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Simple Summary: Human uveal melanoma (UM) is the most common primary intraocular tumor 
with high metastatic risk in adults. Currently, no effective treatment is available for metastatic UM; 
therefore, new therapeutic approaches are needed to improve overall survival. Given the increased 
understanding of microRNAs (miRNAs) and their roles in UM tumorigenesis and metastasis, 
miRNA-based therapy may offer the hope of improving therapeutic outcomes. This review summa-
rizes the actions of select miRNAs examined in preclinical studies using miRNAs as therapeutic 
targets in UM. The focus of this review is the application of established nanotechnology-assisted 
delivery systems to overcome the limitations of therapeutic miRNAs. A blend of therapeutic miR-
NAs and nanodelivery systems may facilitate the translation of miRNA therapies to clinical settings. 

Abstract: Uveal melanoma (UM) is the most common adult intraocular cancer, and metastatic UM 
remains deadly and incurable. UM is a complex disease associated with the deregulation of numer-
ous genes and redundant intracellular signaling pathways. As understanding of epigenetic dysreg-
ulation in the oncogenesis of UM has increased, the abnormal expression of microRNAs (miRNAs) 
has been found to be an epigenetic mechanism underlying UM tumorigenesis. A growing number 
of miRNAs are being found to be associated with aberrant signaling pathways in UM, and some 
have been investigated and functionally characterized in preclinical settings. This review summa-
rizes the miRNAs with promising therapeutic potential for UM treatment, paying special attention 
to the therapeutic miRNAs (miRNA mimics or inhibitors) used to restore dysregulated miRNAs to 
their normal levels. However, several physical and physiological limitations associated with thera-
peutic miRNAs have prevented their translation to cancer therapeutics. With the advent of nano-
technology delivery systems, the development of effective targeted therapies for patients with UM 
has received great attention. Therefore, this review provides an overview of the use of nanotechnol-
ogy drug delivery systems, particularly nanocarriers that can be loaded with therapeutic miRNAs 
for effective delivery into target cells. The development of miRNA-based therapeutics with nano-
technology-based delivery systems may overcome the barriers of therapeutic miRNAs, thereby en-
abling their translation to therapeutics, enabling more effective targeting of UM cells and conse-
quently improving therapeutic outcomes. 

Keywords: uveal melanoma (UM); microRNA (miRNA); preclinical study; nanodelivery systems; 
nanoparticles; multifunctional nanoparticles 
 

1. Introduction 
Uveal melanoma (UM) is the most common adult intraocular malignment tumor 

arising from melanocytes in the uveal tract, including the iris, ciliary body and choroid. 
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Most UM is found in the choroid (~85%) [1–3]. Approximately 50% of patients with UM 
develop metastasis, most commonly to the liver (89% of metastatic UM patients) [4]. To 
date, no effective standard treatment is available, and the median survival time of patients 
with metastatic UM (mUM) is approximately 6–12 months after diagnosis [5,6]. Genetic 
or phenotypic predisposition, age, sex, work environment and dermatological conditions 
are risk factors associated with UM, and older patients with UM have a poorer prognosis 
[7]. Genetic analysis has indicated that UM metastasis and shorter survival is associated 
with the loss of a copy of chromosome 3 (monosomy 3) and germline mutations of the 
tumor suppressor gene BRCA-associated protein 1 (BAP1). BAP1 mutations are found in 
approximately 84% of metastasized UM [8–11]. Furthermore, a large majority of blue nevi 
and up to 90% of all UM tumors bear a mutation in the G protein subunit alpha (GNAQ) 
and subunit alpha-11 (GNA11) genes. Mutations in GNAQ/11 genes are considered an 
early event or initiating event in UM tumorigenesis and do not increase the risk of metas-
tasis [12]. GNAQ/11 mutations constitutively activate several tumorigenic signaling path-
ways [13,14]; thus, drugs targeting GNAQ/11 mutations or interfering with critical down-
stream effectors might be effective in the majority of UM. The driver mutations of eukar-
yotic translation initiation factor 1A X-linked (EIF1AX), splicing factor 3B subunit 1 
(SF3B1), phospholipase C4 or G-protein-coupled receptor cysteinyl leukotriene receptor-
2 genes are less common in UM [11,15]. EIF1AX mutation is associated with low metastatic 
risk, while SF3B1 mutation is mainly associated with late-onset metastasis [16,17]. 

2. Dysregulated Pathways and Molecules Involved in UM Tumorigenesis and Metas-
tasis 

Particularly in UM, oncogenic GNAQ/11 mutations activate the RHO/RAC pathway 
by stimulating RAS homolog family member A and RAS-related C3 botulinum toxin sub-
strate 1 (RAC1) [13]. Both mitogen-activated protein kinase/extracellular-signal-regulated 
kinase (MAPK/ERK) and phosphatidylinositol (4,5)-bisphosphate 3-kinase/protein kinase 
B (PI3K/AKT) pathways are dysregulated in response to GNAQ/11 mutations. ERK1/2 
activation is critical for UM development [14], whereas phosphorylated AKT is associated 
with a high risk of metastatic disease [18]. In addition, oncogenic yes-associated protein 
and transcriptional co-activator with PDZ-binding motif dephosphorylation as a result of 
GNAQ/11 mutations is also essential for oncogenic activity in UM development [19] (Fig-
ure 1). 

Some genes are highly overexpressed in primary UM and are functionally associated 
with pro-invasive properties of UM cells. For example, several matrix metalloproteinases 
(MMPs), such as MMP-2 and MMP-9, are highly expressed in primary UM and are corre-
lated with a dismal prognosis; these MMPs mediate UM cell invasiveness [20–22]. The 
formation of micrometastases has been suggested to contribute to the invasiveness of UM 
and resistance to different treatments [23]. The hepatic microenvironment provides mul-
tiple growth and survival factors to UM cells, as well as several inflammatory and profi-
brogenic factors that are important in the homing of UM cells to the liver. For instance, 
UM liver metastases are associated with the strong expression of the tyrosine kinase re-
ceptor c-Met and hepatocyte growth factor (HGF, the ligand of c-Met, primarily produced 
in the liver) [24]. C-Met/HGF contribute to the activation of the PI3K/Akt pathway and 
promote the survival and pro-invasive activity of UM [25,26]. In addition, insulin-like 
growth factor 1 receptor is expressed in metastatic UM and promotes the proliferation of 
metastatic UM cells [27]. Of note, UM is highly vascularized, and vascular endothelial 
growth factor A (VEGF-A) is found in the aqueous humor and serum in patients with 
mUM [28]. Overexpression of VEGF-A is found in primary and metastatic UM cell lines, 
and VEGF-A signaling sustains the proliferation of UM cells [29]. 

Epigenetic modifications play crucial roles in gene regulation through altering DNA 
and histone structures, and also play critical pathogenic roles in UM [30]. The global meth-
ylation profile is associated with mutations of the BAP1 gene that are associated with a 
distinct metastatic risk of UM [31]. Hypermethylation of the promoters of genes including 
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Ras-association domain family 1 isoform A, p16 and INK4a is commonly observed in UM, 
thus suggesting the inactivation of these tumor suppressor genes in UM [32–35]. Moreo-
ver, phosphatase and TENsin homolog (PTEN), a tumor suppressor, are frequently under-
expressed in UMs [36]. 

 
Figure 1. Major aberrant signaling pathways in UM and targets of miRNAs with therapeutic potential. 

The aforementioned GNAQ/11 mutation-activated downstream signaling pathways 
and abnormally expressed molecules are actionable targets [37,38]. Molecular targeting 
may be one of the most promising therapies for UM treatment, and several studies have 
focused on targeting aberrant driver mutations and their downstream pathways in UM 
pathogenesis; these efforts have led to new therapeutic possibilities for UM treatments. 
Croce et al. [39] and Li et al. [40] have extensively reviewed the molecular targets in pre-
clinical studies and summarized the ongoing clinical trials for UM. Notably, the inhibition 
of GNAQ/11 pathways with MEK inhibitors has been successful in some preclinical stud-
ies and clinical trials; however, none of these inhibitors have been found to increase the 
overall survival rate [39,41,42]. The interactions of GNAG/11-mediated downstream path-
ways may be responsible for the failure of single-target strategies, thus suggesting that 
UM therapies involving the simultaneous inhibition of different downstream pathways 
in combination may hold promise [42]. Unfortunately, the encouraging results of preclin-
ical studies using combinational therapies co-targeting multiple pathways were not con-
firmed in early clinical studies [39]. Furthermore, several multikinase inhibitors that co-
target multiple intracellular and cell surface kinases have been tested in advanced UM. 
These inhibitors include cabozantinib, which inhibits c-Met, AXL receptor tyrosine kinase 
and VEGF receptors (VEGFRs) [43], and sunitinib, which targets platelet-derived growth 
factor receptors, VEGFRs and CD117 (c-KIT) [44]. Early clinical studies have indicated the 
potential activity of cabozantinib or sunitinib in UM [43,45]. Combination trials with im-
munotherapy agents, histone deacetylase inhibitors and radioembolization are currently 
ongoing [46]. 

Although targeted combination therapy has made great progress, the current thera-
peutic approaches of targeted therapies have yielded very low response rates for mUM 
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[25]. Therefore, exploring other avenues of potential dysregulation in UM is imperative. 
Noncoding microRNAs (miRNAs) have emerged as critical epigenetic regulators in-
volved in the pathogenesis of UM [47]. For example, some miRNAs have been identified 
to affect the transcription and/or translation of many key genes and pathways that con-
tribute to UM [48,49]. 

3. miRNAs with Therapeutic Potential for UM, Identified in Preclinical Studies 
miRNAs are involved in the regulation of a variety of pathophysiological processes 

through degrading mRNAs or inhibiting the translation of target genes [50]. A single 
miRNA can target multiple genes, and a single gene can contain several miRNA response 
elements and be targeted by multiple miRNAs. This multi-target action of miRNAs makes 
them attractive tools for the development of anti-cancer therapies [51]. Aberrant miRNA 
expression is observed in UM, and the dysregulation of miRNA expression has been rec-
ognized as an epigenetic mechanism underlying UM tumorigenesis and metastasis. miR-
NAs may function as oncomiRs or tumor suppressors in UM. OncomiRs are generally 
upregulated in cancers, and typically target tumor suppressors and promote tumorigen-
esis. Inhibition of oncomiRs may significantly decrease tumor cell proliferation, survival 
and metastasis. In contrast, tumor suppressor miRNAs are defined by their properties of 
downregulating oncogenes, and they are often lost or under-expressed in cancer cells [52]. 
GNAQ/11 mutations and some components of downstream pathways are direct targets 
of tumor suppressor miRNAs. OncomiRs and tumor suppressor miRNAs in UM, as well 
as their expression and target genes, have been reviewed in previous publications [47,53]. 

A wide range of miRNAs have been presumed to be important in UM progression, 
and preclinical studies have validated several dysregulated miRNAs in UM as potential 
targets for inhibiting UM growth and metastatic progression (Figure 1). In this review, we 
summarize the miRNAs exhibiting therapeutic potential in preclinical studies (Figure 1). 

miR-21 is one of the oncomiRs examined in functional studies using in vivo animal 
models. Overexpression of miR-21 promotes the proliferation, migration and invasion of 
primary and mUM cells. The p53 gene is a direct target of miR-21, and inactivation of p53 
and its downstream LIM and SH3 protein 1 (LASP1) by miR-21 leads to more aggressive 
phenotypes of UM cells. Inhibition of miR-21 decreases in vivo tumor growth [54]. Thus, 
the influence of UM tumorigenesis and metastasis makes miR-21 a potential target for the 
development of novel therapeutic strategies. 

Furthermore, the anti-UM properties of several tumor suppressor miRNAs have 
been investigated in functional studies and have shown strong inhibition of UM cell pro-
liferation, migration and invasion, as well as in vivo tumor growth repression. Let-7b is 
downregulated in radioresistant UM cells. Let-7b overexpression leads to the inhibition 
of UM growth and an increase in the radiosensitivity of mUM cells, such as OCM1 and 
OM431, through the targeting of cyclin D1 expression [55]. miR-17-3p increases the tran-
scriptional activity of p53 by downregulating the expression of the oncoprotein murine 
double-minute clone 2 (MDM2) [56], which mediates the proteasomal degradation of p53 
through its E3 ligase activity [57]. In addition to p53, the retinoblastoma tumor suppressor 
protein (RB) is a key player in cell cycle progression. The canonical RB pathway consists 
of RB1, cyclin D1, cyclin-dependent kinase 4/6 (CDK4/6), p16 and the E2F family [58]. miR-
124a exhibits strong anti-UM effects by targeting CDK4/6, cyclin D2 and enhancer of zeste 
homolog 2 (EZH2) [59]. miR-140-5p is downregulated in UM cells and tissues. The proto-
oncogene SOX4, a crucial transcription factor of differentiation and progenitor develop-
ment, is a direct target of miR-140-5p [60]. miR-140-5p’s downregulation of the SOX4-me-
diated Wnt/β-catenin and NF-κB signaling pathways substantially suppresses in vivo UM 
tumor growth [61]. miR-142-3p has been found to decrease UM cell proliferation and mi-
gration as well as inhibit UM tumor growth in a suprachoroidal xenograft model [48]. 
MiR-142-3p directly targets several genes associated with GNAQ/11 and downstream sig-
naling pathways, including GNAQ, RAC1, transforming growth factor beta receptor 1 
(TGFβR1), cell division cycle 25C (CDC25C) and Wiskott–Aldrich syndrome protein 
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(WASL) [48]. miR-145 directly targets not only oncogene insulin receptor substrate-1 (IRS-
1) but also neuroblastoma RAS viral oncogene homolog (N-RAS) and VEGF, thus signifi-
cantly suppressing UM cell invasion, angiogenesis and tumor growth [62,63]. miR-182 
targets multiple oncogenic genes, including microphthalmia-associated transcription fac-
tor (MITF), cyclin D2 and pro-apoptotic B-cell lymphoma 2 (BCL2) [64]. MITF regulates 
the expression of the c-Met gene [65], which is overexpressed in more than 60% of UM and 
is associated with tumor aggressiveness as well as metastasis [66]. Thus, miR-182 inter-
feres with the c-Met signaling pathway through the downregulation of MITF. Addition-
ally, miR-182 participates in the tumor suppression network of p53 in UM [64]. 

The miRNAs with therapeutic potential listed in Table 1 are only a few of the many 
miRNAs reported to be involved in the tumorigenic and metastatic pathways of UM [47]. 
Notably, Aughton et al. have revealed that miR-181a was the only downregulated  
miRNA among three studies of miRNA expression in large, clinically well-defined UM 
samples [53]. The tumor suppressor role of miR-181a in retinoblastoma has been demon-
strated in our previous studies [67]. 

Table 1. List of miRNAs with therapeutic potential for UM, identified in preclinical studies. 

miRNA Preclinical Studies Function Target(s) Ref. 
miR-21-3p 
(oncomiR) 

OCM-1 cells stably transfected with miR-21-3p inhibition vector 
s.c. injected into the right side of the axilla in nude mice 

Reduces in vivo UM tumor 
growth 

p53 and 
LASP1 

[54] 

Let-7b 
OCM-1 cells stably overexpressing let-7b s.c. injected into the 

right flank in thymic nude mice 
Increases radiosensitivity of UM 

cells  
Cyclin D1 [55] 

miR-17-3p 
OCM-1A cells transfected with miR-17-3p agomir s.c. injected 

into the left axilla in nude mice 
Suppresses tumorigenesis and 

metastasis of UM 
MDM2 [56] 

miR-124a 
M23 cells or SP6.5 cells expressing miR-124a s.c. inoculated into 

the flank in nude mice 
Suppresses UM tumor growth in 

vivo and inhibits UM cell invasion 
CDK4/6, cyclin D2 

and EZH2  
[59] 

miR-142-3p 
miR-142-3p-transfected SP6.5 or M17 cells inoculated into the 

suprachoroidal space in nude mice 
Inhibits cell proliferation, migra-

tion and invasion 

CDC25C, TGFβR1, 
GNAQ, WASL and 

RAC1 
[48] 

miR-145 
Lentivirus-miR-145-transduced OCM-1 cells s.c. injected in the 

right side of the axilla in nude mice  
Reduces xenograft tumor growth 

and angiogenesis 
IRS-1, 

N-RAS and VEGF 
[63] 

miR-182 
M23 or SP6.5 cells expressing miR-182 s.c. inoculated into the 

flanks of nude mice 
Suppresses in vivo UM growth 

MITF, BCL2 and cy-
clin D2 

[64] 

4. Approaches of Therapeutic Targeting of miRNAs and Limitations of miRNAs in 
Translational Therapeutics 

To restore tumor suppressors that are downregulated or deleted in cancer cells, ad-
ministration of miRNA mimics (synthetic oligonucleotides) can re-establish miRNA levels 
to their basal non-pathological states and restore their biological functions [68]. Nonethe-
less, to inhibit oncogenes, several approaches can be used, such as antisense oligonucleo-
tides (antimiRs), miRNA sponges and genetic knockouts. AntimiRs, including locked nu-
cleic acid oligonucleotides (LNAs), have recently shown high-affinity targeting and inhi-
bition of oncogenic miRNAs [69]. miRNA sponge vectors for the expression of transcripts 
with miRNA binding sites complementary to the targeted miRNAs have been used to 
sequester endogenous miRNAs and prevent their binding to target mRNAs [70]. Clus-
tered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 
(CRISPR/Cas9) genome-editing technology has also been used as a potent genetic engi-
neering tool to achieve miRNA loss of function [71]. 

Despite their therapeutic potential, miRNAs often function by targeting multiple 
genes, thus making them attractive for anti-tumor therapy but also risky because of their 
potential adverse effects on healthy tissues. In addition, the therapeutic development of 
therapeutic miRNAs (miRNA mimics or inhibitors) also has the drawbacks of low stabil-
ity, low endocytosis and immunotoxicity. Because naked miRNAs and antimiRs can be 
rapidly degraded by nucleases in the serum and rapidly cleared by renal infiltration, they 
show poor penetration and are unable to diffuse spontaneously into cancer cells; however, 
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intracellular localization is required for their therapeutic effects [72]. To overcome the lim-
itations of therapeutic miRNAs, several strategies have been used. In addition to chemical 
modifications, such as phosphodiester or phosphorothioate internucleotide linkages, and 
the synthesis of LNAs, various nanotechnology-based systems have been developed and 
investigated to encapsulate therapeutic miRNAs within functionalized nanocarriers [73]. 

5. Nanotechnology-Based miRNA Delivery Systems 
5.1. Nanodelivery Systems for miRNA Therapeutics 

Several viral and non-viral miRNA delivery systems have been developed and 
demonstrated to protect therapeutic miRNAs against degradation, endosomal escape, cel-
lular uptake and specific targeting [67,74,75]. Viral vectors including lentiviruses, adeno-
viruses, retroviruses, adeno-associated viruses and virus-like nanoparticles have been 
shown to successfully deliver transgenes encoding miRNA mimics or antagonists [76]. 
Despite their high infection efficiency and persistent transgene expression, viral vectors 
have the drawbacks of toxicity, inherent immunogenicity, potential triggering of onco-
genic transformation and manufacturing complexity. Non-viral nanoparticles (NPs) have 
various advantages over viral vectors, owing to their low immunogenicity, biocompati-
bility, ease of production, controlled composition, ease of surface modification for tar-
geted delivery and ability to deliver multiple therapeutic molecules with synergistic ef-
fects in one platform [73,77]. Numerous non-viral NPs are classified into inorganic, or-
ganic and hybrid NPs on the basis of their nanomaterials. Hybrid NPs are made of two or 
more types of nanomaterials and generally comprise a metallic or polymeric core covered 
by one or more lipid layers. Tyagi et al. [78] and Attia et al. [77] have described the ad-
vantages and drawbacks of non-viral NP delivery systems. 

Inorganic NPs are derived from metals (e.g., gold, silver, carbon dots, rare-earth-
doped semiconductors, quantum dots, iron-oxide or silica). They provide several ad-
vantages, including a unique and tunable size, shape-dependent optical properties and 
multifunctional capabilities [79]. Gold nanoparticles (GNPs) have received substantial in-
terest over the past few years because they are easy to prepare and modify. They can be 
functionalized with thiol groups to increase their bonding to miRNA or a polyethylene 
glycol (PEG) layer to stabilize GNP nanostructures by limiting their aggregation and 
miRNA degradation; in addition, they can target specific ligands on the surface to bind 
target sites [80,81]. Furthermore, mesoporous silica NPs, a group of inorganic NPs, pro-
vide large active surfaces, enabling the attachment of various functional groups for tar-
geted miRNA delivery [82]. Organic NPs include polymers, dendrimers, liposomes, mi-
celles and solid lipid NPs (SLNPs). 

(1) Polymers are macromolecules consisting of a long-chain backbone of smaller re-
peating units and side groups. Various types of natural and synthetic polymers have been 
applied in miRNA-based therapies. For instance, chitosan, a natural cationic polymer with 
strong binding affinity for nucleic acids at low pH, has enabled successful delivery of 
miRNA to multiple myeloma [83]. Because of its affinity toward conjunctival and corneal 
surfaces, chitosan can penetrate into the eye [84]. Additionally, polyethyleneimine (PEI) 
and polylactide-co-glycolide (PLGA) are important synthetic polymers. PEI-based NPs 
are the most commonly used polymeric NPs for gene delivery because of their high cati-
onic charge density potential [85]. Studies have reported successful miRNA delivery with 
PEI-based NPs, thus resulting in significant anti-cancer effects [86,87]. Similarly, PLGA-
based NPs have been used to deliver miRNAs into several different types of cancer cells, 
and have exhibited high transfection efficiency and relatively low cytotoxicity. Notably, 
PLGA is one of the few polymers approved by the US Food and Drug Administration for 
human administration, owing to its biodegradable and biocompatible properties [88]. In-
terestingly, intravitreally injected PLGA NPs can pass through the retinal layers and reach 
the retinal pigment epithelium; therefore, PLGA NPs can be used to encapsulate thera-
peutic miRNAs for treating posterior segment diseases such as UM [89,90]. A recent study 
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has suggested that the polymer poly (N-isopropylacrylamide) (PNIPAM) has strong po-
tential for UM treatment, because high concentrations of PNIPAM have been detected in 
the uveal tissue after systemic injection [91]. 

(2) Dendrimers are synthetic polymeric macromolecules consisting of multiple 
highly branched monomers, with high drug-loading capacity through either encapsula-
tion or conjugation [78]. Notably, polyamidoamine (PAMAM) is one of the first dendrimer 
families to be fully characterized, synthesized and commercialized. PAMAM dendrimers 
are one of the smallest nanomolecules with a particularly precise molecular weight; high-
generation PAMAM dendrimers have shown higher transfection efficiency and improved  
miRNA effects in several human cancer models [92,93]. 

(3) Liposomes are small, spherical artificial vesicles composed of an aqueous inner 
compartment surrounded by a lipid bilayer. They can be created from cholesterol and 
natural non-toxic phospholipids [94]. Several cationic liposomes have been developed for 
the efficient delivery of miRNAs to the target tumor tissues [95–97]. 

(4) Micelles are self-assembled amphiphilic particles composed of a lipid monolayer 
with a hydrophobic core and hydrophilic surface. They are easy to prepare, and show low 
toxicity and good tissue penetration [78]. Combination therapy with gemcitabine-conju-
gated micelles loaded with miR-205 has shown significant inhibitory effects on advanced 
pancreatic cancer [98]. 

(5) SLNPs are submicron-sized lipid emulsions with solid lipids. They have unique 
properties such as a large surface area, high drug-loading capacity and interaction of 
phases at the interfaces [99]. SLNPs used to encapsulate miRNAs are usually composed 
of the cationic lipids N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 
(DOTMA) or 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)), neutral lipids (e.g., 
cholesterol and dioleoylphosphatidyl ethanolamine (DOPE)) and PEG [100]. Cationic li-
pids facilitate interaction with the cell membrane, thereby improving transfection effi-
ciency. We have demonstrated that miR-181a-loaded SLNPs exhibit high inhibitory effects 
on retinoblastoma cell viability, and the co-incorporation of miR-181a and a chemothera-
peutic drug (melphalan) into SLNPs exhibits a complementary anti-retinoblastoma effect 
[67]. 

(6) Other bio-nanostructures include bacterially derived nanocells (EnGeneIC Ltd., 
Sydney, Australia), a powerful NP drug delivery system for direct targeting and killing 
of cancer cells and simultaneously stimulating the natural anti-tumor immune response 
[101]. A recent study has shown that bacterial nanocells loaded with miR-34a strongly 
enhance the anti-tumor effects of TMZ in orthotopic glioblastoma xenografts [102]. In ad-
dition, exosome-mimetic NPs, which reproduce cell-derived exosome structures, physi-
cochemical properties and loading capacity, have been demonstrated as another strategy 
for miRNA delivery [103]. 

In general, nanocarriers/NPs can improve drug effectiveness while decreasing sys-
temic toxicity and improving pharmacokinetics in various ways, such as by encapsulating 
drugs in their cores, protecting drugs from early inactivation or biodegradation, control-
ling drug release and distribution, enhancing drug absorption by targeting cells, enabling 
specific drug delivery and delivering multiple therapeutic molecules for synergistic ef-
fects in a single platform [77]. 

5.2. The Developed Nanocarriers/NPs Relevant to the Potential Therapeutic miRNAs for UM 
Various nanodelivery systems have already substantially influenced the develop-

ment of miRNA therapeutics for cancer therapy. Only the successfully developed 
nanocarriers/NPs for miRNA delivery and potential therapeutic miRNAs for UM are 
listed here (Table 2). 
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Table 2. List of nanocarriers/NPs for the delivery of potential therapeutic miRNAs for UM. 

Potential Therapeutic 
miRNA for UM 

Nanocarriers/NPs Targeting Cells Ref. 

Anti-miR-21 oligonucleo-
tide 

Aptamer-decorated PEGylated PLGA NPs Ovarian cancers [104] 
Acid-triggered charge-reversible graphene-based multilayer poly-

mers 
Triple-negative breast cancer [105] 

GNPs Breast cancer cells [106] 
Chlorotoxin-coupled stable nucleic acid lipid NPs Glioblastoma [107] 

3WJ-based RNA NPs Glioblastoma [108] 

Let-7b 
HA-G5 PAMAM dendrimer CD44+ non-small-cell lung cancer cells [109] 

Cationic liposomes Neuroblastoma [110] 
miR-17 DOTAP-modified PLGA lipid–polymer hybrid NPs Bronchial epithelial cells [111] 

miR-124a Disulfide-linked PEI NPs Neuron cells [86] 
miR-142-3p G5 PAMAM dendrimers Myeloid cells [112] 

miR-145 

Micelles Vascular smooth muscle cells [113] 
Disulfide cross-linked micelles Colon cancer cells [114] 

Nanocapsules Colorectal cancer cells  [115] 
PLGA NPs Vascular smooth muscle cells  [116] 

Chitosan-thiolated dextran NPs Cancer cells [117,118] 
Magnetic nanoformulation Pancreatic cancer  [119] 

Polyarginine-disulfide-linked PEI NPs Prostate cancer [120] 
GNPs Prostate and breast cancer cells [121] 

HA-PLGA/PEI with miR-145 expression plasmid  Colon carcinoma  [122] 
Chitosan polyplex NPs with miR-145 expression plasmid MCF-7 [123] 

miR-182 
PEGylated GNP nanogel Metastatic breast cancer [124] 

PEGylated GNPs Glioblastoma [125] 
miR-34a, miR-137, miR-144 

and miR-182 
GNPs UM cells [126] 

To suppress the function of oncomiR miR-21, several studies have investigated the 
anti-cancer efficacy of the anti-miR-21 oligonucleotide loaded in (1) AS1411 anti-nucleolin 
aptamer-decorated PEGylated PLGA NPs, (2) acid-triggered charge-reversible graphene-
based NPs with multilayer polymers, (3) GNPs and (4) chlorotoxin-coupled stable nucleic 
acid lipid NPs and three-way-junction (3WJ)-based RNA NPs for targeting various types 
of cancers [104–108]. Of note, the 3WJ core derived from packaging the RNA of the bacte-
riophage phi29 DNA packaging motor has been extensively studied to fabricate various 
RNA NPs [127]. 

To recover tumor suppression function, delivering mimics of downregulated tumor 
suppressor miRNAs into targeted cancer cells is the most commonly used approach. 
Maghsoudnia et al. [109] have encapsulated let-7b mimic in hyaluronic acid (HA)-coated 
generation G5 PAMAM dendrimers to target CD44 over-expressing non-small-cell lung 
cancer cells. In addition, cationic liposomes containing both miR-34a and let-7b have 
shown a powerful inhibitory effect on neuroblastoma [110]. Vencken et al. [111] have 
loaded miR-17 mimic into lipid–polymer hybrid NPs composed of PLGA and the cationic 
lipid DOTAP, and have revealed the efficient delivery of miR-17 into bronchial epithelial 
cells. miR-124a mimic encapsulated in rabies virus glycoprotein-labeled non-toxic disul-
fide-linked PEI NPs has been delivered into neuron cells [86]. The miR-142-3p mimic was 
loaded in G5 PAMAM dendrimers to target myeloid cells [112]. Because the tumor sup-
pressor miR-145 inhibits multiple types of tumor cells, numerous nanocarriers have been 
developed for miR-145 mimic delivery [113–121], including micelles, protamine nanocap-
sules, PLGA NPs, redox-responsive chitosan-thiolated dextran NPs, magnetic NPs, pol-
yarginine-disulfide-linked PEI NPs and GNPs. Additionally, miR-145 expression vectors 
carried by HA-PLGA/PEI NPs and chitosan polyplex NPs have been delivered into cancer 
cells and found to restore miR-145 expression levels [122,123]. To deliver miR-182, a hy-
drogel-embedded, PEGylated GNP has been synthesized and found to provide sustained 
release of miR-182 in metastatic breast cancer [124]. Interestingly, PEGylated GNPs with 
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miR-182 can penetrate the blood–brain/blood–tumor barriers, reduce glioblastoma tumor 
burden and increase animal survival [125]. 

Notably, Rois et al. [126] published the first study using a GNP loaded mix of four 
tumor suppressor miRNAs mimics for UM treatment—miR-34a, miR-137, miR-144 and 
miR-182—which are downregulated in UM cells and have synergistic effects on UM cell 
viability. Remarkably, conjugation of the unique combination of miRNAs on GNPs has 
been found to overcome the limitations of these molecules and make UM cells more sus-
ceptible to chemotherapeutic SN38 (7-ethyl-10-hidroxycamptothecin, a topoisomerase I 
inhibitor). 

5.3. Modification of NP Surfaces for Improving Biocompatibility and Active Targeting 
NPs are recognized as foreign bodies by the mononuclear phagocyte system (includ-

ing monocytes, macrophages and Kupffer cells in the liver) and the complement system; 
thus, they are rapidly cleared from the blood [128]. Nevertheless, NP surface modifica-
tions can improve delivery efficacy and biodistribution. For instance, studies have shown 
that the PEG-based (DSPE-PEG2000) coating in NPs avoids clearance and improves sta-
bility in the blood [129–132]. Moreover, conjugating the surfaces of NPs with a specific 
ligand can significantly increase the quantity of drug delivered to the location of interest, 
thereby avoiding normal tissues, enhancing the therapeutic efficiency and limiting the 
adverse effects of the drugs [77,130]. In particular, UM cells strongly express the trans-
membrane glycoprotein intercellular adhesion molecule 1 (ICAM-1) and cell surface ad-
hesion receptor CD44 [133]. ICAM-1-antibody-conjugated iron oxide NPs have been in-
vestigated for specific targeting of triple-negative breast cancer cells [134]. HA specifically 
binds the CD44 receptor and has been widely used in the synthesis of conjugated NPs for 
cancer-specific targeting [135,136]. UM develops in the choroid, one of the most capillary-
rich tissues. Grafts of angiogenic factors such as VEGF or arginylglycylaspartic acid (RGD) 
peptides on inorganic NPs can be used to target tumoral angiogenesis [77]. Moreover, as 
a result of the active metabolism of tumor cells, the extracellular pH of tumor tissues is 
often acidic, owing to the accumulation of acidic metabolic waste products in the tumor 
microenvironment [137]. Therefore, pH-sensitive NPs have been developed for targeting 
the mildly acidic tumor microenvironment, such as polymers with imidazole groups or 
poly β-amino ester-based polymers responsive to tumoral low pH [138] (Figure 2). 
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Figure 2. Schematic depiction of potential roles of NPs with surface modifications in UM treatment. 

6. Conclusions and Future Directions 
With the increased knowledge regarding the dysregulation of miRNAs that underlie 

the oncogenesis of UM, preclinical studies of specific UM therapies are increasingly being 
reported. To achieve promising preclinical results and evaluate the effectiveness of poten-
tial therapeutic miRNAs, selecting orthotopic tumor models that create a disease-relevant 
environment and using cells or tissues from patients with UM (also known as patient-
derived xenografts, or PDX), are important. Performing experiments on PDX models that 
reflect the heterogeneity and diversity of clinical tumors may decrease the dissimilarities 
between human tumors and preclinical models [130]. Notably, primary UM spheroids re-
tain the histological and genetic characteristics of the primary tumor, and the use of 3D 
spheroids has enabled early phase drug screening [139]. Additionally, multicellular 3D 
models that recapitulate the spatial dimensions, cellular heterogeneity and molecular net-
works of the tumor microenvironment in vitro are excellent preclinical tools for exploring 
the roles of miRNAs in more clinically relevant settings. 

Although the existing data are promising and support the utility of NPs as ideal car-
riers for miRNAs, several challenges remain before miRNA-based targeted NPs can be 
approved for clinical use, including tumor heterogeneity, penetration, endosomal escape, 
regulatory hurdles and the complex scaling up of the manufacturing process. Further-
more, for the successful design of targeted NP systems, ligand properties, target expres-
sion profiles and NP surface chemistry should be considered [78]. With continued im-
provements, the development of miRNA-based NPs with controllable/predictable biolog-
ical identities may accelerate clinical translation. 

Several delivery routes can be used for NPs to deliver miRNAs into the posterior 
segment of the eye for UM treatment [140]. These are systemic, periocular, suprachoroidal 
and intravitreal injection routes. The internal barriers include the blood–aqueous and 
blood–retina barriers, which impede direct and systemic drug access to the specific sites 
of action [141]. Therefore, systemic administration is not the preferable route for the treat-
ment of UM, as the amount of drug that reaches the posterior segment of the eye is low 
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and it is difficult to achieve an effective dose. The periocular injection route includes sub-
conjunctival, sub-Tenon’s, retrobulbar, peribulbar and posterior juxtascleral injection 
[142]. Periocular injections are less invasive and capable of providing a relatively high 
drug bioavailability in the posterior cavity of the eye [143]. Intravitreal injection is becom-
ing a more common choice for treating posterior eye diseases due to the possibility of 
offering a high drug load in the retina and vitreous and overcoming systemic exposure 
[144]. The drug molecular weight is the major factor affecting drug elimination for intrav-
itreal injection. Besides, patients with posterior segment diseases usually need multiple 
intravitreal injections which may cause certain complications [140]. Notably, drug deliv-
ery into the suprachoroidal space (the potential space between the sclera and choroid) has 
emerged as a promising administration route with which to target multiple posterior eye 
diseases, including UM [145]. Studies have demonstrated the potential advantages of su-
prachoroidal drug delivery with NP-based gene therapy, in which therapeutic agents tar-
get chorioretinal tissues rather than the unaffected anterior section of the eye, thereby 
minimizing off-target effects [146–148]. In general, drug penetration ability and controlled 
release are the critical factors to maintain the effective therapeutic drug concentration in 
the posterior segment of eye. The small size of NPs can help to overcome the ocular bar-
riers, and lipophilic NPs are more in favor of going through the blood–retinal barrier 
[149,150]. In addition, NPs can control drug release in a spatiotemporal manner to poten-
tially enhance the therapeutic efficacy of the drugs, reduce toxicity and minimize the num-
ber of injections [151]. 

UM metastases are exceptionally hepatotropic. The hepatic microenvironment pro-
vides multiple growth and survival factors as well as inflammatory and profibrogenic 
mediators that are important in the homing of UM cells to the liver and mediates crosstalk 
between UM cells and hepatic stellate cells. Given that life-threatening micrometastases 
have usually already formed by the time of diagnosis, inhibiting the growth of these mi-
crometastases is critical to confer major therapeutic effects. In this respect, better 
knowledge of the miRNAs involved in the metastatic microenvironment may provide 
new targets for UM therapy [7]. Regarding the evaluation of the anti-mUM efficacy of 
miRNA-based NP therapy, the development of orthotopic PDX models of mUM, particu-
larly from high-risk primary UM or liver metastases, may have better clinical significance 
than ectopic PDX models [152]. In addition, the development of NPs with controlled bio-
distribution may improve the targeting of hepatic metastases [77]. Advanced NP delivery 
systems can deliver more than one therapeutic reagent, thereby enabling simultaneous 
targeting of several important oncogenic signaling pathways in UM to achieve better cy-
totoxic effects. Thus, the combination of conventional therapies with miRNA-based 
nanodelivery strategies may have potential for treating metastatic UM in the future. 
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AKT Protein kinase B 
antimiRs miRNA antisense oligonucleotides  
BAP1 BRCA associated protein 1  
BCL2 B-cell lymphoma 2  
CDC25C Cell division cycle 25 homolog c 
CDK Cyclin-dependent kinase  
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane  
EIF1AX Eukaryotic translation initiation factor 1A X-linked  
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ERK Extracellular-signal-regulated kinase 
EZH2 Enhancer of zeste homolog 2 
GNAQ Guanine nucleotide-binding protein alpha-Q  
GNAQ/11 Guanine nucleotide-binding protein alpha-Q and subunit alpha-11  
GNPs Gold nanoparticles  
HA Hyaluronic acid  
HGF Hepatocyte growth factor  
ICAM-1  Intercellular adhesion molecule 1  
IRS-1 Insulin receptor substrate-1  
LASP1 LIM and SH3 protein 1  
LNA Locked nucleic acid oligonucleotide  
MAPK Mitogen-activated protein kinase  
MDM2 Murine double-minute clone 2 oncoprotein  
miRNA MicroRNA  
MITF Melanogenesis-associated transcription factor 
MMPs Matrix metalloproteinases  
mUM Metastatic uveal melanoma 
NPs Nanoparticles 
PAMAM Polyamidoamine  
PDX Patient-derived xenograft 
PEG Polyethylene glycol  
PEI Polyethyleneimine  
PI3K Phosphatidylinositol 3-kinase 
PLGA Polylactide-co-glycolide  
PNIPAM Poly N-isopropylacrylamide  
PTEN Phosphatase and tensin homolog 
RAC1 ras-related c3 botulinum toxin substrate 1  
RB Retinoblastoma protein 
RGD Arginylglycylaspartic acid 
SF3B1 Splicing factor 3b subunit 1 
SLNPs Solid lipid nanoparticles 
TGFβR1 Transforming growth factor beta receptor 1 
UM Uveal melanoma  
VEGF Vascular endothelial growth factor  
VEGFR VEGF receptor 
WASL Wiskott–Aldrich-syndrome-like  
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