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Simple Summary: Richter transformation is a significant and devastating complication of chronic
lymphocytic leukemia. While its pathogenesis has been well-studied in terms of genetic and molec-
ular changes and its diagnosis has been made easier by imaging and pathological techniques, its
treatment is still an issue. Most patients are resistant to chemo-immunotherapy, and even novel
agents do not seem to improve the prognosis in a significant way. Therefore, new combinations
and novel drugs are currently being tested. In the current review, we summarize new data about
the pathophysiology, biological, and clinical basis of Richter transformation, as well as the different
treatments of this condition.

Abstract: Richter transformation (RT) is a poorly understood complication of chronic lymphocytic
leukemia (CLL) with a dismal prognosis. It is associated with a switch in histopathology and biology,
generally with a transformation of the original CLL clone to diffuse large B-cell lymphoma (DLBCL)
or less frequently to Hodgkin’s variant of Richter transformation (HVRT). It occurs in 2–10% of CLL
patients, with an incidence rate of 0.5–1% per year, and may develop in treatment-naïve patients,
although it is more common following therapy. In recent years, there has been a deeper understanding
of the molecular pathogenesis of RT that involves the inactivation of the TP53 tumor suppressor gene
in 50–60% of cases and the activation of aberrations of NOTCH1 and MYC pathways in about 30% of
cases. Compared to the preceding CLL, 80% of cases with DLBCL-RT and 30% of HVRT harbor the
same IGHV-D-J rearrangements, indicating a clonal evolution of the disease, while the remaining
cases represent de novo lymphomas that are clonally unrelated. Despite advances in understanding
the molecular variations and the pathogenesis of the disease, there is still no significant improvement
in patient outcomes. However, if no clinical trials were designed for patients with RT in the past, now
there many studies for these patients that incorporate new drugs and novel combinations that are
being explored. In this review, we summarize the new information accumulated on RT with special
emphasis on results involving the novel therapy tested for this entity, which represents an unmet
clinical need.

Keywords: richter syndrome; richter transformation; chronic lymphocytic leukemia; DLBCL;
novel agents; BTKi; BCL2

1. Definition, Epidemiology, and Clinical Presentation of Richter Transformation

Richter transformation (RT) is defined as the occurrence of an aggressive lymphoma in
patients with a previous or concomitant diagnosis of chronic lymphocytic leukemia (CLL) [1]. It
is characterized by a switch in the histopathology and biology of the original CLL.

In 95–99% of cases, such a switch is towards a diffuse large B cell lymphoma (DLBCL)
(DLBCL-RT), cases of the Hodgkin’s variant of Richter transformation (HVRT) (0.5–5%) [2]
have been described, and, less frequently, the transformation has been described in plas-
mablastic lymphomas [3].
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The exact incidence of the syndrome is unknown, as some cases are probably being
missed due to the aggressiveness of the disease or the absence of adequate histopathology
samples. In addition, most of the reported series have been of a retrospective nature.
Therefore, the reported incidence varies. In the chemo-immunotherapy era, it was reported
as 2–10%, with a transformation rate of 0.5–1% per year [4–10] (Table 1).

Table 1. Epidemiology of Richter transformation reported in clinical trials in the era of chemoim-
munotherapy and novel agents.

Trial Reference Treatment Del (17p) Incidence of Richter
Transformation

Chemo-immunotherapy

Tsimberidou, 2006 [4] Chemo-immunotherapy NA 3.7%
Parikh, 2013 [5] Chemo-immunotherapy 3.3% 2.3%
Robak, 2004 [9] Cladribine, Alkylating NA 0.9%
Rossi, 2009 [6] Chemo-immunotherapy NA 8.8%

Catvosky, 2007 [7] F vs. FC vs. Chl NA 1.7%
Solh, 2013 [8] F vs. Chl vs. F and Chl NA 6.5%

Fischer, 2016 [10] FC vs. FCR 6.2% 4.0%

Novel therapies—R/R CLL

Munir, 2019 [11] Ibrutinib 32% 10%
O’Brien, 2016 [12] Ibrutinib 100% 12%

Chanan-Khan, 2016 [13] Ibrutinib and BR 0 0
Ahn, 2017 [14] Ibrutinib 60% 9%

Furman, 2014 [15] Idelalisib and R 42% NA
Jones, 2017 [16] Idelalisib and O 40% NA

Zelenetz, 2017 [17] Idelalisib and BR 33% 2%
Roberts, 2017 [18] Venetoclax 30% 16%

Stilgenbauer, 2016 [19] Venetoclax 100% 10%
Seymour, 2017 [20] Venetoclax and R 31% 10%

Novel therapies—Treatment naive CLL

Burger, 2015 [21] Ibrutinib 0 0
Ahn, 2017 [14] Ibrutinib 60% 4%

Woyach, 2018 [22] Ibrutinib
Ibrutinib and R

5%
8%

0
1%

Moreno, 2019 [23] Ibrutinib and O 12% 0.9%
Shanafelt, 2019 [24] Ibrutinib and R 0.6% NA

Sharman, 2020 [25] Acalabrutinib
Acalabrutinib and O

8.9%
9.5%

3%
1%

O’Brien, 2015 [26] Idelalisib and R 14% 0
Lampson, 2019 [27] Idelalisib and O 17% NA

Fischer, 2019 [28] Venetoclax and O 12% 1%
Legend: B: bendamustine; C: cyclophosphamide; Chl: chlorambucil; CLL: chronic lymphocytic leukemia; F:
fludarabine; NA: Not assessed; O: Obinutuzumab; R: Rituximab.

Recently, the incidence of RT was evaluated using the Surveillance, Epidemiology,
and End Results (SEER) database of CLL patients diagnosed between 2000 and 2016. In
this large cohort of 74,116 patients with CLL, 530 cases with RT were identified, with a 0.7%
incidence of transformation [29]. The German CLL Study Group summarized their pooled
analysis of 2975 patients included in the frontline treatment trials and an RT incidence of
3% was observed, 92% of which with DLBCL-RT [30]. In the era of novel agents, one raised
concern was whether there was an increased rate of this rare and aggressive transformation
among patients treated with Bruton tyrosine kinase inhibitors (BTKis) or BCL2 inhibitors
(BCL2is). Indeed, in the first clinical trials using novel agents, 2–15% incidence rates
of RT have been described in relapsed/refractory (R/R) patients with CLL treated with
ibrutinib [11–14,31,32], venetoclax [18–20], or idelalisib [15–17]. These alarming reports
were probably related to the recruitment of patients with R/R disease or even already in
the early stages of transformation (Table 1).
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In contrast, in clinical trials involving treatment-naïve patients with CLL treated with
novel agents, the incidence of RT was reported to be 0–4% [14,21–28] (Table 1), indicating
that there is no increase in the number of cases of RT during therapy with these novel and
effective biological agents.

Clinical suspicion of RT should be raised when a patient with CLL presents with the
sudden clinical deterioration with prominent constitutional symptoms, including fever,
night sweats, and loss of weight. On physical examination, there is an asymmetric and
rapid growth of bulky lymph nodes or extra nodal involvement that is characteristic in
40% of all RT cases, mostly those of the gastrointestinal tract, bone marrow, central nervous
system, and skin [33,34]. Laboratory tests frequently present with cytopenias, an elevation
of lactate dehydrogenase (LDH), and (less frequently) with hypercalcemia [35].

2. Pathogenesis and Risk Factors for the Development of Richter Transformation

It is of great interest to identify the patients with the highest risk to develop RT. Indeed,
risk factors for the development of RT have been extensively studied and include clinical
characteristics or molecular and genetic changes.

Clinical risk factors for RT include: bulky lymphadenopathy or hepato-splenomegaly,
advanced stage, low platelet count, elevated beta-2-microglobulin [5,33,36,37], past CLL
therapy combining purine analogues and alkylating agents, and a higher number of lines
of therapy [38]. These clinical observations are probably only surrogate aspects secondary
to some intrinsic biologic features of an individual tumor.

Of major interest are the molecular mechanisms that favor the transformation of CLL
into lymphoma. In this review, we chose to summarize these pathways based on the stage
at which they occur in CLL or RT diagnosis.

2.1. Molecular and Genetic Changes at CLL Diagnosis Associated with Richter Transformation

The genetic background represented by single nucleotide polymorphism (SNP) analy-
sis may be of interest with selected germline SNPs that may confer susceptibility to RT [39].
One such observation was the report that GG homozygosity for the rs6449182 SNP of CD38
gene encoding appears to be associated with an increased risk of RT. Similarly, patients
with BCL2 GG and LRP4 TT germline genotypes seem to have a higher risk of developing
RT [40,41].

Studies of the immunoglobulin heavy-chain variable region gene (IGHV) mutational
status indicate that patients with unmutated IGHV [40] or stereotyped B-cell receptor
(BCR) [5,33,40–43] have increased risk of RT. Moreover, IGHV4–39 gene usage has been
shown to carry a 24-fold increased risk of RT and when combined with stereotyped BCR
(SUBSET 8) in the same patient, it showed a 5 year risk of RT of 68.7% [6]. Another recently
noted point is that CLL patients with a complex karyotype at diagnosis seem to have the
highest risk and shortest time to Richter transformation [44,45].

Genomic aberrations at CLL diagnosis that increase the risk of RT include CDKN2A
deletion, TP53 disruption, C-MYC activation, trisomy 12 (particularly in the absence of
del13q14), and NOTCH1 mutation [38]. Previously, two mechanisms for the occurrence of
RT have been described. The main mechanism, which is found in about half of patients
with RT, is related to the inactivation of TP53 and of CDKN2A/B [46], which induces cell
cycle deregulation. The second reported pathway is defined by the presence of trisomy
12 or NOTCH1 mutations present in about one third of cases [46]. Indeed, the mutational
status of NOTCH1 has been reported in 45% of cases with transformation into DLBCL
compared to CLL without NOTCH1 mutations, in which only 4% have undergone RT [47].

Murine models have shown that RT is characterized by constitutive active AKT, which
seems to induce NOTCH1-signaling B cells via the NOTCH1 ligand expressed by T cells,
and therefore apparently orchestrates RT [48].
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2.2. Molecular and Genetic Changes Characterizing Richter Transformation

Other molecular and genetic markers have been analyzed from the point in time of
the documentation of RT. Mutational profile and ex vivo pathway analyses from patient-
derived xenograft models obtained from two RT patients’ samples engrafted into immuno-
compromised mice revealed the overactivation of the BCR, NFkB, and NOTCH pathways,
while RNA sequencing showed that more than 80% of the transcriptome was shared
between primary CLL and RT xenograft [49]. A stable RT cell line established from the
cervical lymph node of a 60-year-old patient with CLL and clonally-related RT-DLBCL
revealed a complex karyotype with the loss of TP53 and CDKN2A, a chromosomal gain
of the NOTCH1 gene locus, and strong immunoreactivity for BCL-2 [50]. Furthermore,
the whole-genome sequencing and RNA expression data of paired circulating CLL and
RT biopsies performed in 17 patients with CLL identified a high number of mutations in
poor-risk CLL drivers and genes in the DNA damage response pathway (that seems to be
the dominant mechanism driving RT), as well as other genomic aberrations including the
protein tyrosine phosphatase receptor and tumor necrosis factor receptor-associated factor
3 in RT biopsies [51]. Moreover, the noncoding genome of RT biopsies revealed mutations
affecting the regulatory regions of key immune-regulatory genes (BTG2, CXCR4, NFATC1,
PAX5, NOTCH-1, SLC44A5, FCRL3, SELL, TNIP2, and TRIM13) [51]. In the novel therapy
era, new genetically and molecularly defined RT have seemed to appear [52]. For example,
two cases of post-ibrutinib RT have been reported and were shown to lack resistance
mutations of the BTK and PLCG2 genes, which are clonally related to the preexisting
CLL phase [35]. Finally, downregulating cell cycle inhibitors (e.g., inactivating lesions in
CDKN2A, CDKN2B, and TP53) have been associated with RT, and the BCR stimulation
of human RT cells containing such lesions seems to induce proliferation [53]. Therefore,
RT seems to have a unique genomic and molecular expression that appears to impact its
pathogenesis, as well as prognosis, since TP53 abnormalities and IGHV unmutated status
at both CLL diagnosis and the time of RT seem to be associated with poor prognosis in RT
patients [54].

2.3. Microenvironment

It is understood that the microenvironment has a fundamental role in the supporting
cancer genesis. CLL cells and their surrounding niche are closely related and constantly
interact. From this point of view, microenvironment remodeling also seems to have a role in
the development of RT. This observation is reflected by a high programmed death 1 (PD-1)
expression by tumoral B lymphocytes [55,56], higher programmed death ligand 1 (PD-L1)
expression in histiocytes and dendritic cells, the higher infiltration of FOXP3-positive T
cells and CD163-positive macrophages, and lower peripheral blood T-cell receptor clonality
compared to CLL without RT [56], suggesting changes in the immune signature of CLL
after RT.

3. Diagnosis of Richter Transformation

It is highly important to have a high index of suspicion of RT in a CLL patient with
sudden clinical deterioration and to direct them to workout with the aim of performing a
biopsy from the most accurate site for diagnosis as early as possible.

3.1. Pathological Diagnosis

The diagnosis of RT is based on a biopsy and the histopathologic analysis of a sus-
pected lesion (mainly lymph node) by an expert haemato-pathologist.

Such a diagnosis of DLBCL-RT is still a pathologic challenge due to the difficulty of
differentiating DLBCL-RT from “accelerated CLL” or de-novo DLBCL [57].

A tissue sample is typically infiltrated by large neoplastic B-lymphocytes with nuclear
size equal or larger than macrophage nuclei or more than twice a normal lymphocyte, with
a morphology similar to centroblasts in 60–80% of cases or immunoblasts in 20–40 of all
cases [57].
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The cell of origin is generally of an activated-B-cell (ABC) type that expresses post-
germinal center markers such as IRF-4, whereas only 5–10% display a germinal center
B-cell (GCB) phenotype expressing CD10 and/or BCL6 [58]. Moreover, CLL markers such
as CD5 and CD23 are generally lost during RT [59]. Due to the complexity of distinguishing
DLBCL-RT from histologically aggressive CLL, criteria for the histological diagnosis of
DLBCL-RT have been delineated [57].

Clonal relationship analysis: An important step following the histopathologic diagno-
sis of RT is to perform an analysis of the clonal relationship of the RT tissue biopsy, as results
have both prognostic and therapeutic implications. IGHV-D-JH nucleotide rearrangement
should be sequenced by PCR or next-generation sequencing (NGS) methods, and results
should be compared with those of circulating B-CLL cells.

Clonally related transformation occurs in 80% of all cases of RT and represents “true
transformation” with a dismal outcome, chemotherapy resistance, and a high expression
of PD1, while “clonally unrelated” RT has shown similar outcomes to de novo DLBCL
(Figure 1).

Figure 1. Biological pathways associated with Richter transformation. Legend: CDKN2A: cyclin-
dependent kinase inhibitor 2A; CLL: chronic lymphocytic leukemia; DLBCL-RT: diffuse large B
cell lymphoma Richter transformation; IGHV-D-J: immunoglobulin heavy chain variable D-J; TP53:
tumor protein 53.

3.2. Radiological Diagnosis

As opposed to CLL, radiological evaluation is recommended for the workup diagnosis
of RT. Conventional CT has been performed in the past, but it currently has limited use and
is only recommended if other imaging modalities are not available [60]. 18-FDG-PET/CT
is the recommended imaging technique, both for diagnosis and as a guide for the most
adequate site of accurate biopsy. The probability of RT was shown to be significantly
increased with higher standardized uptake values (SUVs) and maximal SUV (SUVmax).
This technique has the ability to distinguish between CLL (median SUVmax: 3.7), accelerated
CLL (median SUVmax: 6.8), and RT (median SUVmax: 17.6) [61]. Therefore, an 18-FDG-
PET/CT showing low uptake (SUV of 5 and lower) seems to rule out RT, while an 18-FDG-
PET/CT showing a high uptake (SUV of 10 and higher) may help guide biopsies for definite
RT diagnosis [62–64] (Figure 2). Furthermore, some 18-FDG-PET/CT markers such as
total metabolic tumor volume, SUV body weight, SUV lean body mass, SUV body surface
area, lesion-to-liver SUV ratio, and lesion-to-blood-pool SUV ratio assessed at the time of
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RT into DLBCL seem to be correlated with overall survival (OS) [65,66]. However, in the
novel therapy era, one should consider the limitations of 18-FDG-PET/CT, the results of
which might be influenced by the use of biological agents as BTKi and anti-PD1 [67]. Other
imaging techniques involving novel PET radiotracers, whole-body diffusion-weighted
imaging, radiomics, and PET–MRI seem promising in this area [67].

Figure 2. Diagnosis of Richter transformation. Legend: 18-FDG-PET–CT: positron emission tomography with 2-deoxy-
fluorine-18-fluoro-D-glucose; CLL: chronic lymphocytic leukemia; LDH: lactate dehydrogenase; RT: Richter transformation;
SUV: standardized uptake values.

4. Current Treatment Strategies of Richter Transformation
4.1. Chemo-Immunotherapy

Various chemotherapy and chemo-immunotherapy protocols have been tested for
DLBCL-RT, including OFAR-1 [68], OFAR-2 [69], R-CHOP [70], O-CHOP [71], R-Hyper-
CVAD [69], R-EPOCH [72], DHAP/ESHAP [73], Hyper-CVXD [74], and R-Hyper-CVXD [75]
(Figure 3). In the chemotherapy era, the median OS from time of diagnosis of clonally
related RT was less than a year [4,76]. The addition of rituximab to chemotherapy for RT
improved the 2 year OS from 19% in the chemotherapy alone arm to 42% [76] (Table 2).
However, even though the use of chemo-immunotherapy for RT has achieved unsatisfac-
tory results, it remains the gold standard therapy outside clinical trials.

Figure 3. Target therapy and chemo-immunotherapy for the treatment of Richter transformation.
Legend: Abs: antibodies; BCL2: B-cell lymphoma 2; BCL2i: B-cell lymphoma 2 inhibitor; BTK: Bruton
tyrosine kinase; BTKi: Bruton tyrosine kinase inhibitor; CAR-T: chimeric antigen receptor T cell;
LAG3: lymphocyte-activating 3; PD1: programmed death 1; PI3K: phosphoinositide 3-kinase; ROR1:
receptor tyrosine kinase-like orphan receptor 1.



Cancers 2021, 13, 5141 7 of 14

Table 2. Chemo-immunotherapy outcomes in the treatment of RT.

Regimen Author, Year Institution No. of
Patients

Median
Age

(Years)

CR
(%)

ORR
(%)

Median
PFS (mo)

Median
OS (mo)

OFAR-2 Tsimberidou, 2013 [69] MDACC 35 63 6 39 3 7
OFAR-1 Tsimberidou, 2008 [68] MDACC 20 66 20 50 4 8
R-CHOP Langerbeins, 2014 [70] GCLLSG 15 69 7 67 10 21
O-CHOP Eyre, 2016 [71] UK 37 66 25 44 6 11

R-Hyper-CVAD Tsimberidou, 2013 [69] MDACC 35 NA NA 46 6 9
R-EPOCH Rogers, 2018 [72] OSU 46 67 20 38 4 6

DHAP, ESHAP Durot, 2015 [73] France 28 63 25 43 7 8
R-Hyper-CVXD Tsimberidou, 2003 [75] MDACC 30 59 27 43 6 8

Hyper-CVXD Dabaja, 2001 [74] MDACC 29 61 38 41 NA 10

Legend: CR: complete remission; mo: months; No: number; ORR: overall response rate; OS: overall survival; PFS: progression-free survival.

Eligible patients who are chemo-sensitive and achieve good response following chemo-
immunotherapy are recommended to undergo allogeneic stem cell transplant.

4.2. Stem Cell Transplantation

Stem cell transplant (SCT) represents the only option for curing RT. The European bone
marrow transplantation registry included 59 patients with RT from 1997 to 2007: 34 and
25 of them underwent autologous SCT and SCT, respectively, most of them with reduced
intensity conditioning (RIC) [77]. The 3 year OS was estimated at 36% for allogeneic
SCT and 59% for autologous SCT, with an age younger than 60 years, chemo-sensitive
disease, and RIC being associated with a better prognosis after allogeneic SCT in RT [77].
The benefits of RIC preceding allogeneic SCT in RT were also underlined in a recent
retrospective study including 58 CLL patients, 23 of them with RT with a median follow-up
of 68 months that revealed a 5 year OS of 58% and a 5 year PFS of 40% [78]. Another single
center study showed encouraging results in 10 patients with RT referred to allogeneic SCT
after objective response to therapy, with a 4 year OS of 50%, a non-relapse mortality at both
1 and 4 years post-transplantation of 40%, and a 4 year incidence of relapse/progression
of 10% [79]. A recent study included 27 patients with DLBCL-RT and one with HVRT,
showing 4 year OS and PFS of 53% and 39%, respectively, and an acceptable 18% rate of
grade III–IV graft-versus-host disease [80]. Finally, a systematic review and meta-analysis
of four studies including 72 fit patients with RT that underwent allogeneic SCT identified
an encouraging pooled overall response rate (ORR), complete remission (CR), OS, and PFS
rates of 79%, 33%, 49%, and 30%, respectively [81].

4.3. Novel CLL Therapies for RT

With the advent of new drugs that have entered into use in CLL, it was expected that
the next step would be to test their effectiveness in RT (Figure 3). The BTKi ibrutinib has
been evaluated as monotherapy in eight patients with DLBCL-RT: one of them achieved
CR lasting for 2.8 months and three achieved partial remission (PR) lasting between 8 and
more than 12 months [82,83]. In three other patients with RT, ibrutinib has been tested
in combination with ofatumumab: one of them achieved PR lasting for 4.6 months [84].
The novel BTKi acalabrutinib was tested in 25 patients with DLBCL-RT, 48% of them with
prior ibrutinib treatment, and showed a median PFS of 2.1 months [85]. Acalabrutinib is
currently tested in combination with six courses of R-CHOP followed by acalabrutinib
maintenance in newly diagnosed RT [86]. Concerning BCL2i, venetoclax monotherapy
was tested in seven patients with DLBCL-RT, and three of them (43%) achieved PR [87].
Real-world analysis from a French compassionate use venetoclax program including seven
RT patients treated with venetoclax, most of them with complex karyotype, showed an
ORR of 29% (2/7) and a median OS of only 1.1 months [88]. When combined with chemo-
immunotherapy (R-EPOCH) in 27 patients with RT, venetoclax showed a 48% CR, a 11%
PR, and a median PFS and OS of 16.3 months both [89] (Table 3). Therefore, considering
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the better outcome of novel agents combined with chemo-immunotherapy, a recent review
suggested a synergistic effect of these approaches [90].

Table 3. Novel agent evaluated for the treatment of RT.

Regimen Author, Year Institution No. of Pts
Median

Age
(yrs)

CR
(%)

ORR
(%)

Median
PFS
(mo)

Median
OS (mo)

Ibrutinib Tsang, 2015 [82] Mayo 4 67 50 75 NA NA
Ibrutinib Visentin, 2019 [83] Italy 4 69 0 25 NA NA

Ibrutinib and O Jaglowski, 2015 [84] Ohio 3 64 0 33 NA NA
Acalabrutinib Hillmen, 2016 [85] San Diego 25 NA 9.5 38 2.1 NA

Veneto Davids, 2017 [87] Dana-Farber 7 73 0 43 1 6
Veneto Bouclet, 2021 [88] France 7 67 0 29 NA 1.1

Veneto and R-EPOCH Davids, 2020 [89] Dana-Farber 27 63 48 59 16.3 16.3
PDCD1 Rogers, 2019 [91] Ohio 10 69 10 10 NA 2
Pembro Ding, 2017 [92] Mayo 9 69 11 44 5.4 10.7
Pembro Armand, 2020 [93] Dana-Farber 23 NA 4.3 13 1.6 3.8

Nivo and Ibru Jain, 2016 [94] MDACC 23 65 35 43 NA 13.8
Bispecific Alderuccio, 2019 [95] Italy 1 NA 0 100 NA NA

CAR-T Turtle, 2017 [96] Hutchinson 5 65 NA 71 NA NA
CAR-T and Ibru Gauthier, 2020 [97] Hutchinson 4 65 NA 83 NA NA

CAR-T Benjamini, 2020 [98] Israel 8 64 71 71 NA NA
CAR-T Kittai, 2020 [99] Ohio 8 64 62 100 NA NA

DTRM-55 Mato, 2020 [100] Memorial Sloan 13 71 NA 45 NA NA

Legend: CR: complete remission; Ibru: ibrutinib; mo: months; Nivo: nivolumab; No: number; O: ofatumumab; ORR: overall response rate;
OS: overall survival; Pembro: pembrolizumab; PFS: progression-free survival.

4.4. PD-1/PD-L1 Pathway

Due to the relatively high expression of PD-1 and PD-L1 in DLBCL-RT compared to
de novo DLBCL [101], therapy with PD-1 monoclonal antibodies (PDCD1) has been tested
in patients with RT, all of them with prior BTKi therapy (Figure 3). PDCD1 was given as
monotherapy or combined with ibrutinib with or without venetoclax. Only one patient
responded, and the median OS was 2 months [91]. More recently, checkpoint inhibitors
were tested in patients with DLBCL-RT. Nine patients with DLBCL-RT were treated with
pembrolizumab monotherapy with a 44% ORR [92], and 23 patients received nivolumab
combined with ibrutinib with an ORR of 43% [94]. Another study recently evaluated the
effect of pembrolizumab on 23 patients with R/R RT, showing an ORR of 13% (3 patients),
although two of them had Hodgkin’s lymphoma histology [93] (Table 3). Following this
potential clinical activity of checkpoint inhibitors in DLBCL-RT, some clinical trials were
recently initiated. A German CLL study group is currently recruiting RT patients to
assess the efficacy and safety of the BTKi zanubrutinib combined with the PD-1 inhibitor
tislelizumab for the CLL-RT1 study (NCT04271956), and the United States CLL study group
has started recruiting for the Pembro-U2 phase I/II clinical trial aiming to assess the safety
and efficacy of U2 (both anti-CD20 ublituximab and anti-phosphoinositide 3 kinase (PI3K)
umbralisib) combined with the anti-PD1 pembrolizumab in patients with R/R CLL and RT
(NCT02535286).

4.5. Bispecific Monoclonal Antibodies

Bispecific monoclonal antibodies have recently been adopted for the treatment of
different lymphoproliferative disorders such as acute lymphoblastic leukemia, multiple
myeloma, and DLBCL [102]. Alderuccio et al. recently described a case of refractory RT
with rapid CR following therapy, and they found that the bispecific anti-CD19/anti-CD3
monoclonal antibody blinatumomab permitted bridging to allogeneic SCT (Figure 3) [95].
Following this success, the MD Anderson CLL study teams designed a phase II open-label
clinical trial aiming to test the efficacy and safety of this drug in RT (NCT03121534).
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4.6. Chimeric Antigen Receptor T Cell Therapy

Another approach that was recently adopted for the treatment of hematological
malignancy with promising results is CD19-targeted chimeric antigen receptor T (CAR-T)
cell therapy [103]. CAR-T therapy was evaluated in 24 patients with high-risk, heavily
pretreated R/R CLL after ibrutinib failure, five of them with RT, and an ORR of 71% was
reported at 4 weeks after CAR-T cell infusion [96]. The same study group then tested
this therapy among 19 patients concurrently treated with ibrutinib, four of them with RT;
they found a 4 week ORR of 83%, a 61% minimal residual disease (MRD) negativity, and
1 year OS and PFS of 86% and 59%, respectively [97]. Due to these encouraging results, a
recent Israeli study included eight patients with high-risk CLL with RT that were treated
with CAR-T cell therapy in the 2019–2020 period; they reported a 71% (5/8) ORR, that
all of them achieved CR on day 28, and a reasonable safety profile of seven patients with
cytokine release syndrome—four of them were grade 1, three patients had neurotoxicity,
and there were no CAR-T-cell-related fatalities [98]. Another recent group studied nine
patients with RT treated with axicabtagene ciloleucel CAR-T cell therapy in a single center
in Ohio; eight of them underwent formal response assessment and achieved an objective
response (five cases of CR and three cases of PR as the best responses) [99] (Figure 3).

4.7. Innovations and Future Directions

Combining the mechanisms of action of novel therapies represents the future for
effective therapy in RT. One example is the study of the “synthetic lethality” approach,
which was recently investigated by Mato et al., who combined a triplet of a novel and
clinically differentiated irreversible BTKi (DTRM-12) with the mechanistic target of ra-
pamycin (mTOR) inhibitor everolimus and the immune-modulator pomalidomide to form
an optimized, oral, once-daily DTRM-55. The study included 13 patients with RT-DLBCL
and 11 with R/R DLBCL, and the 11 evaluable RT patient had an ORR of 45% and a median
duration of response of 15 months [100] (Table 3).

Other combinations currently being tested include the PI3K-inhibitor duvelisib com-
bined with the BCL2i venetoclax in a recruiting phase I/II study on R/R CLL and RT
(NCT03534323) and the anti-CD20 monoclonal antibody obinutuzumab with the BTKi
ibrutinib and the BCL2i venetoclax in an Israeli phase II study (NCT04939363), but results
are still pending.

Moreover, xenograft research is currently being tested as a model for in vivo efficacy
for RT. VLS-101, an antibody–drug conjugate targeting receptor tyrosine kinase-like or-
phan receptor 1 (ROR1)-expressing cancers, has been studied in four RT patient-derived
xenografts with varying levels of ROR1 expression, showing CR in those with higher levels
of ROR1 expression [104]. This approach is currently being tested in a phase 1 clinical
trial in patients with RT and other hematological malignancies (NCT03833180). Another
new combination to be considered is co-treatment with the bromodomain extra-terminal
(BET) inhibitor or BET-PROTAC and ibrutinib or venetoclax, which has already shown a
synergistic in vitro effect in RT cells [105].

5. Conclusions

In conclusion, RT remains a rare clinical occurrence. The increasing understanding of
the molecular mechanisms underlying this syndrome and of the relevant risk factors may
help clinicians to identify high-risk patients with CLL. However, despite the promising
primary results of bispecific antibodies and CAR-T cells, the treatment of RT is still an
unmet clinical need, and current data on treatment approaches have mainly been derived
from small non-randomized trials.
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