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Simple Summary: Head and neck cancer (HNC) is the sixth most common cancer, causing almost
half a million deaths worldwide every year. The two subtypes of HNC are distinctly associated
with smoking/drinking and/or human papillomavirus (HPV) infection. While the incidence of
non-viral HNC is decreasing, HPV-positive HNC incidence has dramatically increased in the last few
decades. Accumulating evidence from numerous studies shows molecular and clinical differences
in mutations, gene expression regulation, treatment responses, and patient survival rates between
HPV-positive and HPV-negative HNC. Here, we discuss the current status of HNC research and
clinical approaches and suggest unanswered questions and future directions.

Abstract: Head and neck squamous cell carcinoma (HNSCC) is a unique malignancy associated with
two distinct risk factors: exposure to typical carcinogens and infection of human papillomavirus
(HPV). HPV encodes the potent oncoproteins E6 and E7, which bypass many important onco-
genic processes and result in cancer development. In contrast, HPV-negative HNSCC is developed
through multiple mutations in diverse oncogenic driver genes. While the risk factors associated with
HPV-positive and HPV-negative HNSCCs are discrete, HNSCC patients still show highly complex
molecular signatures, immune infiltrations, and treatment responses even within the same anatomi-
cal subtypes. Here, we summarize the current understanding of biological mechanisms, treatment
approaches, and clinical outcomes in comparison between HPV-positive and -negative HNSCCs.

Keywords: head and neck cancer; head and neck squamous cell carcinoma; human papillomavirus;
treatment; clinical outcome; tumor microenvironment; molecular carcinogenesis; microbiome;
surgery; de-escalation strategies; clinical trials

1. Introduction

Head and neck squamous cell carcinomas (HNSCC) comprise squamous cell carci-
noma of the oral cavity, nasal cavity, pharynx (oropharynx and hypopharynx), larynx, and
tongue. Combining them all, more than 68,000 cases of HNSCC are annually reported,
accounting for ~4% of all cancers in the United States [1]. Unlike most other solid cancers,
HNSCCs arise from broad anatomical sites where cell type compositions are largely diverse
with high heterogeneity. While smoking and drinking are well known as main risk factors,
a significant number of HNSCCs in the oropharynx are also associated with infection of
viruses such as human papillomavirus (HPV) [2–4].

The molecular and clinical differences of HPV-positive (HPV+) and HPV-negative
(HPV−) HNSCCs are substantial; and they are now largely considered as two distinct
cancers despite their histological similarities [2,5,6]. HPV+ HNSCC is caused by the various
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oncogenic functions of high-risk HPV E6 and E7, which may efficiently compensate for
common oncogenic driver mutations that lead to HNSCC carcinogenesis (Figure 1) [2,5,7].
Indeed, the Cancer Genome Atlas (TCGA) data demonstrate significantly higher mutation
loads in HPV− HNSCC than in HPV+ HNSCC [8–10].
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PTEN, phosphatase and tensin homolog; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha; HRAS, Hras proto-oncogene, GTPase; CCND1, cyclin D1; CDK6, cyclin
dependent kinase 6; CDKN2A, cyclin dependent kinase inhibitor 2A; let-7c, microRNA let-7c; RB1,
RB transcriptional corepressor 1; MYC, MYC proto-oncogene, BHLH transcription factor; E2F1, E2F
transcription factor 1; TP53, tumor protein P53; TNFR, tumor necrosis factor receptor; FADD, fas
associated via death domain; CASP8, caspase 8; TRAF3, tumor necrosis factor receptor associated
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The incidence of HNSCC in the oropharynx associated with HPV infection has signifi-
cantly increased in the last few decades [11,12]. The overall incidence of HPV− HNSCC has
decreased, probably due to the reduction in smoking populations in the United States [13].
Several recent studies have shown that the oncogenic mechanisms of HNSCCs, particu-
larly between HPV+ and HPV− HNSCCs, are unique and extremely diverse [5,8]. HPV+
HNSCC patients show significantly better survival rates following the standard chemora-
diation therapy (CRT) compared to HPV− HNSCC patients [14–16]. However, despite
these improved outcomes, those with HPV+ HNSCC still develop recurrent/metastatic
(R/M) disease as the high-risk subgroup of HPV+ HNSCC. There is little insight to clearly
explain the mechanisms that lead to the differential response to CRT and patient survival.
Although it is under intense focus, limited tools are available to distinguish those within
the high-risk subgroup of HPV+ HNSCC.

This high diversity and heterogeneity of HNSCC make it arduous to identify key
targets to develop effective cancer therapeutics and treatment strategies. As a brainstorming
effort to overcome these hurdles, here we summarize the current state of our understanding
and clinical observations to inform future directions in HNSCC research.

2. Molecular Carcinogenesis Is Distinct between HPV+ and HPV− HNSCCs

The genetic landscape of HNSCC carcinogenesis shows two distinct oncogenic path-
ways, driven by either chemical carcinogens or HPV infection [2]. Smoking and alcohol
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use have long been characterized as the major risk factors for developing HNSCC, inde-
pendent of HPV infection [17–19]. The carcinogenic nitrosamines formed from tobacco
and acetaldehyde from alcohol can be metabolically activated and covalently bound to
DNA, forming DNA adducts that disrupt the DNA double helix [20,21]. Persistent DNA
adducts lead to hypermutations and chromosomal instability, some of which accidentally
dysregulate crucial cellular mechanisms and pathways in cell homeostasis, resulting in
cancer progression [22,23]. This effect may be exacerbated by alcohol, as it can act as a
solvent to introduce tobacco-related carcinogens into the mucosa of the head and neck
region [24,25]. Furthermore, alcohol induces the enzyme encoded by cytochrome p450 2E1
(CYP2E1), an activator of nitrosamine metabolism [26]. As a result, alcohol and tobacco
act synergistically to promote HNSCC carcinogenesis [19,27]. Beyond alcohol and tobacco,
other topical exposures, such as betel nuts, are known to be linked to HNSCC by generating
nitroso-derivatives similar to tobacco smoking from alkaloid ingredients [28,29].

In many cases, tobacco is sufficient to exert carcinogenic effects independent of alcohol
use. The risk of the development of HNSCC with tobacco alone is higher than alcohol alone.
However, the combination of alcohol and tobacco has a multiplicative associated risk [30].
Studies have shown that the reactive oxygen and nitrogen species found in cigarette smoke
(CS) are known to lead to oxidative stress and activation of proinflammatory pathways
in lung fibroblasts [31–33]. Recently, it was shown that fibroblasts exposed to CS have
the potential to alter the tumor microenvironment (TME) in HNSCC through similar
mechanisms as the lung fibroblasts [34,35]. CS induced oxidative stress and expression
of the hypoxia responsive gene monocarboxylate transporter 4 (MCT4) in fibroblasts
in vitro [36]. Tumors generated from co-injection with CS-exposed fibroblasts showed a
marked increase in the macrophage markers CD45 and CD68 in vivo [37]. CS is also well
known to induce immune suppression by modulating various immune mechanisms in
other cancers [38–40]. Notably, increased macrophages in the TME are a characteristic
of HNSCC associated with smoking and immune suppression [37,41,42]. This suggests
that smoking dysregulates antitumor immune mechanisms that are distinct from virus-
mediated immune suppression [43]. The differential immune dysregulations are further
discussed below.

An emerging mechanism of tobacco-induced carcinogenesis is through altered mi-
croRNA (miRNA) expression [44,45]. miRNAs are small, non-coding RNAs that play a role
in posttranscriptional gene regulation and translation inhibition [46]. Disruption of miRNA
regulation by tobacco exposure may lead to changes in major cellular signaling pathways
and metabolic processes. Indeed, increased production of nicotine-derived nitrosamine ke-
tone (NNK), a carcinogenic component of tobacco, in HNSCC cells upregulates expression
of several oncogenic miRNAs, including miR-21, miR-155, and miR-944, while downreg-
ulating expression of the tumor suppressor miRNA miR-422a in HNSCC cells in in vitro
culture [47,48]. The upregulation of miR-944 expression in HNSCC induces the secretion of
proinflammatory cytokines and activates signal transducer and activator of transcription
3 (STAT3), contributing to tumorigenesis [48]. Using mouse and rat models of tobacco-
associated HNSCC, a recent study has shown that the family of miR-30 is significantly
downregulated in tumors compared to normal tongue tissue [49]. The cellular targets of
the miR-30 family of microRNAs (miRNAs) include messenger RNAs (mRNAs) involved
in cell proliferation, differentiation, adhesion, and invasion [50,51]. This downregulation of
the miR-30 family has also been observed in the analyses of HNSCC cell lines and TCGA
HNSCC datasets [49,52]. However, miRNA targets are context-dependent, many are still
unknown including the contributions of HPV, and cell lines and animal models may differ
from patient samples. Thus, further studies are needed to establish a causal link between
tobacco induced HNSCC development and miRNA alterations.

Conversely, the genetic alterations observed in HPV-driven HNSCCs are predomi-
nantly caused by the viral oncogenes E6 and E7 following persistent infection of high-risk
HPV, such as HPV16 and HPV18. The HPV genome is also frequently integrated into
the host chromosome, occasionally forming concatemers of multiple HPV E6/E7 seg-
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ments [53,54]. The linearization of the HPV genome creates a breakpoint in the early gene
E2, the only transcription factor encoded by the HPV genome [55,56]. While HPV E2
functions as a negative regulator of early viral gene expression, including E6 and E7, inte-
gration of the HPV genome frequently truncates E2, preventing transcriptional repression
of the E6 and E7 oncogenes [57,58]. High-risk HPV E6 and E7 dysregulate various cellular
pathways, including inactivation of the tumor suppressors p53 and pRB, respectively [59].
Furthermore, the varying integration sites have been shown to alter gene expression to pro-
mote cancer progression. For example, it has been found that HPV DNA insertion into the
RAD51 homolog 2 (RAD51B) gene, which is a core component of the DNA double-strand
break repair, promotes the formation of alternative transcripts, generating a non-functional
RAD51 protein [58,60]. In addition to the E6/E7, a recent study suggests an alternative
oncogenic mechanism of the E2/E4/E5 subtype of HPV+ HNSCC containing episomal
HPV, which shows fibroblast growth factor receptor (FGFR) activation and p53-dependent
cell proliferation [61].

The previous TCGA studies have revealed that HPV+ HNSCC shows significantly
lower rates of allelic loss and genetic mutations compared to HPV− HNSCC [8,9]. The
coding sequences of several tumor suppressors in HPV− HNSCC contain driver mutations
that are not observed in HPV+ HNSCC (Figure 1). One of the most striking contrasts
is p53, which is mutated in the vast majority of HPV− HNSCC, but rarely in HPV+
HNSCC [8,62]. In addition, a comparison of HPV+ and HPV− tumor samples from patients
of a similar age and tumor site using microarray-based comparative genomic hybridization
(maCGH) showed a significantly higher number of chromosomal alterations in HPV−
tumors compared to HPV+ tumors [63,64]. Four chromosomal regions, the smallest of
which spanned four megabases, were found to be significantly altered in HPV− tumors,
whereas no change or a change in the opposite direction were found in HPV+ tumors [63].
In contrast, distinct chromosome aberrations are associated with viral integration sites
in HPV+ HNSCC, contributing to cancer progression [65,66]. Taken together, it is likely
that expression of the viral oncogenes E6 and E7 is sufficient to inactivate many of the
critical tumor suppressor pathways, promoting carcinogenesis without generating somatic
mutations in tumor suppressor genes.

In addition to the dysregulation of the common oncogenic pathways, there are gene
expression distinctions between HPV+ and HPV− HNSCCs. Our previous studies of
global gene expression analysis revealed that expression of cell cycle-related genes is
highly expansive in HPV+ tumors and dissimilar to HPV− HNSCC [5,67]. These unique
gene expression patterns are functionally associated with the significantly higher cell
proliferation rate of HPV+ tumor cells compared to HPV− tumor cells. These findings
imply that HPV+ HNSCC is a cancer type that is distinct from HPV− HNSCC, and
accordingly requires different treatment strategies.

3. Differential Immune Responses between HPV+ and HPV− HNSCCs

It is expected that there are fundamental differences in immune responses between
HPV+ and HPV− cancers, as HPV+ HNSCC expresses viral proteins as foreign antigens,
in addition to other neoantigens created by viral integration and mutagenesis induced by
the viral restriction factor APOBEC3 [68–70]. In contrast, HPV− HNSCC lacks foreign
antigens, rather, they are generated from extensive random mutations or overexpressed
cellular genes [16,71]. Accordingly, it is generally accepted that HPV+ HNSCC shows more
robust antitumor immune responses compared to HPV− HNSCC. Nevertheless, recent
immunotherapy trials have not found any clear benefits of using immune checkpoint
inhibitors to treat HPV+ HNSCC patients compared to HPV− HNSCC patients [72,73].
These results suggest that antitumor immune regulations might be extremely complex
and cannot be explained as a dichotomic concept. Here, we summarize diverse aspects
of immune components and patient outcomes, to better understand the current status,
limitations, and future directions.
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As of now, the abundance of tumor infiltrating lymphocytes (TILs) is the most con-
vincing prognostic immune marker in HNSCC, as well as several other cancers [74]. HPV+
HNSCC generally shows higher levels of T cell infiltration, particularly CD8+ T cells,
and better clinical outcomes by standard therapy (Figure 2) [75–79]. Over 60% of HPV+
oropharyngeal squamous cell carcinoma (OPSCC) patients show accumulation of stromal
or intratumoral CD8+ TIL. Both stromal and intratumoral CD8+ TIL abundance is highly
correlated to patient survival [76]. However, the correlation between CD8+ TIL and patient
survival seems obscure in HPV− HNSCC [78]. This may be caused by the specific anatomi-
cal site that is highly prevalent for HPV+ HNSCC, the oropharynx, where immune cells are
relatively abundant. The TME of HPV+ HNSCC also contains higher levels of CD4+ TILs
than the HPV− HNSCC TME. While the prognostic value of the CD4+ TILs is still contro-
versial, a subpopulation of CD4+ CD161+ TILs specific to HPV16 positively correlates to
patient overall survival [77]. In addition, a recent single cell RNA-seq study of the immune
landscape in HPV+ and HPV− HNSCC has revealed that a CD4+ T follicular helper (TFH)
cell-related gene expression signature is associated with longer progression-free survival
in HNSCC patients [16]. However, it is unclear whether the favorable outcome is due to
the antibody reaction mediated by T follicular helper cells, or a mere correlation is caused
by the broad enhancement of immune responses [80–82].
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levels of PD-1 expression in HNSCC is associated with better patient outcome. Indeed, 
Bhatt et al. have revealed that HPV16-specific T cells are abundant and reactive to almost 
all viral proteins, E1, E2, E4, E5, and L1, in addition to E6 and E7 [85,86]. These findings 
suggest that exhausted T cells specific to HPV may indicate previous antitumor immune 

Figure 2. A summary of immune dysregulation and evasion in the tumor microenvironment (TME)
of HPV+ (left) and HPV− (right) HNSCCs. The differential immunophenotypes in the TME between
HPV+ and HPV− HNSCC are depicted, based on three different spatial distribution of CD8+ T cells
previously proposed [83,84]. The highly inflamed phenotype of HPV+ OPSCC may be caused by the
anatomical distinction of oropharynx composed of the lymphoid tissue. CD4T, CD4+ T cell; CD8T,
CD8+ T cell; Treg, regulatory T cell; B, B cell; T, T cell; M1, M1 macrophage; M2, M2 macrophage; pDC,
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factor-α; TGFβ, transforming growth factor-β; PD-1, programmed death-1; PD-L1, programmed
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Interestingly, HPV+ HNSCC shows a significantly higher expression of the immune
checkpoint protein PD-1 than HPV− HNSCC (Figure 2). Despite PD-1 playing a key role
in inhibiting antitumor effector T cell functions, several studies have shown that the high
levels of PD-1 expression in HNSCC is associated with better patient outcome. Indeed,
Bhatt et al. have revealed that HPV16-specific T cells are abundant and reactive to almost
all viral proteins, E1, E2, E4, E5, and L1, in addition to E6 and E7 [85,86]. These findings
suggest that exhausted T cells specific to HPV may indicate previous antitumor immune
activation against tumor cells expressing viral antigens, and still maintain certain antitumor
potentials. In contrast, the correlation between PD-1 expression and patient outcome is still
confusing in HPV− HNSCC [81,87]. Unlike PD-1, high PD-L1 expression on tumor cells
correlates to favorable patient survival in HPV− HNSCC, but not in HPV+ HNSCC, while
high PD-L1 expression on macrophages is associated with better prognosis [88,89].
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Compared to HPV− HNSCC, HPV+ HNSCC also shows a higher expression of Th1
and exhaustion markers, such as CD39, LAG3, PD1, TIGIT, and TIM3 [90]. The expression
levels of these T cell exhaustion markers correlate to overall survival of patients with HPV+
HNSCC, but not with HPV− HNSCC [90]. These results imply that reactivation of the
exhausted T cells, a significant portion of which might recognize HPV-specific antigens,
could be a useful strategy to treat HPV+ HNSCC patients. However, it is still possible
that the T cells recognize other tumor-specific antigens generated in HPV+ HNSCC, as
a previous study revealed that the majority of tumor-reactive T cells in cervical cancer
recognize tumor neoantigens from somatic mutations, or a germline-specific antigen rather
than viral antigens [91].

While tumor antigen presentation by major histocompatibility complex I (MHC-I) is
critical for antitumor T cell functions, MHC-I expression is controversial. Similar to several
viruses, it is well known that HPV has multiple mechanisms through the oncoproteins E5
and E7 to downregulate MHC-I expression on virus-infected host cells (reviewed in [43]).
Our previous studies have also shown that expression of all MHC-I α subunits except HLA-
F are significantly downregulated in normal keratinocytes containing high-risk HPV in an
E7-dependent manner [92,93]. While high-risk HPV E7 is sufficient for the downregulation
of HLA-B/C and HLA-E expression, low-risk HPV E7 conversely increases HLA-B/C
and HLA-E expression. Further, the downregulation of HLA-C and HLA-E expression
were also observed in HPV+ HNSCC, in a comparison using the TCGA RNA-seq data [92].
Wuerdemann et al., also found a loss of MHC-I protein expression more frequently in HPV+
HNSCC than HPV− HNSCC patient samples [89]. In contrast, another study reported that
a group of genes in MHC-I and the peptide loading complex are significantly upregulated
in HPV+ HNSCC [94]. This discrepancy might be caused by the limitations in the standard
criteria of tissue sample collections, spatial and temporal heterogeneity, and appropriate
technologies to detect MHC-I expression on cancer cell surface from patient tissues. Thus,
further studies using more sophisticated and robust experimental approaches are required
for conclusive results.

In addition to T cells, B cell infiltration into the TME is frequently observed and
associated with a favorable prognosis [95]. Recent studies have revealed that HPV+ HN-
SCC has tertiary lymphoid structures (TLS) with germinal center tumor infiltrating B
cells (TIL-Bs) and non-organized aggregates containing CD20+ TIL-Bs and CD8+ T cells
(Figure 2) [96,97]. Wood et al. also found a B cell-specific gene signature in HPV+ HNSCC,
in which the expression is distinct and significantly higher than in HPV− HNSCC [98].
These findings suggest the importance of B cell infiltration into the TME. However, it is
still unclear if the TIL-Bs play an important role in antitumor immunity, or just act as
bystanders correlated with high levels of TIL.

Tumor-associated M2 macrophages have been suggested as an adverse prognostic
factor in HPV− HNSCC, showing that high infiltration of CD163+ macrophages is linked
to poor patient survival (Figure 2) [99]. However, HPV+ HNSCC does not show this corre-
lation despite a significantly increased infiltration of both M1/M2 and M2 macrophages in
the stroma compared to HPV− HNSCC [99]. Infiltration of CD163+ type 2 conventional
dendritic cells (cDC2) into the TME correlates to a Th1 response and better patient survival
in HPV+ HNSCC [100]. In contrast, plasmacytoid dendritic cells (pDCs), known as a
protumor DC, significantly suppress IFNα production in HPV− HNSCC via secretion of
IL-10 and TNFα in HPV− HNSCC (Figure 2) [101]. Additionally, there is a correlation
between pDCs with Tregs in the TME of HPV− HNSCC but not in HPV+ HNSCC [101].
These results suggest that even similar types of macrophages and DCs function differently
between HPV+ and HPV− HNSCC patients.

Another interesting difference is the serum levels of the inflammation marker C-
reactive protein (CRP), which are significantly higher in HPV+ HNSCC patients compared
to HPV− HNSCC. However, high circulating CRP levels are associated with poor overall
survival and recurrence-free survival only in HPV− HNSCC patients [102]. HPV+ HN-
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SCC patients have higher serum levels of CRP but better overall survival than HPV−
HNSCC patients.

A number of studies have shown the fundamental differences in immune responses
between HPV+ and HPV− HNSCC. Nevertheless, recent immunotherapy trials using
immune checkpoint inhibitors showed no significant difference between HPV+ and HPV−
HNSCC in the response rate [72,103,104]. This is particularly interesting as it is well
established that HPV+ HNSCC shows significantly higher expression levels of PD-1 and
PD-L1 expression compared to HPV− HNSCC. Thus, it is critical to better understand
what other immune factors contribute to antitumor immune responses to clear HPV+ and
HPV− HNSCCs differentially.

4. Differential Contributions of Oral Microbiome to HPV+ and HPV− HNSCCs

The human microbiome is the ecological system of commensal, symbiotic, and
pathogenic microorganisms inhabiting our bodies [105]. Recent studies have shown that
changes in microorganism species in the microbiome, despite many of them being commen-
sal, contribute to host immune dysregulation and carcinogenesis [106–109]. Identification
and exploration of the interplay between microorganisms and the human host may provide
new insights to a novel treatment axis.

Five bacterial phyla, Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, and Actinobac-
teria, are known to be dominant in the oral microbiota in both healthy individuals and
HNSCC patients (Table 1) [110,111]. Nevertheless, significant differences in beta diversity
in the microbiome have been observed between healthy buccal mucosal specimens and
oral cancer and oropharyngeal tumor tissues [110]. HPV status was also shown to correlate
to bacterial abundance. These differences seen when comparing HPV+ and HPV− HNSCC
may be due to interactions between the oral microbiota and behavioral/viral risk factors,
such as smoking, alcohol, and HPV infection. Firmicutes were increased in OPSCC whereas
Bacteroidetes and Proteobacteria were decreased [111]. When looking at genus-level pro-
files, Haemophillus was found to be dominant in HPV− HNSCC samples, while Veillonella,
Megasphaera, and Anaerolineae showed a higher abundance in HPV+ HNSCC compared to
HPV− HNSCC [111,112]. Interestingly, a longitudinal study showed that HPV+ HNSCC
patients who later tested negative for HPV infection post-treatment recorded changes in
Veillonella, Lactobacillus, and Streptococcus abundance [111], suggesting a role of HPV related
to microbiome expression profiles.

Table 1. Microbiome studies in HNSCC patients.

Type Samples Population Major Findings

Longitudinal Cohort
Study

59 (from 42 patients)
17 HNSCC (7 HPV+ OPSCC, 4

HPV− OPSCC, 6 HPV− OSCC),
25 control

Shift in bacterial abundance in HPV+ OPSCC following
treatment; microbial diversity may be used as a

diagnostic for HNSCC [111]

100 (from 50 patients) Tumor and non-tumor sites from
OSCC patients

Increased richness and diversity in OSCC tumor sites;
higher prevalence of Prevotellaceae, Fusobacteriaceae,

Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae,
and Campylobacteraceae in OSCC [110]

83
Tumor and anatomically matched

normal tissue from oral cancer
and pre-cancer

Reduction of Firmicutes and Actinobacteria in cancer [112]

Prospective study

383 129 HNSCC and 254 matched
controls

Corynebacterium and Kingella are associated with a lower
risk of HNSCC [113]

38
18 oral cavity squamous cell

cancer (OCSCC), 8 pre-malignant
lesions, 12 control

Fusobacterium, Prevotella, Alloprevotella-enriched in
OCSCC [114]

51 27 smokers with and 24 without
HNSCC

Higher relative abundance of bacteria involved in
xenobiotic and amine degradation in HNSCC [115]

Retrospective analysis 151 Oral squamous cell carcinoma
(OSCC) patients

F. nucleatum-associated OSCC is associated with
favorable prognosis [116]

325 Esophageal Cancer (300 SCC,
12 adenocarcinomas, 13 others)

F. nucleatum is a potential biomarker for esophageal
cancer is associated with poor prognosis [117]



Cancers 2021, 13, 5206 8 of 30

The impact of chronic alcohol consumption in the oral microbiome negatively corre-
lates to the abundance of Lactobacillus, one of the most common probiotic microbes [118,119].
The decrease in Lactobacillus potentially enhances the alkaline-tolerant bacteria and pro-
motes the growth of ethanol-related pathogens in the oral microbiome, such as Neisseria
and Corynebacterium [120]. Corynebacterium, an aerobic, gram-positive genus in the Acti-
nobacteria phylum, is associated with the breakdown of toxins found in cigarette smoke and
oxidation of ethanol to acetaldehyde (Table 1) [113,121]. The catabolism of tobacco-related
toxins slows down carcinogenesis, and accordingly, a higher abundance of Corynebacterium
is correlated with a lower risk of HNSCC [113].

It is also important to consider that a majority of individuals in the high-risk category
due to smoking, alcohol, and/or HPV infection do not develop cancer. One emerging factor
to explain this variance is the diverse oral microbiota that differentially affects host immune
responses to carcinogenesis. A comparison of the oral microbiome between smokers with
and without HNSCC have shown that the smoker HNSCC patients have diminished
populations of common commensal bacteria involved in carbohydrate metabolism, such
as Selenomonas, Veillonella, and Kingella (Table 1) [114]. Alternatively, a pathway analysis
showed a significant increase in bacterial taxa involved in xenobiotic degradation, such
as Stenotrophomonas, otherwise absent in healthy individuals [115]. Despite both groups
experiencing exposure to the harmful toxins of tobacco, the different oral microbiota is
associated with significant different incidence of HNSCC, suggesting that the microbiome
plays a role in HNSCC carcinogenesis.

Indeed, the Fusobacterium phylum has been discovered to play an important role in
promoting HNSCC development independent of tobacco, alcohol, or HPV infection [110].
The bacterial species included in Fusobacterium are significantly enriched in HNSCC tissues,
causing increased expression of virulence factors in the oral microbiome [110]. Meta-
analysis of patient samples also showed a higher abundance of Fusobacterium in HNSCC
tumor samples compared to both adjacent normal tissues and tissues from healthy indi-
viduals (Table 1) [110,116,122,123]. Ironically, however, patients with F. nucleatum-positive
HNSCC showed a favorable prognosis compared to F. nucleatum-negative HNSCC pa-
tients [124], while F. nucleatum in esophageal cancer is associated with aggressive disease
and poor survival [117]. This may be attributed to F. nucleatum-mediated modulation of
local immunity via downregulation of TNFSF4 and PDGFRβ in fibroblasts, both of which
are associated with poor prognosis of HNSCC patients [116]. Additionally, F. nucleatum
was correlated to low tobacco and alcohol use, suggesting a role in the TME independent
of the major risk factors of HNSCC.

Taken together, the oral microbiome plays an important role in HNSCC carcinogenesis.
Interactions of the oral microbiota with the major risk factors of tobacco and alcohol can
exacerbate their carcinogenic effects. While studies have shown differential microbiota
expression associated with HPV infection, additional work is needed to uncover the effect
of the altered oral microbiome on HNSCC carcinogenesis. Considering both anatomical
location and HPV status, developing novel and combination therapies by targeting the
microbiota has great potential to improve patient treatment and outcome.

5. Race, Sex, and Disparity in HPV+ and HPV− HNSCCs

There is a clear difference in incidence of HPV+ HNSCC in females compared to males.
While the factors that contribute to sexual disparity are largely unknown, several interesting
hypotheses have been suggested. As reviewed in Sabatini et al., [125], there may be varying
levels of viral exposure to the oropharynx depending on the route of transmission (vaginal-
to-oral vs. penile-to-oral). Chatterjee et al. found intriguing differential gene expression
profiles in rafts of tonsil, cervical, and foreskin keratinocytes, raising the question of tissue
type specific cancer progression [126]. Another consideration is the protective effect of
estrogen in cancer development [125]. Beyond differential hormone exposure, there is
also the possibility of differential immune responses, such as a more robust antibody-
based response occurring with cervical infection in females compared to males [125].
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Interestingly, female patients with p16-positive OPSCC showed a higher incidence of HPV+
cervical cancer [127]. Even though the incidence of HPV+ OPSCC is lower in females, the
immune response to HPV is important for cancer prevention, and those who are not able to
mount an adequate immune response may be more susceptible to future HPV-associated
cancers. The importance of the immune response to HPV in the oropharynx is supported
by the significantly increased HPV-positive rate in the oropharynx of post renal transplant
patients [128].

There is limited prospective clinical trial data regarding sex and racial differences in
outcomes for OPSCC. A retrospective study showed a significantly lower survival rate for
black patients with HPV− OPSCC, compared to white patients with HPV− OPSCC [129].
This racial disparity has also been observed in HPV+ OPSCC [130,131]. In contrast, a
metanalysis by Stein et al. found no evidence of survival disparity in HPV-positive patients
by race, while black patients with HPV− OPSCC still show lower survival rates compared
to white patients [132]. A multicenter retrospective review by Fakhry et al. found improved
survival in females with HPV+ HNSCC in the oropharynx only [133]. These conflicting
results among the limited studies may be caused by inconsistent HPV test methods in
different studies that detect p16, HPV16 DNA, and/or HPV16 RNA. Indeed, significant
variability in HPV testing has been observed in National Cancer Data Base of OPSCC cases,
particularly prior to 2015 [134].

To obtain reliable data to determine the degree of sex and race disparities in HNSCC,
improved proportionate enrollment of all race and sex groups in prospective clinical trials
and/or larger multi-institutional databases with rigorous HPV testing will be required.
It will also be important to differentiate clinical outcomes regarding disease mechanisms
(immune response, genetic variations, HPV variants, etc.) when comparing factors related
to socioeconomic status and demographics.

6. Clinical Management of HNSCC: The Role of HPV
6.1. Diagnosis, Staging, and Treatment

Despite the complex molecular and immunologic differences between HPV+ and
HPV− HNSCC, until recently, treatment approaches for both diseases were uniform. The
standard approach for the treatment of HNSCC is multidisciplinary in nature. Diagnosis
and staging are commonly initiated by an otolaryngologist with training and experience in
HNSCC surgery. Appropriate staging through imaging and endoscopy guides the primary
treatment approach. Effective treatment may include single modality or a combination of
surgery, radiation, and chemotherapy, depending on the stage of the disease at diagnosis.
Tumor size/invasion, location, and the extent of nodal involvement all play a large role in
treatment decisions. Staging is a tool to help stratify these treatment decisions, however,
is most used as a prognostic tool. Up until recently, HPV status did not play a major role
in these guidelines. Recently, the American Joint Committee on Cancer (AJCC) released
the eighth edition of the staging guidelines for HNSCC [135]. This guideline has gone
through major changes to account for the prognostic significance of HPV status in primary
OPSCC. In short, for HPV− OPSCC, no major changes were made, and the staging is
comparable to other HPV− HNSCC. However, for HPV+ OPSCC, significant changes were
incorporated, allowing for more advanced tumor (T) and nodal (N) stages to be included
in overall lower stage groups. These changes are too detailed to encompass in this review,
but in short, patients with HPV+ disease can be included in stage I and II categories, even
with advanced nodal disease and larger primary tumors. Clinical stage III disease is now
limited to those with large, invasive tumors (T4), or bulky (≥6 cm) positive lymph nodes.
Pathologic stage III disease includes those with T3/4 primary tumors and N2 (≥5 lymph
nodes positive) disease. In a major deviation from other tumor sites, stage IV disease is
reserved only for those with metastatic disease. It is important to consider the changes in
staging when reviewing older literature, as a direct comparison of stage and outcome for
HPV-positive and HPV-negative is not always intuitive.
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Incorporating these staging guidelines, treatment for early stage HNSCC often starts
with surgical resection followed by observation in some situations. Radiation alone is
also an acceptable option for early stage oropharyngeal, hypopharyngeal, and laryngeal
tumors [136]. However, these cancers represent the minority of patients, as the most present
with advanced disease (positive lymph nodes which do not always correlate to advanced
stage with the AJCC eighth edition staging). Multimodality therapy is therefore required for
the majority of these patients. For those with advanced stage disease, appropriate radiologic
and medical evaluation is needed to determine surgical candidacy. The potential damage
to regional tissues, vessels, and organs (i.e., epiglottis, larynx, carotid artery), as well
as predicted functional outcome (swallowing/speaking/breathing) must be considered
in this decision making. In those with resectable disease, without high risk of organ
injury, surgery is often the preferred first approach [136]. In general, adjuvant therapy
with radiation therapy is indicated for those with larger primary tumors or those with
positive lymph nodes. In patients who undergo surgical resection, but have high risk
features, as defined as lymph node extracapsular extension (ECE) or positive margins,
adjuvant chemoradiotherapy is recommended based on findings from the MACH-NC
meta-analysis [137]. For those who present with surgically unresectable tumors or are at
risk of irreversible organ damage with associated poor post-surgical functional outcomes,
definitive CRT remains the standard-of-care. CRT is the common approach for organ
preservation strategies, particularly in hypopharyngeal and laryngeal tumors, where total
laryngectomy is the surgical option. There is some suggestion that regardless of tumor
volume, the combination of cisplatin and radiation may be a superior modality for HPV-
positive OPSCC; however, this question has not been resolved due to lack of definitive
randomized head-to-head trials to evaluate surgery with adjuvant therapy versus CRT.
Finally, while the minority of patients present with distant metastatic disease, curative
therapies do not exist and palliative treatment with immunotherapy (e.g., PD-1 inhibitors),
chemotherapy, and directed radiotherapy are the primary treatment options [136].

6.2. Surgery

In comparison to the number of well controlled randomized prospective trials for
OPSCC treated with CRT, there is a paucity of data for primary surgery as a treatment
modality. The stratification based on HPV tests has only been a recent phenomenon in the
CRT, as well as surgery clinical trials. Similar to other trials noting improved survival for
the HPV+ HNSCC cohort, Heiduschka et al. showed improved survival for the patients
both p16-positive and HPV DNA ISH-positive after surgery and adjuvant radiation [138].
Since the p16-negative (mostly HPV−) group has worse survival with CRT, there has been
consideration of escalated surgery as an initial modality in HPV− OPSCC. An intriguing
study from Spain looking at a mostly HPV− population found a similar survival in HPV+
and HPV− HNSCC cohorts after surgery followed by adjuvant radiation or adjuvant CRT
in most of the patients [139]. Sload et al. reviewed the evidence for surgery with adjuvant
treatment for HPV− OPSCC [140]. Three studies with limited case numbers showed no
difference in survival or locoregional control between HPV+ and HPV− OPSCC treated
with surgery followed by adjuvant treatment (reviewed in [140]). Large, randomized trials
are needed to further evaluate these findings.

Regarding treatment trends, with the improved survival noted in the HPV+ OPSCC
patients with nonsurgical treatment, it is interesting to note a decrease in the number
of HPV+ OPSCC treated with surgery from 2010 to 2014 [141]. This may reflect patient
preference to avoid surgery when non-surgical options are available, or even could reflect
the rapid expansion of de-escalation clinical trials for HPV+ OPSCC over the last decade.
Surgery still plays a valuable role in the understanding of OPSCC. Surgery allows for
analysis of patient tissue and HPV status beyond what is feasible with nonsurgical treat-
ment. Rubek et al. found that nodal metastasis has 30% lower HPV DNA compared to the
primary tumor in a prospective transoral robotic surgery (TORS) cohort [142]. It is possible
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that HPV DNA loss occurs during migration from the primary tumor site to lymph nodes.
However, this finding needs to be confirmed.

One of the arguments for surgery in HPV− OPSCC (especially, TORS) is the poten-
tially improved quality of life in patients with early-stage cancer, by avoiding full dose CRT.
However, Michaelsen et al. analyzed the previous studies of quality of life outcomes in
OPSCC and found no significant difference between patients with surgical and nonsurgical
treatment [143]. The caveat of these studies is the inconsistency of rigorous HPV testing.
Unfortunately, an inherent limitation of many studies evaluating surgery for treatment of
OPSCC is selection bias of resectable tumors in patients that are healthy enough to tolerate
surgery. Despite this limitation, it is clear that outcomes are excellent for carefully selected
early-stage HPV+ OPSCC patients treated with surgery [144]. In this single institution
series where a significant number of patients refused adjuvant CRT after surgery, locore-
gional control was 98% and disease specific 5-year survival was 100% [144]. Conclusions
regarding superiority or equivalence of treatment will hinge on large clinical trials (ide-
ally randomized), comparing surgery with adjuvant treatment to primary nonsurgical
treatment of HPV+ OPSCC.

6.3. Multimodality Treatment

As HPV status was recognized as a distinct prognostic group, additional analyses
revealed prognosis in HPV+ HNSCC compared to HPV− HNSCC was better, regardless
of stage, tobacco use, alcohol use, or treatment strategy [145]. One of the first studies
to focus on HPV as a prognostic group was a retrospective analysis of surgically-treated
HNSCC by the National Cancer Institute in Milan, Italy (Table 2) [146]. In this cohort
of 90 participants, 19% were HPV+ (HPV 16/18 DNA by PCR) and had significantly
improved overall and relapse-free survival. Additionally, none developed second primary
tumors up to 5 years out of treatment. This led to additional prospective efforts to use
HPV status as a correlative biomarker. Eastern Cooperative Oncology Group (ECOG) 2399
was a prospective organ preservation chemoradiation study for resectable stage III or IV
oropharyngeal or laryngeal HNSCC, that included a correlative analysis based on HPV
status [147]. The study utilized an induction chemotherapy regimen with carboplatin and
paclitaxel followed by CRT. In this study, patients with HPV+ HNSCC had an improved
response to induction chemotherapy. In addition to an improved response, those with
HPV+ disease had improved 2-year overall and progression-free survival [148]. These
findings spawned further retrospective and prospective analyses of definitive treatment
trials, which uniformly showed improved outcomes in HPV+ disease, as outlined in
Table 2.

These outcomes, as well as a large analysis of 1907 HPV+ OPSCC [151], informed the
changes made in the AJCC eighth edition staging manual, which separated OPSCC into
HPV+ and HPV− diseases [135,152]. Definitive treatment guidelines now dichotomize the
treatment approaches for these distinct disease subtypes [136].
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Table 2. Key multimodality treatment trials demonstrating improved outcome in HPV+ HNSCC.

Source Parent
Study Years Treatment Design

Number of
Patients in
Analysis

Disease
Sites

HPV As-
sessment

%
HPV+/HPV− Outcome (HPV+ vs. HPV−)

Licitra,
et al., 2006

[146]
NA 1990–1999

Surgery
followed by

RT

Single-
arm,

retrospec-
tive

90 OP HPV 16/18
DNA PCR 19/81

5-year OS (79% vs. 46%),
5-year incidence tumor

relapse (21% vs. 53%), 5-year
incidence second primary

(0 vs. 12%)
Fakhry,

et al., 2008
[148]

E2399 2001–2004 IC followed
by CRT

Single-
arm Phase

II
96 OP,

Larynx
HPV types
16, 33, 35
DNA ISH

39.6/60.4

ORR to IC (82% vs. 55%,
p = 0.01) and CRT (84% vs.
57% p = 0.007, 2-year OS
(95% vs 62%, p = 0.005),

Ang, et al.,
2010
[14]

RTOG
0129 2002–2005

CRT
(accelerated

fx vs.
standard RT)

Randomized
phase III 323 OP

HPV 16, 18,
31, 33, 35,
39, 45, 51,
52, 56, 58,
59, and 68
DNA ISH

63.8/36.2
3-year OS (82.4%, vs. 57.1%,
p < 0.001), 3-year PFS (73.7%

vs. 43.4%, p < 0.001)

Rischin,
et al., 2010

[149]
TROG
02.02 2002–2005 CRT Randomized

phase III 182 OP P16 IHC 57.3/42.7
2-year OS (91% vs. 74%,

p = 0.004), 2-year FFS (87%
vs. 72%, p = 0.003)

Posner,
et al., 2011

[150]
TAX 324 1999–2003 IC followed

by CRT
Randomized
Phase III 111 OP HPV E6/E7

PCR 50/50
* OS (79% vs. 31%, p < 0.0001,
PFS (73% vs. 29%, p < 0.0001),
LRF (13% vs. 42%, p = 0.0006)

* analysis was at 83 months for HPV+ and 82 months for HPV−.

6.4. Low and Intermediate-Risk HPV+ HNSCC

Further prognostic characterization of HPV+ disease has focused on the definition of
low-risk and intermediate-risk disease. Based on clear prognostic differences identified
from the Radiation Therapy Oncology Group (RTOG) 0129 study [14], the impact of nodal
stage and tobacco use highlighted a distinct survival difference within HPV+ cases. Using a
cutoff of greater than 10 pack/year history (PYH) smoking and AJCC seventh edition N2b-
N3 (bilateral or >6 cm nodal involvement) for HPV+ HNSCC patients, survival mirrored
HPV− HNSCC with less than 10 pack/year smoking history. The 3-year overall survival
rate was 70.8% in this intermediate-risk group, contrary to 93.0% in the HPV+ patients with
low-risk disease (<10 pack/year history, N0-N2a disease). This intermediate-risk group
has been further defined to include those with T4 primary tumors. In a large analysis, by
including those with T4 primary tumors and those who have advanced nodal status (N2b-
N3) or smoking history of ≥10 pack/year, the HPV+ intermediate-risk group had a higher
risk of mortality with an estimated 4-year OS of 68% [153]. Of this group, those with T3N3
or T4N2-N3 disease have 4-year survival rates of 51%, which is equivalent to advanced
HPV− disease. Therefore, HPV status alone is not the only factor that contributes to patient
outcome. While these tumor and nodal stages have been included in the new AJCC eighth
edition staging manual, tobacco use has not. Currently, the proposed intermediate-risk
HPV+ disease category is based on AJCC seventh edition stage T1-2N2-N3 or T3-4N0-3
with ≥10 pack/year smoking history OR < 10 pack/year, stage T4N0-N3 or T1-3N2-
3. Recent clinical trial efforts focus on treatment strategies for these distinct prognostic
disease groups.

6.5. Metastatic Disease: Do HPV+ HNSCC Patients Fare Better?

While prognosis of HPV+ HNSCC is generally better than HPV− HNSCC, approx-
imately 10% of patients still develop R/M disease [14,148,149,154]. Those with HPV+
HNSCC also have unique metastatic patterns, often with multiple organs involved and
atypical sites, such as the bone and liver [155]. Additionally, the median time to develop-
ment of distant metastases following curative treatment is longer than HPV− HNSCC,
with one study demonstrating 16.4 vs. 7.2 months (p = 0.008) [156]. Furthermore, metastatic
disease development after 5 years in HPV+ HNSCC patients has been described [154,157].
Despite these findings, those with HPV+ HNSCC and relapse following definitive ther-
apy still have improved prognosis in terms of survival over their HPV− HNSCC. In one
analysis, 2-year overall survival after relapse was 54.6% in HPV+ HNSCC vs. 27.6% in
HPV− HNSCC [158]. This improved survival in part has been suspected to be related to
more responsive disease. However, in a retrospective analysis of the landmark EXTREME
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trial evaluating platinum, fluorouracil, and the addition of cetuximab in R/M HNSCC,
survival outcomes were better in both groups by adding cetuximab [159]. A sub-analysis
demonstrated that HPV+ HNSCC did have improved survival in the R/M setting over
their HPV− counterparts, however this was not statistically significant (12.6 vs. 9.7 months,
p = 0.092) [159]. The analysis is limited, however, as only 10% of evaluable participants
had p16+ disease.

6.6. Immunotherapy Trials: Impact of HPV Status

As monoclonal antibody inhibitors of the PD-1 and PD-L1 interaction have emerged
as the preferred treatment option for R/M HNSCC, sub-analyses of outcomes based on
HPV status have been performed. In the phase IB KEYNOTE-012 study evaluating the
pembrolizumab monotherapy in an R/M HNSCC cohort, 23% of participants were HPV+
based on p16 status [103]. Response rates were higher in those with HPV+ HNSCC (ORR
24% vs. 16%) [160]. However, in the larger, phase II KEYNOTE-055 study evaluating
pembrolizumab monotherapy in R/M HNSCC after progression on platinum therapy,
ORRs were similar in those with HPV+ (16%, 95% CI 6–32) and HPV− disease (15%, 95%
CI 10–23) [104]. The landmark phase III CHECKMATE-141 study compared the PD-1
inhibitor, nivolumab, to second-line chemotherapies in R/M HNSCC. Of those tested
and successfully treated with nivolumab, 26.4% of participants had HPV+ HNSCC based
on p16 status and 20.8% HPV− HNSCC. While the aggregate study population had an
improved OS with nivolumab treatment in this study, a post hoc analysis revealed that
this survival benefit was more profound in HPV+ HNSCC patients (Supplementary Figure
S4 in [72]). Interestingly, expression of PD-L1 (≥1% expression by IHC) was a stronger
biomarker for this survival benefit, however even those with HPV+ PD-L1 negative disease
had improved OS with nivolumab compared to chemotherapy (OS 10 vs. 6.4 months, HR
0.55 95% CI 0.22–1.39). This difference was not seen in HPV− PD-L1 expressing HNSCC
(OS 7.1 vs. 7.4 months HR 0.82 95% CI 0.82 (0.31–2.19)) [161]. A subsequent study with a
neoadjuvant PD-1 inhibitor arm, CHECKMATE 358, evaluated neoadjuvant nivolumab for
previously untreated, locally advanced HNSCC. In this study, the pathologic response to
therapy was higher in the HPV+ HNSCC group (n = 4/17; 23.5%) than the HPV− group
(n = 1/17; 5.9%) [162]. Taking these findings together, HPV+ HNSCC patients have shown
marginal signal for increased clinical benefit from PD-1 blockade treatment over those with
HPV− disease.

Based on these findings, evaluation of PD-L1 expression based on HPV status has
been an area of interest. Early work by Lyford-Pike et al. demonstrated localized PD-L1
expression in the tonsillar reticulated epithelium of the deep crypts, which represent the
site of HPV-associated carcinogenesis [163]. Additionally, the authors demonstrated higher
PD-L1 staining by immunohistochemistry (≥5% cells positive) in HPV+ HNSCC (14/20;
70% positive) compared to HPV− HNSCC (2/7; 29% positive) [163]. Larger studies have
shown a higher expression in HPV+ HNSCC than HPV− HNSCC [164–166], while no
other marker shows a significant difference in expression by HPV status [167,168]. These
findings have been criticized, however, as there has been significant heterogeneity in
scoring systems and assays utilized [169]. Regardless, it is apparent that a benefit from
PD-1 blockade is seen in both HPV+ and HPV− HNSCCs. While PD-L1 expression shows
some benefits in predicting the treatment response, it is not definitive. PD-L1 inhibitors
emerged as the preferred standard-of-care for many patients with R/M HNSCC, and are
moving into earlier stage disease. Thus, novel biomarkers are being investigated to enrich
treatment strategies.

7. Current Treatment Approaches for HPV+ and HPV− HNSCC
7.1. De-Intensification or Intensification: Risk Adapted Therapy

While multimodality therapy is often utilized across the anatomic sites of HNSCC, the
management of OPSCC has become increasingly complex as our understanding of HPV
status has grown. Patients with HPV+ OPSCC often present with advanced nodal disease
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at diagnosis and are not candidates for surgical resection, either due to having unresectable
disease or a high risk of morbidity. Surgical innovations including TORS have emerged as
a strategy to minimize the morbidity through use of natural orifice access approaches to
the surgical site. TORS has been shown to optimize post-operative functional outcomes
for carefully selected patients compared to traditional open approaches. However, large
volume tumors or loss of important anatomic structures would still result in poor functional
outcomes, regardless of the approach to the cancer. In addition, many TORS patients require
adjuvant radiation or CRT as part of their treatment. Furthermore, as our understanding of
the prognostic significance of HPV has grown, CRT approaches are evolving. Currently,
the concept of de-intensification and intensification have emerged for HNSCC.

As previously discussed, in the clinical trial setting, patients presenting with locally
advanced HPV+ HNSCC are being dichotomized into low-risk and intermediate-risk
groups. In addition to staging, smoking status has a large impact on these risk groups. For
those with low-risk disease, extensive efforts are being made to pursue de-intensification
therapy. As the long-term cure rates exceed 90% in this risk group with standard treatment,
there is strong support to consider reducing the intensity of treatment for this group to
spare them from long-term toxicity. While this is not yet the standard-of-care, numerous
clinical trials have been completed and are underway to determine the best strategy. Pivotal,
randomized clinical trials that have been completed and that are actively accruing are
outlined in Table 3. In summary, different approaches in surgical, post-operative radiation
therapy (PORT), induction chemotherapy, addition of immunotherapy, and novel types
of chemoradiotherapy are being evaluated. Thus far, completed phase III trials have not
identified a clear strategy for de-escalation. Ongoing efforts seek to decrease radiation dose
both with PORT and definitive therapy, as well as incorporate PD-1 blockades and novel
chemotherapy regimens into treatment. Many centers are adopting these as part of their
treatment approach through these clinical trials.

For those who present with intermediate-risk HPV+ HNSCC, treatment approaches
are often the same as for those with HPV− HNSCC. For resectable patients, adjuvant RT
at standard dose (typically 60 Gy/2 fractions per day over 6 weeks) is generally pursued
unless there is very early-stage disease [136]. For those with the high-risk features of
extranodal extension (ENE) or positive margins, or multiple intermediate risk features
(lymphovascular invasion or LVI, perineural invasion or PNI (>3 positive lymph nodes),
adjuvant cisplatin-based CRT is the standard [136]. Many of those with HPV+ intermediate-
risk HNSCC present with advanced T-stage (T4) and N-stage (N2-3), and are not candidates
for surgical resection. Consequently, cisplatin-based CRT (70 Gy/2 fractions per day over
7 weeks) is often the mainstay of treatment for this group as a definitive therapy. As the cure
rates for this population remain stagnant and inferior to low-risk HPV+ HNSCC, treatment
intensification clinical trials have emerged as the investigational approach. As those with
HPV+ intermediate-risk HNSCC have comparable prognosis to patients presenting with
HPV− HNSCC, these groups are often included in these trials together. Table 4 outlines
past and current treatment intensification approaches.
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Table 3. Key de-intensification trials in HPV+ HNSCC.

Trial Design (No. of
Patients) Patient Population De-Escalation Strategy and

Regimens (* De-Escalation Arm)
Primary Outcome

Measure Status Summary of Findings
(if Completed)

RTOG 1016 [170]
Randomized,

noninferiority phase
3 (n = 987)

AJCC 7th ed. T1-T2, N2-3 or
T3-T4, N0-N3; any
smoking history

Chemotherapy

• * Cetuximab 400 mg/m2 then
250 mg/m2 q1w × 7 + RT
(70 Gy/35 fx in 6 weeks)

• Cisplatin (100 mg/m2) 3w × 2 +
RT (70 Gy/35 fx in 6 weeks)

OS Completed
Cetuximab was not

shown to be non-inferior
to cisplatin

De-ESCALaTe
[171]

Randomized phase 3
(n = 334)

AJCC 7th ed. T3-T4, N0 or T1-T4,
N1-N3; <10 PYH

Chemotherapy

• * Cetuximab 400 mg/m2

then 250 mg/m2 q1w 7 + RT
(70 Gy/35 fx in 6 weeks)

• Cisplatin (100 mg/m2) 3w × 3 +
RT (70 Gy/35 fx in 6 weeks)

OS and late toxicity Completed

Mean number of severe
events and all grade
toxicity the same in

both groups

TROG 12.01 [172] Randomized phase 3
(n = 189)

AJCC 7th ed. Stage III (excluding
T1-2N1) or stage IVA-B (excluding

T4 and/or N3 and/or N2b-c);
≤10 PYH of smoking

Chemotherapy

• * Cetuximab 400 mg/m2 then
250 mg/m2 q1w × 7 + RT
(70 Gy/35 fx in 6 weeks)

• Cisplatin (40 mg/m2) 1w × 7 +
RT (70 Gy/35 fx in 6 weeks)

Difference in AUC of
MDADI from baseline

to 13 weeks
post-therapy

Completed

No difference in AUC of
MDADI between groups;

Worse 3-year FFS in
cetuximab (80% [95% CI:

70–87%]) vs. cisplatin
(93% [95% CI: 86–97%])

ORATOR
[173]

Randomized Phase II
(n = 68)

AJCC 7th ed. T1-T2, N0-2
(≤4 cm); any smoking history

Surgery

• * TORS and neck dissection+/−
adjuvant RT or CRT (based on
pathology)

• CRT (RT 70 Gy, various chemo
regimens)

1-year swallowing QoL
by MDADI Completed 1-year MDADI score

higher in RT group

ECOG 3311 [174]
Randomized phase II

(n = 519 overall,
209 Arms B and C)

AJCC 7th ed. stage III-IVA
resected, intermediate pathologic
risk (close margins [<3 mm], 2–4+
nodes or 1 node >3 cm and ≤6 cm,
ENE ≤ 1 mm, or PNI/LVI); any

smoking history

PORT

• * 50 Gy PORT Arm B
• 60 Gy PORT Arm C

2-year PFS Completed

2-year PFS similar in
Arm B 95.0%

(90% CI = 91.4%, 98.6%)
to ARM C 95.9%

(90% CI = 92.6%, 99.3%)
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Table 3. Cont.

Trial Design (No. of
Patients) Patient Population De-Escalation Strategy and

Regimens (* De-Escalation Arm)
Primary Outcome

Measure Status Summary of Findings
(if Completed)

NRG-HN002
[175]

randomized, phase II
trial (n = 306)

AJCC 7th ed. T1-T2 N1-N2b M0,
or T3 N0-N2b M0; ≤10 PYH

of smoking

No chemotherapy

• * 60 Gy IMRT over 5 weeks
• 60 Gy IMRT over 6 weeks + cis-

platin 40 mg/m2 Q1w × 6

2-year PFS and 1-year
swallowing QoL by

MDADI
Completed

Similar 2-year PFS (88%
RT vs. 91% CRT), but RT

alone did not meet
pre-specified 2-year

PFS goal

PATHOS
[NCT02215265]

Randomized phase
II/II (n = up to 1100)

AJCC 7th ed. T1-T3, N0-N2b
8th edition stage T1-T3, N0-N1;
Any smoking history (except

current smokers with
N2b disease)

PORT

• Arm B1: PORT 60 Gy over
6 weeks

• * Arm B2: PORT 50 Gy over
5 weeks

• Arm C1: POCRT 60 Gy over
6 weeks with Cisplatin (high risk
features)

• * Arm C2: PORT 60 Gy over
6 weeks without chemotherapy
(high risk features)

1-year MDADI and
Overall survival Ongoing NA

NRG-HN005
[NCT03952585]

Randomized phase
II/III (n = up to 711)

AJCC 8th ed. 8th T1-2N1M0 or
T3N0-N1M0; ≤ 10 PYH

of smoking

Radiation and chemotherapy

• Arm 1: RT 70 Gy over 6 weeks +
Cisplatin 100 mg/m2 Q3w × 2

• * Arm 2: RT 60 Gy radiation over
3 weeks + Cisplatin 100 mg/m2

Q3w × 2
• * Arm 3: RT 60 Gy over 3 weeks

+ Nivolumab 240 mg Q2w × 6

Phase II, PFSPhase III,
PFSand QoL by the

MDADI global score
Ongoing NA

DART-HPV
[NCT02908477]

Randomized phase
III (n = 227)

TORS resected primary disease
with either AJCC 8th ed. T3/4 or

N2b disease, and/or ENE,
LVI, PNI

POCRT

• * RT 30 Gy/1.5 Gy fractions BID
(intermediate risk) or 36 Gy/1.8
Gy BID fractions (high risk) + Do-
cetaxel 15 mg/m2 days 1, 8

• RT 60 Gy/2 Gy fractions daily
alone (intermediate risk) or with
cisplatin 40 mg/m2 Q1w × 6
(high risk)

Adverse event rate
(late grade 3–5

toxicities)
Ongoing NA

* De-Escalation Arm.
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Table 4. Selected treatment intensification trials.

Trial Design (No. of
Patients) Patient Population Intensification Strategy and Regimens

(* Intensification Arm)
Primary Outcome

Measure Status Summary of Findings
(if Completed)

RTOG 0129 [176] Randomized Phase III
(n = 721)

AJCC 6th ed. Stage III-IVB OC, OP, HP,
Larynx; any HPV risk group

Accelerated fraction (AFX) RT

• * AFX: 72 Gy in 42 fx over 6 weeks +
Cisplatin 100 mg/m2 Q3W × 2

• SFX RT 70 Gy in 35 fx over 7 weeks +
Cisplatin 100 mg/m2 Q3W × 3

OS Completed No difference in OS (HR, 0.96;
95% CI, 0.79 to 1.18; p = 0.37).

RTOG 0522 [177] Randomized Phase III
(n = 891)

AJCC 6th ed. stage III-IVB OC, OP, HP,
Larynx; any HPV risk group

Combination chemotherapy

• Arm 1: AFX RT + Cisplatin 100 mg/m2

Q3W × 2
• * Arm 2: AFX RT + Cisplatin 100

mg/m2 Q3W × 2 + Cetuximab 400
mg/m2 then 250 mg/m2 q1w × 7

PFS Completed
No difference in PFS, OS, LRF.

Higher acute toxicities with the
addition of cetuximab

PARADIGM [178] Randomized Phase III
(n = 145)

AJCC 6th ed. Stage IVA-IVB (T3/T4 or
N2/N3, but not T1/N2) OC, OP,

Larynx; any HPV risk group

Induction chemotherapy

• * Arm 1: Docetaxel 75 mg/m2, Cis-
platin 80 mg/m2, 5-FU 800 mg/m2/d
days 1–4 Q3w × 3 followed by CRT
with carboplatin or docetaxel

• Arm 2: AFX RT + cisplatin 100 mg/m2

Q4W × 2

OS Completed
No difference in OS (HR, 1.09;

95% CI 0.59–2.03). poor accrual
(145 of 300 planned)

JAVELIN-Head and
Neck 100 [179]

Randomized Phase III
(n = 697)

AJCC 7th ed. HPV- Stage III, IVA, IVb
disease; non-OP HPV+Stage III, IVA,
IVB disease; HPV+ OP T4 or N2c or

N3 disease

Combination PD-1 blockade + CRT

• * Avelumab SFX RT 70 Gy over 7 weeks
• SFX RT 70 Gy in 35 fx over 7 weeks +

Cisplatin 100 mg/m2 Q3W × 3
PFS Completed

Median PFS was not reached in
either group, however stratified

hazard ratio (1.21 [95% CI
0.93–1.57]) favored the placebo

group (one-sided p = 0.92)

KEYNOTE-412
[NCT03040999]

Randomized Phase III
(n = 780 planned)

AJCC 7th ed OP HPV+ (any T4 or N3),
OP HPV− (any T3-T4 or N2a-N3), or

larynx/HP/OC (any T3-T4 or
N2a-N3)

Combination PD-1 blockade + CRT

• * Pembrolizumab + CRT (AFX or SFX
70 Gy) + Cisplatin 100 mg/m2 Q3W ×
2–3

• CRT (AFX or SFX 70 Gy) + Cisplatin
100 mg/m2 Q3W × 2–3

Event Free Survival (EFS) Ongoing NA
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Table 4. Cont.

Trial Design (No. of
Patients) Patient Population Intensification Strategy and Regimens

(* Intensification Arm)
Primary Outcome

Measure Status Summary of Findings
(if Completed)

KEYNOTE-689
[NCT03765918]

Randomized Phase III
(n = 704 planned)

AJCC 8th ed. resectable, stage III/IVA
HPV− or T4N0-2 HPV+

Neoadjuvant PD-1 blockade

• * Pembrolizumab Q3W × 2 doses pre-
operatively followed by risk-adapted
PORT or POCRT (cisplatin) + pem-
brolizumab

• Surgery followed by adjuvant risk
adapted PORT or POCRT (cisplatin)

Major Pathological
Response (mPR) and EFS Ongoing NA

RTOG 1216
[NCT01810913]

Randomized phase
II/III (n = 480

planned)

Resected AJCC 7th ed Stage III-IVB
HPV+ or HPV− disease with high-risk

features (ENE or positive margins)

Adjuvant POCRT + PD-L1 blockade

• POCRT 60 Gy + cisplatin 40 mg/m2

Q1W × 6
• POCRT 60 Gy + docetaxel 15 mg/m2

Q1w × 6 + cetuximab + Cetuximab
400 mg/m2 then 250 mg/m2 q1w × 7

• POCRT 60 Gy + cisplatin 40 mg/m2

Q1W × 6 + Atezolizumab 1200 mg
Q3W × 8

Phase II-DFSPhase III-OS Ongoing NA

* Intensification Arm
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In summary, prior approaches have included accelerated fraction radiation, induction
chemotherapy, and chemotherapy combinations with radiation. However, none of these
have led to a deviation from the current standard of cisplatin-based CRT. With the activity
of PD-1 inhibitors in R/M disease, there is excitement about their impact in the definitive
setting. Initial studies demonstrated safety and early favorable efficacy signal [180]. How-
ever, one large, randomized trial of the PD-L1 inhibitor, avelumab, has already read out as
negative, thus dampening the enthusiasm for these agents in this treatment setting [179].
While these unique treatment approaches are rapidly moving forward, the standard-of-care
for curative intent therapy has remained the same for decades regardless of HPV status.
While those with low-risk HPV+ disease enjoy high survival rates, some still will recur. For
those with intermediate-risk HPV+ disease and HPV− disease, relapse rates are generally
higher. Those that recur or who present with metastatic disease at diagnosis have incurable
disease. However, recent advances in therapies seek to improve outcome for these patients
as well.

7.2. Advances in the Treatment of Recurrent/Metastatic Disease: Implications of HPV Status

Approximately 10–15% of patients with HNSCC will develop R/M disease either at
diagnosis or following treatment [181,182]. For these patients, systemic therapy remains
the mainstay for disease control and optimization, quality of life, and survival. As men-
tioned above, PD-1 inhibitors have become the standard-of-care for most patients, either as
monotherapy or in combination with chemotherapy. Despite there being no clear link be-
tween HPV status and response to these agents, significant efforts are being made to look at
novel immunotherapy approaches to treat HPV+ HNSCC. Much of this has been led by the
emergence of therapeutic vaccines. As HPV-infected cancer cells express viral oncoproteins,
these represent antigenic targets for vaccine development. Several vaccines using different
technologies have emerged. A number of viral vector- [183], DNA- [184], and peptide- [68]
based therapeutic vaccines are in various stages of development. Due to the immunologic
nature of response, combination with other immunotherapies is being pursued, including
combinations with PD-1/PD-L1 inhibitors [185]. Taking this a step further, with the rapid
growth of cell-based therapies in hematologic malignancies, HPV-specific cell-based thera-
pies are gaining traction in HPV+ HNSCC. HPV16/18 E6/E7 adoptive T cell therapies are
currently in early-phase clinical trials in HNSCC, and seek to bring cell-based therapies
into the treatment of this disease (NCT03578406, NCT02379520) [186]. Other cell-based
therapies, including one that targets melanoma-associated antigen 4 (MAGEA4), seek to
expand cell-based therapy beyond HPV+ HNSCC (NCT04408898). Development of novel
immunotherapies is rapidly moving forward, and in combination with these HPV-specific
therapies is certain to be an area of future research.

Beyond immunotherapies, targeted therapies are another area of growing research
in HNSCC. As discussed above, a number of different pathways are altered in HNSCC.
Epidermal growth factor receptor (EGFR/ERBB1) and its family ERBB2 (HER2), ERBB3
(HER3), as well as FGFR kinase aberrations have been demonstrated in HNSCC (Figure 1).
Cetuximab, a monoclonal antibody inhibitor of EGFR, has been an approved treatment
both in combination with radiotherapy for definitive treatment and in the metastatic
setting. Until recently, this agent was often utilized as a standard chemosensitizing agent
with definitive chemoradiotherapy. However, recent findings from the De-ESCALaTE
HPV, RTOG 1016, and TROG 12.01 trials (Table 3) in HPV+ HNSCC showed inferior
results with cetuximab versus cisplatin as a CRT in the definitive setting. While this
agent is still utilized in the R/M setting in HPV+ HNSCC, interest in the definitive setting
has waned. Despite this, a pan-ERBB inhibitor, Aafatinib, achieved NCCN support for
use for R/M HNSCC as second-line therapy following platinum failure, based on the
LUX-HN study [145,187]. Beyond these receptor tyrosine kinases, potentially druggable
alterations in other common downstream kinases including MAPK (HRAS, NRAS, KRAS,
BRAF, NF1) and PI3K/AKT/mTOR pathway have been seen in HNSCC [188]. Of these, the
PIK3CA mutation has been more commonly seen in HPV+ HNSCC [189], while HRAS
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mutations are more common in HPV− HNSCC [190]. Targeted therapies for each of
these are being pursued, however development is not intentionally exclusive to HPV
status [191,192]. Additional interest in the cell cycle pathway (CDK4/6, CCND1, CDKN2A)
and DNA repair pathway (BRCA, ATM, PALB2) is growing, with trials underway in HNSCC
as a whole [193–195]. As the molecular characteristics of HPV+ and HPV− HNSCCs are
understood, it is surmised that disease-specific treatments will emerge.

8. Conclusions

As discussed above, there have been significant advances in our understanding of
molecular mechanisms and improvement of clinical approaches in HNSCC. Nevertheless,
there are more questions than answers from current research, as we currently do not have
clear explanations on several important issues in HNSCC. First, it is still mysterious how
HPV+ HNSCC patients show substantially better survival and clinical outcomes after
standard-of-care treatment than HPV− HNSCC patients. Studies by ourselves and others
have suggested potential factors, such as high cell proliferation and DNA damage rates
of HPV+ cancer cells compared to HPV− cancer cells [5,196]. In contrast, several studies
have suggested that HPV+ HNSCC in anatomical sites other than the oropharynx and
tonsil does not show favorable outcomes [197–199]. However, as positive p16 immunohis-
tochemistry for non-oropharyngeal head and neck cancers does not accurately represent
HPV status [200,201], further molecular analyses and mechanistic studies would be nec-
essary for any definitive answer. Second, the extreme bias of HNSCC prevalence in the
male population is obvious but still unexplainable. Recent studies have discovered that
females have more robust immune responses against various viruses, including HPV and
SARS-CoV-2 [202,203]. The sex differences in immune responses and cancer development
are suspected to be caused by sex hormones and differential behaviors between males and
females [204,205]. Third, while expression levels of PD-1 and PD-L1 in HPV+ HNSCC
are undoubtedly higher compared to HPV− HNSCC, there is no evident benefit from im-
munotherapy using PD-1/PD-L1 inhibitors. In addition, there is an urgent need to develop
useful biomarkers available to identify the intermediate-risk group of HPV+ HNSCC and
responders from non-responders to current therapies. A better understanding of microbiota
linked to HNSCC would also be helpful, as the oral regions form an abundant and diverse
microbial ecosystem that may contribute to immune dysregulation and carcinogenesis.
Considering the extraordinary heterogeneity in HNSCC developed in the complex and
dynamic anatomical sites, cancer cell evolution in interaction with proximal and distal
organs could also be a new area to explore. Taken together, basic, translational, and clinical
research in HNSCC during the next decade will bring about scientific breakthrough, as
well as innovative treatment for cancer patients.
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RT radiation therapy
OP oropharynx
RFS relapse-free survival
OS overall survival
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PFS progression-free survival
ORR overall response rate
LRF locoregional failure
IC induction chemotherapy
CRT chemoradiotherapy
ISH in situ hybridization
IHC immunohistochemistry
Fx fractions
Gy Gray
BID twice a day
AUC area under the curve
MDADI MD Anderson Dysphagia Inventory
PORT post-operative radiation therapy
POCRT post-operative chemoradiotherapy
IMRT intensity modulated radiation therapy
QoL quality of life
SFX standard fraction
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