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Simple Summary: Melanoma is the most aggressive form of skin cancer, with a rapidly increasing
incidence rate. Due to ineffective treatment options in the late stage melanoma, patients have an
overall poor prognosis. Over the last decades, the role of the immune system in the control of tumor
progression has been established and immune checkpoint inhibitors (ICi) have shown remarkable
clinical activity. While current trials suggest durable responses in patient under ICi therapy, there is
increasing evidence pointing towards existence of innate and acquired resistance to ICi therapy; and
it is now clear that personalized medicine will be critical for effective patient therapy. Proteogenomics
is a powerful tool to study the mode of action of disease-associated mutations at the genome,
transcriptome, proteome and PTM level. Here, we applied a proteogenomic workflow to study
melanoma samples from human tumors. Such workflow may be applicable to other patient-derived
samples and different cancer types.

Abstract: Immune checkpoint inhibitors are used to restore or augment antitumor immune responses
and show great promise in the treatment of melanoma and other types of cancers. However, only a
small percentage of patients are fully responsive to immune checkpoint inhibition, mostly due to
tumor heterogeneity and primary resistance to therapy. Both of these features are largely driven by
the accumulation of patient-specific mutations, pointing to the need for personalized approaches in
diagnostics and immunotherapy. Proteogenomics integrates patient-specific genomic and proteomic
data to study cancer development, tumor heterogeneity and resistance mechanisms. Using this
approach, we characterized the mutational landscape of four clinical melanoma patients. This enabled
the quantification of hundreds of sample-specific amino acid variants, among them many that were
previously not reported in melanoma. Changes in abundance at the protein and phosphorylation site
levels revealed patient-specific over-represented pathways, notably linked to melanoma development
(MAPK1 activation) or immunotherapy (NLRP1 inflammasome). Personalized data integration
resulted in the prediction of protein drug targets, such as the drugs vandetanib and bosutinib, which
were experimentally validated and led to a reduction in the viability of tumor cells. Our study
emphasizes the potential of proteogenomic approaches to study personalized mutational landscapes,
signaling networks and therapy options.
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1. Introduction

One of the hallmarks of cancer cells is the accumulation of mutations and malignant
melanoma is a type of cancer with the highest frequency of somatic mutations [1]. Muta-
tions of key signaling pathways in malignant melanoma are associated with poor clinical
outcomes [2]. For example, up to 50% of cutaneous melanomas harbor non-synonymous
mutations in the kinase BRAF [3]. The predominant BRAF mutation (V600E) is found
within the kinase domain [4] and leads to the constitutive activation of downstream sig-
naling in cancer cells [3,5]. Targeted inhibition of the mutated BRAF kinase with selective
inhibitors such as vemurafenib, dabrafenib or encorafenib (BRAFi) results in a reduction in
activity in the MAPK pathway [5]. However, almost all patients rapidly develop resistance
to BRAFi monotherapy, which calls for the development of novel therapeutic options [2].

Over the last decades, the role of the immune system in the control of tumor progres-
sion has been established and new immunotherapeutic targets have shown remarkable clin-
ical activity. The reagents nivolumab and ipilimumab are immune checkpoint antibodies
targeting PD-1 (programmed cell death-1) and CTLA-4 (cytotoxic T lymphocyte-antigen-4)
receptors [6,7]. PD-1 and CTLA-4 are co-inhibitory T cell receptors and act as negative
regulatory receptors that block T cell activation and induce immune tolerance [8,9]. Subse-
quently, obstruction of these receptors with antibodies has demonstrated tumor rejection
and a significant prolongation of the survival of the melanoma patient. However, only
a minority of patients responded to ipilimumab and many patients developed immune-
related toxicities [10,11]. The response or resistance to the immune checkpoint blockade
is determined by complex and multiple mechanisms, such as the heterogeneity in the
immune response across tumors, the tumor microenvironment and the varying tumor im-
munogenicity [12]. The clinical response to immune checkpoint inhibitors and resistance is
often associated with a high mutational load and the number of expressed tumors neoanti-
gens leading to antitumor immunity [13,14]. Several studies have shown that deficiencies
in antigen presentation and the down-regulation of MHC class I (MHC-I) play a role in
immune checkpoint resistance [15–17]. Besides the mutation in β2-microtubulin, the loss
of the JAK-STAT pathway results in an acquired resistance due to the down-regulation
of MHC-1 [18,19]. Additionally, classic oncologic pathways such as the MAPK, PI3K-
AKT or WNT/β-catenin pathways can regulate immune responses by influencing the
tumor’s microenvironment. Alterations in the MAPK pathway may lead to increased
expression of VEGF, a vascular endothelial growth factor, and other inhibitory cytokines,
thus mediating the evasion of tumor cells [20,21]. Constitutive activation of the PI3K-AKT
pathway due to loss of PTEN has been associated with resistance to PD-1 therapy and the
decreased overall survival of patients with leiomyosarcoma [22,23]. The majority of these
studies were performed at the genomic and transcriptomic level. Transcriptomic signatures
of cytosolic markers and immune-related genes could predict the clinical response and
outcome of patients with different therapies [24]. Melanoma sub-populations showed a
heterogeneity in the transcriptional processes, for example, the CDK4 and CDK6 regulated
pathways were linked to resistance mechanisms in the non-responder’s cells studied by
single cell RNA sequencing. In a quantitative proteomic screen, Harel et al. compared
clinical melanoma samples treated with either tumor-infiltrating lymphocyte (TIL) or anti
PD-1 immunotherapy and showed an association between higher lipid metabolism and
response to immunotherapy [25].

Standard proteomic approaches identify peptides and proteins by matching MS/MS
spectra against protein databases derived from public repositories (e.g., UniProt) that are
not individualized. By combining nucleotide sequencing and MS technologies, it is possible
to simultaneously study and integrate DNA sequences, RNA expression and splicing,
protein isoform abundance and post-translational modifications (PTMs) in a patient-specific
(personalized) fashion. Genomic alterations due to non-synonymous single nucleotide
variants (nsSNVs), insertions or deletions (InDels) of nucleotides, frameshifts and alternate
splicing variants can alter the cellular function at the protein level by modulating its
abundance, localization and protein–protein interaction [26,27]. Clinical data have shown
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that oncogenic targets are aberrantly post-translationally modified during tumorigenesis
and might be relevant as therapeutic targets [4]. The most prominent protein modification is
phosphorylation, which is abnormally activated during tumorigenesis and may propagate
dysregulated signals and cellular functions [28,29]. However, such alterations affecting the
modification level in signaling molecules can also be benign and insignificant.

Here, we used melanoma tissue from human tumors and matching patient-derived
xenografts to study the patient-specific mutational landscape in response to immunother-
apy. We reconstructed the signaling transduction network specific to individual patients
using their corresponding genomics, proteomics and PTMs datasets.

2. Results
2.1. The Mutational Landscape of Melanoma Patients in Response to Immunotherapy

In order to identify the signatures and cellular mechanisms of immunotherapy re-
sponse, we analyzed matching clinical samples including blood, formalin-fixed paraffin-
embedded (FFPE) tumor tissue and patient-derived xenografts (PDX) from four patients
(Figure 1A). Two of the analyzed patients were naïve (no treatment at the time point of sam-
pling, patient IDs 101 and 110) and two patients were treated with immune checkpoint in-
hibitors (ICi) nivolumab and ipilimumab at the time point of surgery (patient IDs 111 and 129,
Figure 1B and Table S1). The progression-free survival (PFS) and overall survival (OS) were
calculated based on the start of therapy and differed in all patients. The patient under
therapy with the ID 111 showed a shorter PFS and OS compared to others. Only one patient
presented the well characterized BRAFV600E mutation; however, all patients showed NRAS
mutations at different sites (G12V, Q61R, A146T, F156L), which is the second-most mutated
gene in melanoma [30].

For proteogenomic analysis, we performed whole exome sequencing (WES) from
snap-frozen tumor tissue and matching blood samples, allowing the detection of germline
and somatic nucleotide variants (Figure 1A). The sequencing depth was similar across the
samples (Figure S1A). Among all the non-synonymous nucleotide variants detected by
WES (ca. 23,000), more than half were unique to one of the four patients, whereas only
15.8% were identified in all four patients (Figure 1C). The number and type of nucleotide
variants detected by WES were similar across all four patients (Figure 1C,D); the vast
majority were substitutions, most of which have been previously reported in either dbSNP
or Cosmic databases (84.8%). Comparison of the WES analysis of blood and tissue samples
enabled us to distinguish between germline and somatic nucleotide variants (Figure 1E),
which were present in an approximate 1:10 ratio.

The identified non-synonymous variants were incorporated into the corresponding
protein sequence, thus providing protein sequence databases that were individualized
for each patient (Table S1). The proteomic (PDX and FFPE) and phosphoproteomic (only
PDX) datasets of each sample were processed against the human reference and individu-
alized protein databases in order to identify reference (i.e., corresponds to an amino acid
sequence from the reference database) and alternate variant peptides (i.e., corresponds to a
sequence containing an amino acid variant). The mouse database was also included during
processing to assess contamination with mouse proteins (i.e., relevant for PDX samples),
but exclusively murine identifications were ignored for subsequent analyses. To enable
a patient-specific comparative analysis, we also performed proteomics and phosphopro-
teomics of a generic healthy melanocyte sample. The rationale behind this experimental
design spans from the lack of patient-specific healthy tissue to compare against patient
tumor material, thus a common healthy standard sample was used.

Overall in the PDX samples, we identified over 9500 proteins and 120,000 sequence-
specific peptides per sample that were annotated as human (Figure 1F, Table S2). The
phosphoproteomic analyses (PDX samples) identified over 9000 phosphorylation sites for
patient IDs 101, 111 and 129, while over 5000 phosphorylation sites were detected for patient
ID 110. The patient IDs 110 and 111 showed the highest proportion of alternate variant
protein isoforms compared to the overall identified proteins. Interestingly, the scores and
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intensities of identified peptides were similar between the reference and alternate variant
peptides, highlighting the overall good quality of the MS-identifications (Figure S1B,C). In
agreement with the WES results, a majority of MS-identified alternate variant peptides were
patient-specific (Figure S1D). We identified approximately 125 alternate variant peptides in
patient IDs 101 and 129, and over 300 in patient IDs 110 and 111.
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Figure 1. The mutational landscape of melanoma patients in response to immunotherapy. (A) Schematic overview of the 
proteogenomic workflow. Whole blood and tumor tissue of four patients were used in this study. Metastatic tumor tissue 
was injected into an immune-deficient mouse to generate patient-derived xenografts (PDX). For whole exome sequencing, 
DNA was extracted from whole blood and metastatic tissue and sequenced on an Illumina sequencing instrument. Indi-
vidualized protein databases and impact files were generated with an in-house bioinformatic pipeline. For the proteomic 
workflow, FFPE specimens from the same tissue as well as patient-derived xenografts tissue were used. Cells were lysed 
and proteins were digested using trypsin. The resulting peptide mixture from the PDX material was fractionated using an 
off-line RP HPLC operated at a high pH. Fractions were pooled and measured directly or applied to phosphopeptide 
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Figure 1. The mutational landscape of melanoma patients in response to immunotherapy. (A) Schematic overview of the
proteogenomic workflow. Whole blood and tumor tissue of four patients were used in this study. Metastatic tumor tissue was
injected into an immune-deficient mouse to generate patient-derived xenografts (PDX). For whole exome sequencing, DNA
was extracted from whole blood and metastatic tissue and sequenced on an Illumina sequencing instrument. Individualized
protein databases and impact files were generated with an in-house bioinformatic pipeline. For the proteomic workflow,
FFPE specimens from the same tissue as well as patient-derived xenografts tissue were used. Cells were lysed and proteins
were digested using trypsin. The resulting peptide mixture from the PDX material was fractionated using an off-line RP
HPLC operated at a high pH. Fractions were pooled and measured directly or applied to phosphopeptide enrichment
using titanium dioxide (TiO2) prior to LC-MS/MS. MS raw data was processed with MaxQuant software and analysed
by PCTi. (B) Clinical information of analyzed samples including the administered therapy, the progression-free survival
(PFS), overall survival (OS), detection of variants in key oncogenes, cancer stage and clinical outcome. The PFS and OS
were calculated based on the start of therapy and the numbers indicate the days after therapy started. (C) Overlap of
non-synonymous nucleotide variants identified by WES of four melanoma patients (tumor tissue and blood). (D) Inner
donut depicts the type of all non-synonymous nucleotide variants identified by WES including substitution, insertions,
deletions and frameshifts. Outer donut represents the proportion of novel nucleotide variants identified in this study.
(E) Overlap in identified nucleotide variants (from all patients) between WES-identified non-synonymous variants (blue),
WES-identified non-synonymous somatic variants (brown), MS-identified reference variant peptides (orange), MS-identified
alternate variant peptides (red) and MS-identified phosphorylated on variant site peptides (green). Numbers correspond to
the size of the set or the percentage of the total. To allow a comparison between WES and MS identification, variants were
counted at the nucleotide level (avoiding redundancy from protein isoforms). (F) Identified protein groups and variants
by MS for each patient and sample type (PDX and FFPE) and the number of phosphorylation sites identified in the PDX
samples. Identified alternate variant protein isoforms per patient are shown in black.

In the FFPE samples, the global proteome revealed more modest protein identification
(between 2000 and 4000 per patient), due to limited material amounts (Figure 1F). A compar-
ison between the sample types revealed that between 85% and 95% of proteins quantified
in FFPE were also quantified in PDX (Figure S1E). A correlation analysis between these
commonly quantified proteins displayed decent positive correlation levels (Spearman rho
between 0.5 and 0.75), which supports the use of PDX as a model to study cancer progression.
Overlap proportion was also consistent when only the alternate variant protein isoforms
were considered (lowest overlap in patient ID 101, highest in patient ID 111). A principal
component analysis (Figure S1F) also confirmed the clustering of samples (PDX and FFPE) per
patient IDs based on component two and three (explaining 17.8% of variance). Taken together,
our results highlight the importance of individualized approaches in order to investigate
patient-specific tumors and the potential of PDX for in-depth proteomic investigation.

2.2. A Comparison of Tumor Cells against Melanocytes Highlights Patient-Specific Signaling Pathways

Subsequently, we compared the global proteome from each patient (using both PDX and
FFPE samples) against a generic healthy melanocyte sample in order to investigate patient-
specific protein changes. This led to the identification of 959, 1062, 880 and 851 proteins
with significant changes in abundance (p-value ≤ 0.05) in patient IDs 101, 110, 111 and 129,
respectively (Figure 2A). Significantly up-regulated proteins were over-represented in
immune-related pathways such as “interleukin-9 signaling” or “NLRP1 inflammasome”
for patient ID 101 (Figure 2A). In both naïve patients (ID 101 and 110), proteins related
to “insulin growth factor signaling” were down-regulated in comparison to melanocytes
(Figure 2A,B), whereas in both ICi-treated patients (ID 111 and 129) several “AURKA
interactors” were down-regulated (Figure 2C,D). Up-regulated proteins in both ICi-treated
patients differed; however, most pathways could be linked to immunotherapy. Notably,
“NLRP1 inflammasome” and “NOTCH4 activation” were over-represented in patient ID
111, whereas “WNT and Ephrin signaling” were over-represented in patient ID 129. We
also compared the global phosphoproteome from each patient (using only PDX samples)
against the melanocytes (Figure S2A–D). For all four patients, the “MAPK1 or MAPK1/3
activation” pathways—known for their pivotal involvement in melanoma—were enriched
in significantly up-regulated phosphorylation sites.
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Figure 2. Comparison of tumor cells against melanocytes highlights patient-specific signaling pathways. (A–D) Scatter 
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depicted in the upper part of each panel (Fisher-Exact test, p-value ≤ 0.2). (E) Heatmap of over-represented pathways 
within each patient based on proteins containing alternate variant peptides. Results are based on the Fisher-Exact test (p-
value ≤ 0.2). Color-coding indicates if a specific pathway was significantly over-represented in patient IDs 101 (blue), 110 
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Figure 2. Comparison of tumor cells against melanocytes highlights patient-specific signaling pathways. (A–D) Scatter plot
of log2-transformed ratios for proteins quantified in the PDX samples versus melanocytes for patient IDs 101 (A), 110 (B),
111 (C) and 129 (D). Significant proteins containing identified alternate peptides are marked in the respective color (significance
B, p-value ≤ 0.05). Proteins marked in black were also identified in the corresponding FFPE material for each patient ID. The
top 3 over-represented Reactome pathways based on all significantly up- or down regulated proteins are depicted in the upper
part of each panel (Fisher-Exact test, p-value ≤ 0.2). (E) Heatmap of over-represented pathways within each patient based on
proteins containing alternate variant peptides. Results are based on the Fisher-Exact test (p-value ≤ 0.2). Color-coding indicates
if a specific pathway was significantly over-represented in patient IDs 101 (blue), 110 (green), 111 (red) and 129 (orange).
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Next, we focused on proteins harboring MS-identified alternate variant peptides. Their
over-representation among KEGG or Reactome pathways revealed “signatures” specific to
each patient (Figure 2E). There seemed to be a more consistent overlap in over-represented
pathways among either ICi-treated or naïve patients, whereas the overlap was nearly non-
existent between ICi-treated and naïve patients. For example, the pathways related to
transcriptional regulation by RUNX1 and eukaryotic translation elongation were enriched
in both ICi-treated patients. On the contrary, naïve patients showed an over-representation
for pathways such as the apoptotic cleavage of cellular proteins, laminin interactions,
mitochondrial translation initiation and formation of editosomes by ADAR proteins. Among
the many patient-specific pathways were “Rho GTPase activate protein kinases (PKNs)” and
“PI3K/Akt signaling in cancer” (in patient ID 111); “mTOR signaling” as well as “signaling
by ERBB4 or PTK6” (in patient ID 129); “TLR4 cascade” and “G alpha signaling events” (in
patient ID 110); “signaling by BRAF and RAF fusion” as well as “RHO GTPases activate
IQGAPs” (in patient ID 101). Notably, the pathway “TP53 regulates metabolic genes” was
enriched in three patients, ID 110, 111 and 129. These findings demonstrate the use of the
personalized proteogenomic approach to characterize patient-specific regulated proteins, as
well as patient-specific variants and their accumulation in key pathways.

2.3. Integration of Genomics, Proteomics and Drug Database Prioritizes Actionable Targets

To define actionable protein targets, we integrated the significantly changing proteins
and phosphorylation sites into several patient-specific protein–protein interaction networks.
Several entries were further emphasized due to their high betweenness centrality and
degrees, as well as their targetability by a drug (Figure 3A, Figure S3A, Table S3). For
patient ID 110, this notably included MAP2K2, KIT, VEGFA, A2M, ICAM1 and PLA2G4A,
all of which are involved in cancer development.

This approach resulted in the prediction of drugs that could impact the patient-specific
perturbed signaling network (Figure S3A). While drugs could be predicted for each patient,
the patient ID 110 was associated with twice as many drugs (107 potential drugs) as any other
patient (Figure S3B). Between 10% and 30% of the patient-specific predicted drugs were also
known oncotherapeutics and thus of high interest. The majority of predicted drugs were
specific for each patient and the overlap in patient-predicted drugs was relatively modest—
only 10 potential drugs were shared across all four patients (Figure S3C, Table S3). We then
prioritized the potential drugs by focusing on known oncotherapy and by maximizing either
the number of degrees their targets had with the rest of the signaling network or the variant
impact score of their protein targets (Figure 3B). For patient ID 110, the prioritized onco-
therapies included drugs with a high number of degrees, such as vandetanib or tamoxifen,
and drugs whose target proteins had a high impact variant, such as trametinib, bosutinib
or binimetinib. These drugs are inhibitors of EGFR and VEGFA (vandetanib), PRKCD and
PRKCE (tamoxifen), as well as MAP2K1 and 2 (e.g., trametinib, bosutinib, binimetinib).
While all prioritized therapies would require experimental validation, we focused on only
three drugs, i.e., vandetanib, bosutinib and trametinib. Remarkably, the predicted drugs
vandetanib and bosutinib showed a reduced cell viability in cells generated from the tumor
material of patient ID 110 (Figure 3D), whereas no effect on cell viability was observed in
control fibroblast cells (Figure 3C). The variant sites for MAP2K1 and KIT were confirmed
by sanger sequencing, whereas for EGFR no variant was observed (Figure S3D). Overall,
the network modeling approach allows the prediction of patient-specific therapies and
demonstrates the potential of precision medicine.
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Figure 3. Integration of genomics, proteomics and drug database prioritizes actionable targets. (A) The interaction signaling
network for patient ID 110 was generated based on list of significantly regulated proteins (diamond) and phosphorylation
sites (square). This schematic displays the distribution of nodes in function of their betweenness centrality and number of
connections. Only the top 200 entries are displayed (ranked based on their interaction degree). Entries are colored based on
whether they were up-regulated in PDX (light green) or FFPE (dark green). (B) The drugs, interacting with entries from the
interaction signaling network of patient ID 110, are displayed based on their targets’ maximum variant impact score and
how many connections their targets had. Color-coding corresponds to whether all of the drug targets were specific for PDX
(light green), FFPE (dark green) or common to both sample types (grey). (C,D) Cell viability assay for fibroblasts (C) and
cell line of patient ID 110 (D) treated with either fostamatinib (blue), trametinib (grey), vandetanib (yellow) or bosutinib
(dark blue). Cells were cultured for 24 h, and then treated with the depicted drugs at the indicated concentrations (0, 0.635,
1.25 and 2.5 µM) or DMSO as the control. Cell viability was determined by MTS assay 96 h later. Results expressed as a
percentage of the control represent the mean of six replicates. The error bar represents the standard deviations of replicates.

2.4. Differential Protein Expression between Naïve and ICi-Treated Patients

Next, we compared the naïve and ICi-treated patients (PDX) based on the global
proteome. In total, we identified 436 proteins that were significantly regulated between
naïve (IDs 101 and 110) and ICi-treated (IDs 111 and 129) patients (FDR ≤ 0.05) (Figure 4A
and Table S4). Up to 10% of the significantly regulated proteins showed a possible gain or
loss of a S/T/Y site and 17.2% were identified to be phosphorylated.
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Figure 4. Differential protein expression between naïve and ICi-treated patients. (A) Heat map of significantly regulated
proteins between naïve and ICi-treated patients (Sig. B, FDR ≤ 0.05). Color code depicts log10-transformed IBAQ intensities
of proteins for each group. (B) Pathway over-representation of significantly regulated proteins between naïve and ICi-
treated patients (Sig. B with FDR ≤ 0.05; Fisher-Exact test with FDR ≤ 0.02). Pathways over-represented based on up- and
down-regulated proteins are displayed in red and green, respectively. The text on the right of each bar corresponds to
the over-representation of the −log10 p-value. (C) Interaction network of immune related proteins significantly changed
between ICi-treated and naïve patients, as well as their direct protein interactors. Only the top 50 entries are displayed
(ranked based on their interaction degree). Entries are colored based on their direction of regulation between ICi-treated
and naïve patients; i.e., not quantified (grey), down-regulation trend (light green), significant down-regulation (dark green),
up-regulation trend (light red) and significant up-regulation (dark red). Entries that were also found to be phosphorylated
are displayed with an orange stroke. Node size is proportional to the node number of connections (degree).
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Pathway over-representation of significantly regulated proteins between naïve and
ICi-treated patients revealed that significantly up-regulated proteins were enriched in the
“metabolism of ingested SeMet and Sec”, “Melanogenesis” and “RAP1 signaling” pathways
(Figure 4B, Table S4). Notably, down-regulated proteins were related to PD-1/PD-L1 and
cytokine signaling. This might be due to the fact that both ICi-treated models were isolated
from metastases that had grown upon anti-PD-1-based ICi and thereby can be considered
as resistant lesions. Lack of PD-L1 expression as well as the loss of IFNg signaling are long-
known resistance mechanisms to ICi therapy addressing PD-1/PD-L1 [31]. Interestingly,
86 of the 436 regulated proteins harbored an alternate variant peptide (Figure S4A–C).
Over-representation analysis based on the regulated proteins harboring an alternate variant
peptide also revealed pathways important in the context of melanoma development, such
as “interferon signaling” and “extracellular matrix degradation/organization” pathways.

To investigate the differing immune system response between the naïve (IDs 101 and
110) and ICi-treated (IDs 111 and 129) patients, we generated a signaling network of signifi-
cantly changing immune-related proteins (FDR ≤ 0.05) together with their direct interac-
tors (Figure 4C, Table S4). This network was derived mostly from 13 significantly down-
regulated proteins in ICi-treated versus naïve patients, compared to only one up-regulated
protein. Among these, the tumor necrosis factor receptor superfamily member 5 (CD40),
the tyrosine-protein kinase SYK or the nuclear factor NF-kappa-B p100 subunit (NFKB2)
proteins were all down-regulated and are well-known for their involvement within im-
mune pathways. Altogether, this suggests a down-regulation of the immune response in
ICi-treated patients, which may be driven by a selection for ICi-resistant cancer cells [18].

3. Discussion

Here we present the individualized proteogenomic landscape of four melanoma
patients in response to immunotherapy. This study is, to our knowledge, the first integrative
proteogenomic analyses of melanoma tumor tissue and matching PDX in response to
immunotherapy. Malignant melanoma has predominantly been studied by genomics and
transcriptomics, and more recently by proteomics [32,33]. As the majority of drugs target
proteins, proteomics allows extensive and quantitative surveys of the global proteome in
order to select targeted treatment and predict drug response in tumor therapy. However,
proteomics is not individualized and publicly available databases do not contain cancer-
and sample-specific variants. Several genomics and transcriptomic studies revealed the
mutational landscape and heterogeneity of melanoma cases [34–36]. A recent quantitative
proteomic screen of a melanoma patient’s tumors in response to immunotherapy revealed
the link between lipid metabolism and the response to immunotherapy [25]. Lobas et al.
used a proteogenomic approach to study eight melanoma cell lines; their analysis allowed
discrimination between the specific cell lines based on their variant peptide profiles [37].

Importantly, our dataset was generated from four patients, which certainly cannot
recapitulate the patient tumor heterogeneity observed in large cohort studies [38–41]. There-
fore, our study did not aim to characterize the pathways generally involved in melanoma
development and resistance, but focused on showcasing the application of proteogenomics
in the context of precision oncology [42]. Here, 15.2% of the identified nucleotide variants
were not reported previously, indicating a high variability in the mutational landscapes
of cancer patients. We identified a number of shared as well as sample-specific alternate
variant peptides by whole exome sequencing and mass spectrometry. The identifications are
in the same range or even better in comparison to other proteogenomic datasets of human
cancer tissue [38,43,44]. The detected alternate variant peptides were of a high quality based
on the MaxQuant-derived score, which was similar to the reference variant peptides. We
also did not observe a change in intensity or score distribution between the reference and
alternate variant peptides, which would have been indicative of reduced quality.

Here, the proteogenomic signatures of PDX confirm most findings from melanoma
cancer patients. Thus, PDX samples, which are tumor tissues closely resembling the
clinical lesions, can serve as models to study the mutational landscape of cancer. PDXs
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overcome several limitations over the use of monolayers of cells (cell lines), which is based
on the selective proliferation of clonal cells. PDXs keep the histological features, genomic
signatures and genetic heterogeneity of cells in a tumor mass [45]. In addition, PDX tumors
provide enough material to also perform phosphoproteomics. However, PDX samples
have limitations that must be considered prior to data analysis: it can take up to 6 months
to generate PDX and these can be highly contaminated with mouse cells (due to sample
preparation). Here, several of the significantly regulated proteins and proteins containing
an alternate variant peptide were also identified within the FFPE materials. This highlights
the relatively good correlation between PDX and FFPE materials and validates the use of
PDX within proteogenomic applications.

To identify regulated proteins and phosphorylated sites in patient-specific tumor
samples, we performed comparisons against healthy melanocyte cells. This experimental
rationale was required due to the lack of matching patient-specific healthy tissue samples.
While the proteome profile of this melanocyte sample is not patient-specific, it acts as a
healthy standard and allows patient-to-patient comparability. While still uncommon, future
global proteogenomic studies will benefit from this experimental design which compares
patient-specific tumors to normal tissues [46], as it best recapitulates patient-to-patient
heterogeneity and the tumor’s microenvironment [47,48]. Here, a comparison of tumor
cells against melanocytes highlighted several over-represented signaling pathways based
on significantly regulated proteins. Interestingly, the down-regulated proteins in patient
IDs 101 and 110 against melanocytes were over-represented for “insulin growth factor
signaling”; whereas the down-regulated proteins in both ICi-treated patients (IDs 111 and
129) against melanocytes resulted in an over-representation of the “AURKA interaction”
pathway. Several pathways were found to be over-represented based on the up-regulated
proteins between patients and melanocytes. For example, “interleukin-9 signaling” for
patient ID 101, “NLRP1 inflammasome” for patient ID 101 and 111, “ENCAM1 interaction”
for patient 110 and “WNT signaling” for patient ID 129. These pathways are involved
in melanoma and could be linked to immunotherapy [49,50]. In addition, we performed
a pathway over-representation analysis of proteins containing alternate variant peptides
and identified several known mechanisms involved in the response to immunotherapy
including “mTOR and PI3K-AKT signaling”, “signaling by TLR4 cascade” and “activation
of IFN production” [18,51]. Interestingly, the pathway “TP53 regulates metabolic genes”
was over-represented for alternate variant protein isoforms in nearly all patients (besides
patient ID 101). TP53 is frequently mutated in several cancer types including melanoma
and many metabolic pathways are regulated by TP53, influencing energy metabolism and
the growth of cancer cells [52].

The integration of genomics, proteomics and phosphoproteomics allowed the recon-
struction of the patient-specific cancerous signaling network. As reported in the literature,
the number of human protein–protein interactions [53], combined with clinical knowl-
edge [54], has considerably increased in recent years, paving the way for precision medicine.
The importance of network reconstruction has been exemplified in the literature, notably to
investigate network-attacking mutations [27], identify genomic alterations for therapeutic
combinations [55,56] or determine novel targets from differential networks [57]. Here, the
network models allowed the prediction and prioritization of several drugs based on their
potential to disrupt the perturbed signaling network of each patient. Interestingly, ten
drugs were predicted to be in common to all patient IDs. These drugs could be poten-
tially used for drug-treatment in melanoma, such as tromethamine that inhibits amyloid
beta A4 protein and is already in use in a number of cancers [58]. For patient ID 110, we
were able to generate a sample-specific cell line and experimentally validate some of the
predicted drugs. Notably, we observed a reduction in cell viability upon treatment with van-
detanib (inhibitor of EGFR and VEGF), as well as bosutinib (inhibitor of MAP2K1 and 2).
The kinase inhibitor bosutinib was previously reported to inhibit solid tumors including in
the pancreas and in melanoma [59,60]. In contrast, the predicted MAP2K1 and 2 inhibitor
trametinib did not show an effect on the cell viability for this cell line. Several reasons may
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explain the differing results of bosutinib and trametinib, for example, the variant on the
target protein may influence the drug binding in the case of trametinib. Alternatively, the
effect observed with bosutinib could be a result of off-target inhibition (e.g., BCR, ABL1,
LYN, SRC) [61,62].

We investigated further the naïve and ICi-treated patients based on significant pro-
tein changes, including the proteins harboring the amino acid variant. A comparison of
protein expression levels revealed that proteins that were down-regulated in ICi-treated
cells compared to naïve cells that were involved in pathways related to the PD-1/PD-L1
and cytokine signaling. This might be due to the fact that both ICi-treated models were
isolated from metastases that had grown upon anti-PD-1 therapy and thereby can be con-
sidered as resistant lesions. Lack of PD-L1 expression as well as a loss of IFNg signaling
are long-known resistance mechanisms to ICi therapy [18,63]. This analysis also revealed
that 86 significantly regulated proteins harbored an alternate variant peptide, which re-
vealed an over-representation of the pathways important for melanoma development and
immune response. This can be explained in several ways, for example these variants could
accumulate in the corresponding pathways and provide a survival advantage for cancer
cells. Alternatively, the proteins harboring these variants have intrinsic characteristics that
facilitate their detection by MS (e.g., protein abundance, protein length), thus facilitating
the detection of amino acid variants [64,65].

4. Materials and Methods

Skin metastases were collected during surgery and compared to blood. In total, we
analyzed four metastatic tumors and melanocytes as a control. In addition, primary tissues
were injected into mice to obtain patient-derived xenografts (PDX). The use of human
tissue from an internal biobank was approved by the Local Research Ethics Committee
(IEC) Tuebingen (781/2018BO2) and experiments were performed in accordance with the
declaration of Helsinki Principles.

4.1. Generation of Patient-Derived Xenografts

To generate patient derived xenografts (PDX), tumor tissue was finely minced using
the cross-blade technique, digested in nevi solution (HBBS (w/o Ca2+ and Mg2+) with
0.05% collagenase, 0.1% hyaluronidase and 0.15% dispase) and filtered through a 100 µm cell
strainer. The melanoma cell suspension was implanted with Matrigel (Corning Life Sciences,
Lowell, MA, USA) subcutaneously in NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice, leading
to patient-derived xenografts. Tumor grafts were harvested when they reached a diameter
of 10 to 15 mm, digested as above, resuspended in Biofreeze medium (Biochrom/Merck,
Berlin, Germany) and 1 mL per cryotube of the cell suspension was frozen for short-term
cryoconservation in −80 ◦C and for long-term storage in liquid nitrogen.

4.2. Generation of Primary Human Melanoma Cell Lines

Patient-derived cells were acquired directly from tumor tissue from patients. The
tissue was cut into small pieces and incubated for 1 h in an enzyme mix of collagenase,
hyaluronidase and trypsin at 37 ◦C. To stop the digestion process, a cell culture medium
was added. The solution was thoroughly mixed by pipetting up and down and was finally
filtered through a cell strainer (100 µm). By centrifugation at 1200× g for 5 min, the cells
were pelleted and resuspended in fresh cell culture media.

4.3. Isolation and Cultivation of Melanocytes and Fibroblasts

Primary human melanocytes and fibroblasts were isolated out of foreskin according
to the protocol of CELLnTEC (CELLnTEC Advanced Cell Systems AG, Bern, Switzerland).
After isolation, cells were cultured in a CnT-40 (melanocytes) or CNT-PR-F (fibroblasts)
medium containing antibiotics/antimycotics (CnT-GAB10 or CnT-ABM10).
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4.4. Protein Extraction from Patient-Derived Xenografts

Cell lysis of snap-frozen patient-derived xenografts (PDX) was performed with a lysis
buffer (6 M urea, 2 M thiourea, 10 mM Tris-HCl pH 8.0) supplemented with a protease
inhibitor (complete Mini EDTA-free tablets; Roche, Basel, Switzerland) and phosphatase
inhibitor buffers (5 mM glycerol-2-phosphate, 5 mM sodium fluoride, and 1 mM sodium
orthovanadate). Glass beads (zirconia/glass beads 0.23 mm; Carl Roth GmbH, Karlruhe,
Germany) were added and a cell lysis was performed in a BeadBug microtube homogenizer
(3 cycles, 1 min at full speed; Sigma-Aldrich, St. Louis, MO, USA). Cell extracts were
centrifuged at 13,000 rpm for 20 min and proteins were purified by acetone precipitation.
Briefly, cell lysates were mixed with 8 volumes of ice-cold acetone and one volume of
methanol and incubated overnight at −21◦C. After centrifugation (2800× g, 20 min, 10 ◦C),
protein pellets were washed with 80% acetone and dissolved in a lysis buffer. The protein
concentration was determined by a Bradford assay.

4.5. Protein Extraction from Melanocytes

Cells were washed twice with PBS and a cell lysis was performed with a lysis buffer
(6 M urea, 2 M thiourea, 10 mM Tris-HCl pH 8.0) supplemented with a protease in-
hibitor (complete Mini EDTA-free tablets, Roche), phosphatase inhibitor buffers (5 mM
glycerol-2-phosphate, 5 mM sodium fluoride, and 1 mM sodium orthovanadate) and
1% N-Ocetylglucoside (NOG) on ice for 10 min. DNA and RNA was removed with ben-
zonase (Merck, Darmstadt, Germany) for 10 min at RT followed by centrifugation at
2800× g (10 ◦C, 20 min). Proteins were purified by acetone precipitation and the protein
concentration was determined by a Bradford assay.

4.6. Protein Extraction from Formalin-Fixed Paraffin Embedded Tissue Preparation

Formalin-fixed paraffin-embedded (FFPE) tumor tissues were first de-paraffinized
by two washes in xylene (5 min, 50 ◦C) followed by three serial washes in ethanol (100%,
95% to 70%) for 10 min each. Ethanol was removed completely and sections were air-
dried. Lysis was carried out in 4% (v/v) SDS, 50 mM DTT, 100 mM HEPES with a pH
of 7.5 supplemented with a protease inhibitor at 95 ◦C for 60 min and by sonication for
15 min. Proteins were purified by acetone precipitation and the protein concentration was
determined by a Bradford assay.

4.7. Sample Preparation for MS Analysis

Purified protein pellets of different sample types were dissolved in a lysis buffer
(6 M urea, 2 M thiourea, 10 mM Tris-HCl pH 8.0), reduced using 100 mM DTT and alkylated
using 50 mM iodoacetamide followed by pre-digestion using endopeptidase Lys-C (Lysyl
Endopeptidase; Wako Chemicals, Richmond, VA, USA) for 3 h. After diluting the sample
to 2 M Urea with 10 mM ammonium bicarbonate, proteins were digested into peptides
using sequencing grade trypsin (1 µg per 100 mg protein; Promega Corporation, Madison,
WI, USA) overnight. Peptides were then acidified with 1% TFA and then either purified on
C18 stage tips (as described previously) or purified on Sep-Pak C18 Cartridge (Waters) and
eluted in 80% ACN for high pH reverse phase chromatography.

4.8. High-pH Reverse Phase Chromatography of PDX and Melanocyte Samples

High pH reverse phase chromatography was conducted using an Ultimate 3000 HPLC
(Thermo Fischer Scientific, Waltham, MA, USA) equipped with xBridge BEH130 C18 130A,
3.5 µm, 4.6 × 250 mm column (Waters, Milford, MA, USA) as described previously [33].
In brief, peptides were eluted with an 80 min gradient generated from solvent A (5 mM
NH4OH) and solvent B (5 mM NH4OH, 90% ACN) at pH 10. Fractions were collected
in the first 60 min of the gradient and concatenated into 30 pools followed by vacuum
centrifugation. Peptide pools were resuspended in 500 µL 80% ACN, 10 µg of the pool
was concentrated and desalted on StageTips prior to the LC-MS/MS measurements for
proteome analysis.
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4.9. Phosphopeptide Enrichment

Phosphopeptides were enriched using TiO2 beads (Titansphere, 10 µm; GL Sciences,
Shinjuku-Ku, Japan) as described previously [66]. A total of 1 mg of beads (in 80% ACN,
1% TFA) were added to acidified high pH fractions and incubated for 30 min in a rotation
wheel. Phosphopeptide-bound TiO2 beads were sequentially washed with 30% ACN,
1% TFA, followed by 50% ACN, 1%TFA and 80% ACN, 1% TFA Peptides were eluted
with 5% NH4OH into 20% TFA followed by 80% ACN in 1% FA. The eluate was reduced
by vacuum centrifugation, the pH was adjusted to <2.7 with TFA and the peptides were
desalted on C18 StageTips.

4.10. Liquid Chromatography–Mass Spectrometry

LC–MS/MS runs were performed on EASY-nLC 1200 UHPLC (Thermo Scientific)
coupled to Q Exactive HF and HFX Orbitrap mass spectrometers (Thermo Scientific). The
peptides were separated on 20 cm analytical HPLC columns (75 µm ID PicoTip fused silica
emitter (New Objective, Berks, UK); in-house packed using ReproSil-Pur C18-AQ 1.9-µm
silica beads (Dr Maisch GmbH, Ammerbuch, Germany)) using a water-acetonitrile gradient
of 60 min and 90 min for proteomic samples and phosphoproteomic sample fractions,
respectively. The FFPE samples were measured twice with a 60 min and 130 min gradient.
Gradients were generated by solvent A (0.1% formic acid) and solvent B (80% ACN in
0.1% acetic acid) with a flow rate of 200 nL/min at 40 ◦C. Peptides were ionized by
nanoelectrospray ionization at 2.3 kV and a capillary temperature of 275 ◦C. For high pH
proteomic fractions and FFPE samples, each full spectrum, acquired with 60,000 resolution
(automated control target of 3e6; fill time 25 ms for Q Exactive HF and 20 ms for Q Exactive
HFX), was followed by 12 tandem MS (MS/MS) spectra, where the 12 most abundant
multiply charged ions were selected for MS/MS sequencing with a resolution of 30,000, an
automated control target of 1e5, an injection time of 45 ms and collision energy of 27% for
Q Exactive HF and 28% for Q Exactive HFX. For phosphopeptide-enriched samples, full
MS scans were acquired with a resolution of 60,000 (AGC target 3e6, fill time 25 ms). The
seven most abundant multiply charged ions were selected for MS/MS sequencing with a
resolution of 45,000 on Q Exactive HFX and 60,000 on Q Exactive HF, an AGC target of 1e5
and a fill time of 220 ms.

4.11. DNA Extraction and Sequencing from Blood and Snap-Frozen Primary Tissue

For patient IDs 110 and 129, genomic DNA was extracted from blood and snap-frozen
primary tissue using a GeneElute mammalian genomic DNA isolation kit (Sigma-Aldrich)
according to the manufacturer’s instructions with slight modifications. Human snap-frozen
tissue was incubated in lysis solution C solution at 55 ◦C overnight, whereas blood samples
were incubated for 10 min. DNA was purified on GeneElute MiniPrep columns and eluted
with nuclease-free water. For patient ID 101, genomic DNA was isolated by c.ATG Core
Facility in Tuebingen using the QIAamp DNA Mini (QIAGEN, Hilden, Germany) kit as
recommended by the manufacturer.

At the c.ATG Core Facility in Tuebingen, the genomic DNA from each sample was as-
sessed for quantity and quality on Nanodrop spectrophotometer (ThermoFisher Scientific),
Qubit Fluorometer (ThermoFisher Scientific) and Bioanalyzer (Agilent, Santa Clara, CA,
USA) instruments. The exome captures and libraries were prepared using Sureselect XT
Human All Exon V7 Low Input kit (Agilent) with dual indexing according to the manufac-
turer’s instructions. The resulting libraries were sequenced on a NovaSeq 6000 instrument
(Illumina, San Diego, CA, USA) using S2 FlowCell (200 cycles). Exome sequencing data for
patient ID 111 were retrieved from the DKTK master trial [67,68].

4.12. Exome Sequencing Data Analysis

Raw sequence data were processed using an in-house pipeline developed at the Proteome
Center, Tuebingen. The raw reads were initially quality checked using FastQC software
(v. 0.11.8; Cambridge, UK) [69]. Illumina adapters and 5′/3′ low quality bases were trimmed
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from reads using Trimmomatic [70]. Paired-end reads from individual libraries were then
aligned to the H. sapiens reference genome (GRCh38) using the HiSAT2 aligner [71]. Reads
resulting from PCR duplication were marked using the Picard package. Germline variants
were called using the GATK HaplotypeCaller workflow, while the somatic variants were
identified using the GATK Mutect2 workflow [72]. Variants were recalibrated for scores and
filtered (soft-filter) using GATK (v. 4.1.2.0; Cambridge, MI, USA). SnpEff software (v. 4.3T;
Detroit, MI, USA) was used to perform the annotation of detected variants [73].

4.13. Generation of Personalized Protein Databases for MS Analyses

To integrate the proteogenomics datasets, we used an in-house bioinformatics pipeline,
which is coded entirely in the R programming language [74]. The transcript nucleotide
sequences were extracted from GRCh38 H. sapiens genome assembly and Ensembl transcript
annotation (via the BSgenome and GenomicFeatures packages). These sequences were
then translated in silico (from start to first stop codon) into a reference protein sequences
database (Biostrings package). The called variants, within Variant Call Format files from
A375 R and A375 S, were injected into each overlapping reference transcript nucleotide
sequence and then translated in silico. The resulting protein sequences were written
into two FASTA files containing reference variant protein sequences and sample-specific
alternate variant protein sequences.

4.14. Prediction of the Biological Impact of the Detected Variants

In the current study, we prioritized amino acid variants based on their impact in the
context of cancer, immune-checkpoints and protein phosphorylation. For this purpose,
known variant sites in cancer were retrieved from CGDS [75]. These were overlapped with
A375 identified variants and classified as loss/gain of sites. A list of oncogenes and tumor
suppressor genes was compiled from Cosmic, ONGene, Bushman lab and Uniprot [76–78],
whereas a list of genes involved within the immune checkpoint was retrieved from a
published study [79]. Patient-specific variants found on these genes were annotated as
relevant in cancer and/or immune checkpoints. In addition, each reference/alternate
variant protein sequence was annotated based on whether phosphorylation sites (S/T/Y)
were lost and/or gained (IRanges package). A list of known kinase motifs was retrieved
from PhosphoNetworks [80] and these motifs were searched along the reference/alternate
variant protein sequences. Located kinase motifs were overlapped with the position of
the variants to determine the loss/gain of the motifs. Known human phosphorylation
sites were retrieved from PhosphoSitePlus and Phospho. ELM databases [81,82]. The
variants identified in our study, which overlapped with known phosphorylation sites, were
annotated as a loss/gain of known phosphorylation. Finally, a Levenshtein similarity score
was calculated between the reference and alternate variant protein sequences, whereby
alternate sequences with less than 90% similarity to their reference were flagged.

Each amino acid within the variant protein sequences was attributed a “+1” score for
every overlap with an impact annotation. A summed score was then calculated for each amino
acid within the alternate variant sequence and the maximum summed score was reported
for that variant protein isoform. Because the score depends on the number of impacts used
during the annotation, we also computed a scaled maximum score (between 0 and 1), to allow
a comparison between processing. Following the computation of all impacts, each variant
protein isoform was ranked to allow prioritization for follow up studies.

4.15. Mass Spectrometry Data Analysis

The LC–MS/MS data were searched against the PCTi H. sapiens reference (100,906 entries)
and individualized alternate databases (101 = 43,086 entries; 110 = 44,789 entries; 111 = 28,333 entries;
129 = 39,811 entries), as well as the UniProt H. sapiens (release 11 December 2019; 96,788 entries)
and M. musculus (release 11 December 2019; 63,660 entries) databases and commonly
observed contaminants using the Andromeda search engine integrated into MaxQuant
software (version 1.5.2.8, Munich, Germany) [83]. Carbamidomethylation of cysteine (C)
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was set as a fixed modification and oxidation of methionine, phosphorylation at serine,
threonine or tyrosine were defined as variable modifications. Trypsin/P was selected as
a protease. No more than two missed cleavages were allowed. The MS tolerance was
set at 4.5 ppm and MS/MS tolerance was set at 20 ppm for the analysis using the HCD
fragmentation method. The false discovery rate (FDR) for peptides and proteins was
set to 1%. The PDX and FFPE samples were quantified using intensity-based absolute
quantification (iBAQ).

4.16. Statistical Analyses and Data Visualization

Statistical analyses were performed with Perseus software suite (version 1.6.5.0,
Munich, Germany). We initially filtered out all reverse and potential contaminants hits.
Because PDX samples can have varying amounts of murine protein contamination (due
to sample generation), we annotated each ENSEMBL protein ID with the corresponding
taxonomic information (i.e., Homos sapiens or Mus musculus). Identified proteins and phos-
phorylation sites were divided into three classes based on taxonomic classification: class I
contained proteins/sites annotated exclusively as human, class II were shared between hu-
man and mouse, and class III were annotated exclusively as mouse (see Table S2). Because
proteins of murine origin were irrelevant in this study, we filtered out all proteins and
phosphorylated sites of class III. A list of identified filtered protein and phosphorylation
sites for each sample are provided in Tables S1–S4. To find significant differences between
the PDX/FFPE samples and melanocytes, label-free quantification was used and outliers
were determined for the log2-transformed ratios using significance B (p-value ≤ 0.05). The
ratios of identified phosphorylation sites were normalized to the ratios of corresponding
protein groups. For significantly up- and down-regulated proteins (phosphorylation sites)
as well as variant protein isoforms, pathway over-representation was performed. The
resources used for the annotation of proteins were Gene Ontology (GO), Biological Pro-
cesses (GOBP), GO Cellular Compartment (GOCC), GO Molecular Functions (GOMF) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome Pathway database
(Reactome). The Fisher-Exact test (p-value ≤ 0.2) was used to check for over-represented
categories among significantly regulated proteins and variant protein isoforms. A list of all
the over-representation results is provided in Tables S2 and S4.

In order to compare naïve versus ICi-treated patients, the IBAQ intensities of naïve
or ICi-treated patients were averaged and the ratio of ICi-treated versus naïve patients
was calculated. Outliers were determined with Significance B (FDR ≤ 0.05) using the
log2-transformed ratio. For significantly regulated proteins and significantly regulated
proteins harboring an alternate variant peptide, hierarchical clustering was performed
and a visual heat map representation of the clustered matrix was produced. Pathway
over-representation and the Fisher-Exact test (p-value ≤ 0.2) was performed for each cluster.

Venn diagrams to show the overlap between the identified nucleotide variants from the
WES analysis and between the protein identifications from the PDX and FFPE material were
performed with the online tool https://www.stefanjol.nl/venny (accessed on 21 October 2021).

Protein-protein interaction networks were generated online via String (https://string-
db.org/) (accessed 21 October 2021). based on significantly changing (between ICi-treated
and naïve patients) alternate variant isoforms.

4.17. Identification of Amino Acid Variants

Our in-house proteogenomics bioinformatic pipeline was used to integrate the WES
and MS datasets, specifically to check which variants were identified across omics datasets.
Initially, the reference (i.e., corresponded to the amino acid sequence from the reference
database) and the alternate variant (i.e., corresponded to the sequence containing an amino
acid variant) protein sequences were digested in silico according to laboratory conditions,
i.e., digestion with trypsin and up to two missed cleavages (cleaver package). The overlap
of MS-identified peptides with in silico digested peptides led to the classification into the
reference (non-mutated peptide that overlapped with the position of the variant on the

https://www.stefanjol.nl/venny
https://string-db.org/
https://string-db.org/
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reference protein), alternate (mutated peptide that overlapped with the position of the
variant on the alternate protein) or unspecific (non-mutated peptide that did not overlap
with any mutated positions) variant peptides. On the basis of this peptide classification,
we summarized the identification of the peptides as per the variant protein isoforms,
allowing coverage of the characterization into reference only, alternate only, reference and
alternate or unspecific. We finally focused on PTM (as implemented in the MaxQuant
processing), which here consisted of phosphorylation sites. Reference and/or alternate
variant peptides found to be phosphorylated were flagged as such, as well as those where
the phosphorylation occurred directly on the variant sites (either on reference or alternate
variant sequences). This coverage information was exported within MaxQuant style
processing results (tab-separated file as output).

We also generated interaction networks within the R programming environment [74].
These networks were generated using protein–protein (using BioGRID database), drug–
target (using DrugBank database) and predicted kinase–substrate (PCTi results) interac-
tions [53,78]. The generated networks were exported (using igraph and RCy3 packages)
into Cytoscape for further customization [84].

4.18. Signaling Network Reconstruction

We reconstructed the network of protein–protein interactions using the BioGRID
database (release 3.5.169) [53]. We used only interactions that were reported in H. sapiens
and showed at least two types of experimental evidence (e.g., two publications, two
methods). Networks were generated undirected, as such information was missing from
BioGRID. In addition, self-linked interactions and orphan nodes were removed (igraph
package). For the patient-specific network (comparison against melanocytes), we retrieved
protein–protein interactions strictly between the significantly changing proteins or phos-
phorylation sites. For protein target prioritization, we ranked (from high to low) the nodes
based on the number of edges within each interaction network and retained only the top
200 nodes. The patient-specific networks were exported (using igraph and RCy3 packages)
into Cytoscape to improve visual formatting [84].

Possible drugs interacting with each patient-specific network were retrieved from the
DrugBank database (release 24.10.2019) based on their targets [85]. Only drugs showing an
effect in H. sapiens were used. All drugs were retained, irrespective of their category (e.g.,
inhibitor), chemical kingdom (e.g., organic compound) or approval status (e.g., approved,
experimental). The specificities of the drugs, interacting with nodes from the generated
network, were calculated based on all possible targets reported in the DrugBank database.
Drugs were prioritized further by summing the number of interactions their targets had
within the network.

For the network of naïve versus ICi-treated patients, we initially selected significantly
changing proteins that were involved in the immune system (based on Reactome annotation).
We then retrieved the interactions between the significantly changing proteins, as well as
their direct interactors. Network hubs were highlighted by increasing the node size and the
difference between naïve and ICi-treated patients was displayed via color-coding. Only the
top 50 nodes were retained for this network. The immune-related network was exported
(using igraph and RCy3 packages) into Cytoscape to improve visual formatting [84].

4.19. Cell Viability Assay

For the MTS viability assay, melanoma cells were seeded at a density of 2500 cells in
100 µL per well in a 96-well plate. The following day the cells were treated. The treatment
was conducted via serial dilution ranging from 0.039 µM to 20 µM of the different inhibitors.
As a control, wells without any treatment and wells with medium plus DMSO were used.
For each treatment and cell line, quadruplicates were tested. Cells were treated for 72 h
at 37 ◦C. Afterwards, 20 µL MTS solution (2 mg/mL) was added to each well followed
by a 2 h incubation period. Absorbance was measured with a microplate reader (Tristar,
Berthold) at a wavelength of 495 nm. Control wells were defined as 100% cell viability.
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5. Conclusions

Individualized proteogenomics allows the detection of sample-specific variants at the
genome, proteome and PTM levels. Here, we studied the mutational landscape of four
clinical patients in response to immunotherapy. Our dataset will serve the cancer research
community as a resource of clinical genomic, proteomic and phosphoproteomic profiles,
which are still sparse in melanoma. Our approach revealed a patient-specific mutational
landscape and their accumulation in signaling pathways, whereas network modeling
predicted personalized drug interventions and highlighted differences in immune response
between ICi-treated and naïve patients. While our findings will be of limited value for
characterizing general pathways that cause the disease, they provide an insight into the
complexity of the mutational landscapes of individual patients, they reveal the extent to
which genomic variants influence proteins and their modifications and they underscore
the need for a personalized approach to cancer treatment.
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