERBB3) interact with a single (monomeric) MET and activate
the downstream signal pathways [42]. Co-expression of MET and IGF-1R on primary UM
tissue sections was reported as a prognostic value [43]. Ligand-independent activation of
MET through IGF-1/IGF-1R signaling has also been reported [44].
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activated protein kinases; EMT: epithelial-to-mesenchymal transition. 

The complexity of MET signaling is a crosstalk with other receptors and membrane 
proteins. In complex multi-cellular organisms, the formation of a heterodimeric complex 
permits interaction and crosstalk between different receptors of the same subfamily. In 
some cases, HGF/MET signaling is mediated by other membrane proteins that respond to 
extracellular signals. A single (monomeric) MET interacts with these various cell-surface 
proteins. These membrane proteins include integrins, the proteoglycan CD44, G protein-
coupled receptors (GPCRs), and other tyrosine kinase receptors such as insulin-like 
growth factor 1 receptor (IGF-1R), epidermal growth factor receptor (EGFR), and Erb-B2 
receptor tyrosine kinase 3 (ERBB3) interact with a single (monomeric) MET and activate 
the downstream signal pathways [42]. Co-expression of MET and IGF-1R on primary UM 
tissue sections was reported as a prognostic value [43]. Ligand-independent activation of 
MET through IGF-1/IGF-1R signaling has also been reported [44]. 

4. The Role of HGF/MET Signaling in Metastatic Uveal Melanoma 
HGF/MET signaling plays a key role in the development of metastasis in uveal mel-

anoma (Figures 2 and 3). Robertson et al. defined four subtypes from 80 UM TCGA sam-
ples and divided monosomy 3 (M3) and disomy 3 (D3) into two subgroups, according to 
clonal and subclonal somatic copy number alterations and whole-exome sequencing data. 
They indicated that M3-UM has a higher risk of metastasis and poorer prognosis than D3-

Figure 2. Signaling Pathways of HGF/MET. The active form of HGF induces the dimerization
of MET and activates the signaling pathway. Phosphorylation of MET leads to the recruitment
of GRB2 to the C-terminal docking site, followed by binding of GAB1, SOS, Src, SHC, PI3K, and
STAT3. RAS/MAPK and PI3K/AKT/mTOR signaling molecules reach the nucleus to induce cell
proliferation, EMT, and anti-apoptosis. Rac1/β-catenine and FAK/Integrin signaling pathways
reach the cell membrane to control E-cadherin and integrin expression for migration, invasion, and
EMT. HGF: hepatocyte growth factor; MET: mesenchymal epithelial transition; GRB2: Growth factor
receptor-bound protein 2; GAB1: Grb2-associated binder 1; SOS: son of sevenless; Src: rous sarcoma
oncogene cellular homolog; PLCγ: phosphoinositide phospholipase C γ; SHC: Src homology 2
domain-containing; PI3K: phosphatidylinositol 3 kinase; mTOR: mechanistic target of rapamycin;
STAT3: signal transducer and activator of transcription 3; AKT: protein kinase B; RAS: rat sarcoma
virus; RAF: rapidly accelerated fibrosarcome; RAC1: ras-reated C3 botulinum toxin substrate 1;
β-cat: β-catenin; FAK: focal adhesion kinase; MEK: mitogen-activated protein kinase kinase; ERK:
extracellular signal-regulated kinases; MAPK: mitogen-activated protein kinases; EMT: epithelial-to-
mesenchymal transition.

4. The Role of HGF/MET Signaling in Metastatic Uveal Melanoma

HGF/MET signaling plays a key role in the development of metastasis in uveal
melanoma (Figures 2 and 3). Robertson et al. defined four subtypes from 80 UM TCGA
samples and divided monosomy 3 (M3) and disomy 3 (D3) into two subgroups, according
to clonal and subclonal somatic copy number alterations and whole-exome sequencing
data. They indicated that M3-UM has a higher risk of metastasis and poorer prognosis
than D3-UM [15]. In an analysis of 80 TCGA samples, MET RNA expression correlated
to these 4 subtypes. MET RNA expression gradually increases to cluster 4, which is
correlated to UM metastasis and poorer prognosis when compared with other clusters
(Figure 4). This is also supported by our institutional data. In 28 metastatic uveal melanoma
specimens, 24 (85.7%) showed positive MET protein expression in uveal melanoma cells
(Table 1, Figure 5). Various mechanisms have been reported to support the importance of
HGF/MET signaling in the progression of disease (Figure 3).
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Figure 3. The Role of HGF/MET in Individual Steps of Metastasis. HGF/MET signaling regulates cell proliferation,
migration, invasion, EMT, survival in the bloodstream, and colonization in distant organs through many signaling pathways.
MET expression correlates to the development of metastasis. MET RNA expression gradually increases in proportion
to the step of the metastatic process. HGF: hepatocyte growth factor; MET: mesenchymal epithelial transition; MAPK:
mitogen-activated protein kinases; VEGF: vascular endothelium growth factor; TSP-1: thrombospondin 1; FAK: focal
adhesion kinase; EMT: epithelial-to-mesenchymal transition; PI3K: phosphatidylinositol 3 kinase; AKT: protein kinase B;
MMP-9: matrix metalloproteinase-9.
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Figure 4. MET RNA Expression within the Four Somatic Copy Number Alterations (SCNA) Cluster
Groups. These data are derived from 80 primary UM samples in the TCGA database and were
stratified SCNA clustering defined 4 subtypes. The y-axis is a log2 with FPKM values of MET
RNA. Box plots show median values and the 25th to 75th percentile range in the data. 1-D3-UM vs.
2-D3-UM p = 0.831; 1-D3-UM vs. 3-M3-UM p = 0.014; 1-D3-UM vs. 4-M3-UM p = 0.0009; 2-D3-UM vs.
4-M3-UM p = 0.0015; and 3-M3-UM vs. 4-M3-UM p = 0.031. MET: mesenchymal epithelial transition;
UM: uveal melanoma; TCGA: The Cancer Genome At-las; D3: disomy 3; M3: monosomy 3.
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Table 1. Expression of MET in Metastatic Uveal Melanoma Tissues of 28 Patients.

MET Positive MET Negative

Location Number Location Number

Liver 21 Liver 2

Lung 1 Omentum 1

Abdomen 1 Mediastium 1

Cervical Lymph node 1

Cancers 2021, 13, x  7 of 16 
 

 

 
Figure 4. MET Expression within the Four Somatic Copy Number Alterations (SCNA) Cluster 
Groups. These data are derived from 80 primary UM samples in the TCGA database and were strat-
ified SCNA clustering defined 4 subtypes. The y-axis is a log2 with FPKM values of MET RNA. Box 
plots show median values and the 25th to 75th percentile range in the data. 1-D3-UM vs. 2-D3-UM 
p = 0.831; 1-D3-UM vs. 3-M3-UM p = 0.014; 1-D3-UM vs. 4-M3-UM p = 0.0009; 2-D3-UM vs. 4-M3-
UM p = 0.0015; and 3-M3-UM vs. 4-M3-UM p = 0.031. 

Table 1. Expression of MET in Metastatic Uveal Melanoma Tissues of 28 Patients. 

MET Positive MET Negative 
Location Number Location Number 

Liver 21 Liver 2 
Lung 1 Omentum 1 

Abdomen 1 Mediastium 1 
Cervical Lymph node 1   

 
Figure 5. MET expression of UM metastatic tumor samples by immunohistochemistry. Representative images of positive 
and negative MET expression and normal liver area are shown (magnification, ×100). Tumor biopsy samples from 28 UM 
patients were stained with CONFIRM anti-Total c-MET (SP44) rabbit monoclonal primary antibody (Ventana, Medical 
Systems). The fast red chromogen (Ventana, Medical Systems) was applied for color development. The staining intensity 
was assigned a score of 0–3 (0 = no staining, 1 = weak, 2 = moderate, 3 = strong). The criteria for positive results; Intensity 
score ≥2 and ≥50% of cells stained. MET expression cells were stained red. The brown color on patient 2 is from pigmented 
melanocytes. 

Figure 5. MET expression of UM metastatic tumor samples by immunohistochemistry. Representative images of positive
and negative MET expression and normal liver area are shown (magnification, ×200). Tumor biopsy samples from UM
patients were stained with CONFIRM anti-Total c-MET (SP44) rabbit monoclonal primary antibody (Ventana, Medical
Systems). These specimens from metastatic uveal melanoma patients were re-trieved in paraffin-embedded archival core
biopsy for staining. The fast red chromogen (Ventana, Medical Systems) was applied for color development. The staining
intensity was assigned a score of 0–3 (0 = no staining, 1 = weak, 2 = moderate, 3 = strong). The criteria for positive results;
Intensity score ≥2 and ≥50% of cells stained. MET-expressing cells were stained red. The brown color on patient 2 is from
pigmented melanoma cells. MET: mes-enchymal epithelial transition; UM: uveal melanoma.

4.1. The Role of HGF/MET Signaling in Cell Migration and Invasion

Forming a metastatic lesion from a primary lesion involves multiple steps, includ-
ing proliferation, invasion, migration, intravasation, dissemination, extravasation, and
colonization in the distant organ. First, the cancer cells need to invade and migrate to
adjacent tissues. Cell adhesion helps establish tight connections both between cells and
cells and between cells and the matrix [45]. Therefore, loss of cell–cell and cell–matrix
adhesion help tumor cell dissemination and metastasis. On the molecular level, cell–cell
adhesion is mediated by two main groups of molecules: Ca-dependent family (cadherin, E-
cadherin, N-cadherin, selectin, and integrin) and Ca-independent family (immunoglobulin
and lymphocyte homing receptors) [46].

HGF/MET signaling controls cell migration and cell adhesion mainly through PI3K/AKT
pathways in UM cell lines [47]. HGF also induces FAK activation in one of the downstream
signaling pathways of MET. FAK plays an important role in integrin-initiated signaling
pathways [48]. HGF and MET interaction leads to FAK activation and contributes to the
regulation of cell–cell adhesion and cell–extracellular matrix (ECM) adhesion. FAK may
be involved in HGF-induced cell motility, and that renders MET-expressed tumor cells
susceptible to transformation by HGF stimulation to promote migration and invasion [49].

4.2. The Role of HGF/MET Signaling in Epithelial-Mesenchymal Transition

Epithelial-mesenchymal transition (EMT) is an essential step to migration, invasion,
and extravasation from a primary lesion. The molecular hallmarks of EMT include E-
cadherin down-regulation and up-regulation of mesenchymal-related proteins such as
vimentin and N-cadherin to acquire mesenchymal-like characteristics allowing cells to
move from the original site to a distant site [50]. Acquiring EMT characteristics, several
million cells per gram of tumor can be shed daily into the lymphatic system or into the
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bloodstream while circulating cancer cells (CTC) have to overcome anoikis to achieve
metastasis [46].

Several studies indicated that the HGF/MET signaling pathway promotes EMT
through up-regulation of the E-cadherin repressor and mediates the switch from E-cadherin
to N-cadherin in cutaneous melanoma cell lines [51,52]. Li et al. reported that HGF induced
the downregulation of E-cadherin and Desmoglein 1, which are required to induce cell
scattering. HGF-induced E-cadherin and Desmoglein 1 downregulation depend on the
MAPK and PI3K pathway [52]. In UM, reduced E-cadherin expression in primary tumors
was reported to be correlated to shorter survival. The expression level of E-cadherin mRNA
was lower in metastatic tumors than in primary tumors [53].

It is of note that the E-cadherin expression and epithelial-mesenchymal transition in
UM are controversial. Harbour et al. indicated that the up-regulation of CDH1 and mem-
branous E-cadherin expression in primary UMs are associated with class 2 characteristics,
having a high metastatic risk [54,55]. In fact, UM with spindle cells showed a favorable
prognosis, whereas poor prognosis was seen in patients with an increasing number of
epithelioid cells [56]. This discrepancy may be explained by two reasons. One is UM
does not arise from an epithelium, the other is E-cadherin has different roles between
early-stage and late-stage in tumor progression [57]. Loss of E-cadherin induces metastasis,
but E-cadherin is often re-expressed in metastatic lesions [58]. Further studies are needed
to investigate the association between E-cadherin and metastasis in UM.

4.3. The Role of HGF/MET Signaling in Survival in the Bloodstream

In general, cells stay close to the tissue to which they belong since the communication
between neighboring cells as well as between cells and ECM provides essential signals
for growth or survival. When cells are detached from the ECM, there is a loss of normal
cell–matrix interactions, and they may undergo anoikis. Therefore, the escape mechanism
from anoikis is important for tumor cell survival in the bloodstream and different organs.
It has been reported that anoikis resistance can be induced through HGF activating both
extracellular signaling-receptor kinase (ERK) and PI3K [59].

The PI3K/AKT/mTOR (mechanistic targeting of rapamycin) pathway that is activated
by HGF/MET signaling is one of the most important pathways involved in pro-survival
features, as it integrates most of the signals derived from integrins and growth factor recep-
tors. This pathway is essential to regulate several cellular functions, such as cell survival
and cell growth. AKT activation can modulate the activity of transcription factors that stim-
ulate anti-apoptotic genes or directly phosphorylate pro-apoptotic proteins, such as Beclin
(Bcl)-2 antagonist of cell death (Bad) and procaspase-9, inhibiting their function [60]. The
activation of AKT subsequently inhibits apoptosis by activating the E3 ubiquitin-protein
ligase MDM2, an inhibitor of p53. In addition, Glycogen synthase kinase 3 beta (GSK3β),
downstream of AKT, is phosphorylated, which results in its inhibition, leading to p53
inhibition and subsequently protects apoptosis.

4.4. The Role of HGF/MET Signaling in Angiogenesis

HGF/MET signaling is also a potent inducer of endothelial cell growth and promotes
angiogenesis and lymphangiogenesis, in addition to vascular endothelium growth factor
(VEGF) and b-FGF signaling [61]. Furthermore, HGF/MET signaling can induce vascular
endothelium growth factor A (VEGFA) expression and angiogenesis through common
signaling pathways, such as SHC. Thrombospondin 1 (TSP1; also known as THBS1) is a neg-
ative regulator of angiogenesis that is suppressed by HGF/MET signaling. By regulating
VEGFA and TSP1 expression, HGF/MET signaling acts as a potent regulator of angio-
genesis [62]. Induction of angiogenesis by HGF supplementation resulted in improved
local hypoxia.
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4.5. The Role of HGF/MET Signaling in Production of Metalloproteinase

Koh and Lee showed that HGF upregulates matrix metalloproteinase-9 (MMP-9) in
2 metastatic gastric carcinoma cell lines [63]. MMP-9 is a member of MMPs that break
down the basement membranes through the degradation of type IV collagen, exposing
cryptic sites within the matrix and allowing cancer cell invasion. Degradation of ECM in
the tissue of the tumor is a principal process of cancer invasion and metastasis [63]. MMP-9
is particularly correlated with pro-oncogenic events such as neo-angiogenesis, tumor cell
proliferation, and metastasis [46]. MMP-9 is shown to play an important role in tumor
dissemination. The value of MMP-9 is evaluated as a biomarker for various specific cancers.
In UM, the expression of MMP-2 and MMP-9 has been associated with a higher incidence
of metastasis. MMP-9 was predominantly present in epithelioid UM and the epithelioid
portion of mixed-cell UM [64].

5. Targeting HGF/MET Signaling in Metastatic Uveal Melanoma

To understand the structure–function relationship of the ligand, cancer therapy tar-
geting HGF/MET signaling has been developed [65]. There are many types of drugs that
inhibit HGF/MET signaling. There are three types of inhibitors, including hepatocyte
growth factor activator (HGFA) inhibitor, MET antagonist, and MET signal inhibitor for
inhibition of MET signaling activity. HGFA inhibitor (HAI)-1 inhibits serine proteases in-
cluding hepsin, matriptase, HGFA, and proteasin, blocking the activation of pro-HGF [66].
The MET antagonist binds to the SEMA domain of MET, acting as a potent agonist [67].
NK4, as an HGF antagonist, can inhibit tumor invasion, growth, angiogenesis, and metas-
tasis of tumors in vivo [68].

There are many different types of MET signal inhibitors developed over the past
decade and have been investigated in ongoing clinical studies. Type I MET inhibitors
preferentially bind to the active confirmation of MET kinase, while type II MET inhibitors
bind to the inactive confirmation [69]. Crizotinib (Xalkori), a type I MET inhibitor, is a
small-molecule multi-kinase inhibitor. Crizotinib was approved for metastatic anaplas-
tic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) in 2011 and
metastatic ROS proto-oncogene 1 receptor tyrosine kinase (ROS1)-rearranged NSCLC in
2016 [70]. MET kinase domain mutations have emerged as mechanisms of resistance to
crizotinib in patients with MET-amplified and MET exon-14-altered cancers. Crizotinib
was not effective as adjuvant therapy for patients with high-risk UM (NCT02223819). Cur-
rently, a phase 2 study of crizotinib or binimetinib with protein kinase C (PKC) inhibitor in
patients with solid tumors harboring GNAQ/GNA11 mutations or protein kinase C (PRKC)
fusion is ongoing (NCT03947385).

Merestinib and cabozantinib, type II MET inhibitors, have preclinical activity against
several kinase domain mutations (such as D1228N, M1250T, and H1094Y/L145). Merestinib
(LY2801653) is an oral kinase inhibitor with anti-proliferative and anti-angiogenic activity
in MET-amplified and MET autocrine xenograft tumor models [71,72]. Merestinib is
also active against other receptor tyrosine kinase and serine/threonine kinases (MKNK1
and MKNK2) [70]. Ohara et al. demonstrated that merestinib enhances the effect of
cyclin-dependent kinase (CDK)4/6 inhibitor for MUM [73]. Currently, a phase 2 study of
merestinib or ramucirumab with cisplatin and gemcitabine combination in patients with
advanced or metastatic cancer is ongoing (NCT 0271155) [74].

Cabozantinib is a multi-kinase inhibitor that inhibits MET and vascular endothelium
growth factor receptor 2 (VEGFR2) phosphorylation. Cabozantinib, therefore, inhibits
the migration, invasion, and proliferation in a dose-dependent manner [70]. Cabometyx
(cabozantinib) is approved for metastatic medullary thyroid cancer, hepatocellular car-
cinoma, and renal cell carcinoma (RCC). A phase 2 study comparing cabozantinib with
temozolomide or dacarbazine for MUM patients has been conducted (NCT01835145) [75].

Additionally, Tabrecta (capmatinib) is approved for patients with metastatic NSCLC
with MET exon 14 skipping (METex14).
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6. The Role of HGF/MET Signaling in Therapeutic Resistance

Various treatment approaches have been tested for MUM using targeted therapy and
immune checkpoint inhibitors. However, the efficacy of these therapies is limited due to
pre-existing and/or acquired therapeutic resistance mechanisms. Especially, the tumor
microenvironment plays an important role in resistance to cancer therapeutics, including
chemotherapy, radiation therapy, targeted therapy, and immunotherapy. In particular,
HGF produced by hepatic stellate cells and stromal cells is known to induce resistance to
cancer therapy. In this regard, the majority of currently available mouse systems might not
be suitable to investigate the role of HGF/MET signaling in cancer treatment resistance
mechanisms since mouse HGF has limited binding affinity to human MET [76]. Potentially
efficacious treatment approaches developed in traditional mouse models might not be
applicable to patients since the influence of human HGF in the MUM microenvironment is
not included in these mouse models.

6.1. Resistance to Chemotherapy

HGF/MET signaling induces chemotherapy resistance [77]. Xu et al. revealed that
HGF/MET signaling enhances gemcitabine chemoresistance in pancreatic cancer cell
lines [78]. Chen et al. reported that HGF suppresses N-methyl-d-aspartate-induced
apoptosis-inducing factor (AIF) through activation of FAK and induces cisplatin resis-
tance in lung cancer cells [79]. HGF/MET signaling inhibits AIF and protects the apoptotic
cell death followed by DNA damage [80]. Canadas et al. revealed that MET inhibitor re-
verses mesenchymal transition and increases chemosensitivity in small cell lung cancer [81].
Although chemotherapies have not recently been used for MUM, HGF/MET could be
targeted to overcome chemoresistance and improve overall survival.

6.2. Resistance to Targeted Therapy

More than 90% of UM cells harbor GNAQ/GNA11 mutations; therefore, targeted
therapy against this pathway might be effective in UM. Since GNAQ/GNA11 mutations are
not easily targetable, research has focused on downstream pathways, such as MAPK, PKC,
PI3K, and AKT signaling. Despite impressive growth suppression in in vitro and preclinical
mouse models, these signal inhibitors only showed marginal effects on patients with MUM.
For example, selumetinib, a mitogen-activated protein kinase kinase (MEK)1/2 inhibitor,
did not improve overall survival in MUM patients [82]. Clinical trials using selumetinib in
combination with dacarbazine did not show a survival benefit compared to chemotherapy
alone [83]. Furthermore, a different MEK inhibitor, trametinib, with or without GSK795
of AKT did not yield clinical benefit [84]. These clinical trials indicated that one of the
reasons for failure is the existing resistance mechanisms to targeted therapies. In this
regard, it is highly likely that MUM has a primary resistance mechanism to MEK inhibitors
that HGF provides. Cheng et al. revealed that paracrine effects of HGF from fibroblasts
protect UM cells from MEK inhibition. Targeting HGF/MET signaling can overcome the
resistance elicited by HGF [85,86]. We previously reported that HGF mediates resistance to
CDK4/6 inhibitor in MUM through activation of the HGF/MET signaling pathway. Dual
targeting CDK4/6 and MET overcomes the resistance and might be more effective than
CDK4/6 monotherapy [73]. It is also known that HGF induces resistance to EGFR-targeted
therapy due to crosstalk between MET and EGFR, regardless of wild-type or mutant
EGFR [80]. Furthermore, HGF/MET promotes angiogenesis via upregulation of VEGFA
and suppression of TSP-1. The combination of MET and VEGFR inhibitors demonstrated
strong inhibition of tumor growth and tumor angiogenesis in xenograft models [87].

It is also true that treatments with single-agent HGF/MET signaling inhibitors failed
to show dramatic improvement in the treatment of cancer patients. It has been reported
that autophagy, one of several cellular adaptive responses to therapeutic stresses caused
by anti-cancer agents, is critical for the resistance to HGF/MET-targeted therapy [88]. The
mechanism that regulates HGF/MET-targeted drug resistance is quite complicated, and
further investigation is required.
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6.3. Resistance to Radiation Therapy

Radiation therapy causes DNA damage and induces apoptotic cell death [89]. There-
fore, activation of anti-apoptotic signals such as the PI3K/AKT pathway induces resistance
to radiation therapy. Several studies have shown the stimulation of HGF/MET signaling
by radiation therapy. In neuroblastoma, radiation enhances HGF mRNA expression and
MET amplification [90]. Raghav et al. indicated radiation therapy-induced MET overex-
pression, which is a key role in the development of resistance to radiation therapy [80]. In
addition, hypoxia-induced radiation therapy can cause transcriptional activation of MET
proto-oncogene [91].

6.4. Resistance to Immunotherapy

HGF/MET signaling is also involved in immune responses in the tumor microenviron-
ment, potentially having a protumor effect. HGF/MET signaling can recruit neutrophils
to the tumor microenvironment from the bone marrow [35]. MET-expressing neutrophils
reduce T cell proliferation in the tumor microenvironment. Furthermore, in lung cancer,
MET expression and gene amplification are correlated with programmed cell death ligand
1 (PD-L1) expression in cancer cells [92,93]. It has been reported that HGF/MET signaling
directly induces PD-L1 expression [92]. In fact, cabozantinib combination with an immune
checkpoint drug has significant benefits and is approved for advanced renal cell carcinoma.
These results suggest that MET inhibitor co-treatment may improve responses to cancer
immunotherapy by activating T cell-mediated anti-cancer immunity.

On the other hand, there are controversial data suggesting that MET/HGF signaling
is also considered to induce an antitumor effect. MET is required for chemoattraction and
cytotoxicity of neutrophils in response to its ligand, HGF. HGF/MET-induced neutrophils
activation produces nitric oxide that kills tumor cells directly. MET deletion in neutrophils
leads to the enhancement of tumor growth and metastasis [94]. There are multiple hy-
potheses around the lack of efficacy with checkpoint inhibitor therapies in MUM [95], and
additional studies are needed to investigate the role of HGF/MET signaling in the immune
response against MUM.

7. Conclusions

HGF/MET signaling plays an important role in MUM through various mechanisms.
It is also involved in not only metastatic formation but also in resistance to other therapies.
Clinical trials targeting HGF/MET signaling are ongoing in patients with MUM. These
trials may lead to improvement of overall survival in MUM through an impactful synergy
effect with another therapy and by overcoming therapeutic resistance.
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