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Simple Summary: We have developed and analytically validated the Korean Pan-cancer Companion
Diagnostic (CDX) Panel to apply targeted anticancer drugs to Korean patients based on the molecular
characteristics of tumors using tumor samples without matched patient normal samples. The panel
included 31 genes with reported single nucleotide variants, 9 genes with reported copy number
variations, and 15 genes with predictive responses to targeted drugs under clinical testing, enabling
the panel to be analyzed for the targets of 30 targeted anticancer drugs. It is cost-effective and
optimized for cancer type-specific therapy in Korean cancer patients across solid cancer types while
minimizing the limitations of existing approaches. This gene screening method is expected to reduce
test turnaround time and cost, making it a balanced approach to investigate solid cancer-related gene
regions.

Abstract: Recently, several panels using two representative targeting methods have been developed
but they do not reflect racial specificity, especially for Asians. We have developed and analytically
validated the Korean Pan-cancer Companion Diagnostic (CDX) Panel to apply targeted anticancer
drugs to Korean patients based on the molecular characteristics of tumors using tumor samples with-
out matched patient normal samples. The panel included 31 genes with reported single nucleotide
variants, 9 genes with reported copy number variations, and 15 genes with predictive responses to
targeted drugs under clinical testing, enabling the panel to be analyzed for the targets of 30 targeted
anticancer drugs. It is cost-effective and optimized for cancer type-specific therapy in Korean cancer
patients across solid cancer types while minimizing the limitations of existing approaches. In addition,
the optimized filtering protocol for somatic variants from tumor-only samples enables researchers to
use this panel without matched normal samples. To verify the panel, 241 frozen tumor tissues and
71 formalin-fixed paraffin-embedded (FFPE) samples from several institutes were registered. This
gene screening method is expected to reduce test turnaround time and cost, making it a balanced
approach to investigate solid cancer-related gene regions.
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1. Introduction

Precision medicine based on genomic analysis is rapidly applied to the diagnosis
and treatment of cancer. Next-generation sequencing (NGS) technology is specialized in
large-scale genetic information analysis, making it a platform for the regular examination of
tumors samples in clinical environments and the data is increasingly used in the diagnosis
and treatment of patients. Compared to other sequencing platforms, NGS’s mass parallel
sequencing capability provides a clear advantage by using a single limited input of nucleic
acids to facilitate simultaneous screening of multiple markers from multiple samples for
various genomic anomalies. For clinical applications, the target sequence of a limited
set of clinically important genes was the most practical approach. In the case of solid
tumors, many laboratories use relatively small pan-cancer panels to screen out about 50 (or
fewer) genes, which maximizes sequencing capacity by investigating prominent mutant
hotspots. This also helps to maintain reasonable costs and time required and to minimize
the complexity of interpretation and reporting.

Recently several panels using two representative targeting methods have been devel-
oped and used as daily practices. Memorial Sloan Kettering-Integrated Mutation Profiling
of Actionable Cancer Targets (MSK-IMPACT) is a hybridization capture-based panel for
detecting not only protein coding mutations but also selected intron variants, copy number
variants (CNV) and structural rearrangements in 341 (recently 468) cancer genes [1,2].
Paired tumor and matched normal samples are required to use this panel. FoundationOne
CDx is another captured-based panel whose number of targeted cancer-related genes is
324 [3]. It provides information of small variants, CNVs, microsatellite instability (MSI)
and tumor mutation burden (TMB). Those two panels were approved by the Food and
Drug Administration (FDA) in the US [4]. Ion AmpliSeq Cancer Hotspot Panel (v2) and
Illumina TruSeq Amplicon Cancer Panel are the representative amplicon-based commercial
panels [5,6]. They were developed to analyze a selected small number of genes and genetic
variants using small amounts of DNA, unlike the two panels mentioned first, and save
time and experimental costs. Most of these currently developed and used panels are
based on large-scale cancer genome studies, such as The Cancer Genome Atlas (TCGA) [7].
Therefore, genetic analysis based on the data from these panels is highly generalizable but
does not reflect racial specificity. In particular, the number of Asian participants in the
Cancer Genome Atlas (TCGA) is only 5.5 percent of the total. Since racial characteristics are
very important in identifying the cause of the disease and treating patients, countries such
as Japan are already working on developing ethnic-specific panels [8–10]. We focused on
balancing the essential information acquisition, experimental costs, and turn-around time
by considering the characteristics of previously developed and used targeted cancer pan-
els [11,12]. We also aimed to increase clinical application utilization by including the genes
associated with targeted therapy and actionable variants which are frequently observed in
Korean patients [13,14].

In this study, we developed and analytically validated the Korean Pan-cancer Com-
panion Diagnostic (CDX) panel to apply targeted anticancer drugs to Korean patients
based on the molecular characteristics of tumors by using tumor samples without matched
patient normal samples. For the design of the amplicons included in the panel, a list of
previously reported genes related to solid cancer was compiled. Among the mutations
occurring in these genes, genetic variants associated with targeted therapies currently in
use or under clinical trials were prioritized to determine the extent of the genomic regions
comprising the panel, which were subdivided into single nucleotide variants and copy
number variations. The genetic variant list was broken down into groups of genes that
could predict responses to commercially available targeted therapies, groups of genes that
could predict responses to targeted drugs under clinical trials, and groups of genes that
could predict responses or outcomes of targeted anticancer drugs in the future. Genetic
variants that can predict the response to targeted therapies and help in prognosis were
included in the panel for this study as a top priority. In addition, hotspots of the target
genes of targeted anti-cancer drugs currently undergoing clinical trials were added to
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enable panels to maintain practicality and economic feasibility in the long term. The oligo
primers were separated into groups that did not cause mutual interference as possible,
enabling complex amplification by using multiple primers at the same time. The panel
included 31 genes with reported single nucleotide variants, 9 genes with reported copy
number variations, and 15 genes with predictive responses to targeted drugs under clinical
testing, enabling the panel to be analyzed for the targets of 30 targeted anticancer drugs.
To verify the panel, 241 frozen tumor tissues and 71 FFPE samples were registered. Based
on the results of the validation, the analysis using the panel we developed in this study
shows improvement from previous approaches. The panel includes both single-nucleotide
variants and copy number variants of the genes involved in solid tumors, and the SNV
variants of the individual samples identified by commercial hotspot panels and Sanger
sequencing were all validated by the panel we developed. CNVs identified using array
CGH were also validated. In addition, an optimized knowledge-based filtering method
was applied to allow for the detection of the somatic variant with tumor-only data without
germline variant information.

The Korean Pan-cancer CDX Panel in this study will allow us determine how to treat
patients and prescribe targeted anticancer drugs, by providing a profile of actionable and
other driver alterations in the patients.

2. Materials and Methods
2.1. Panel Design and Target Region Coverage

The Korean Pan-cancer CDX Panel were designed for targeted sequencing of all exons
and selected hotspot regions of 51 oncogenes based on their role in cancer targeted therapy.
The panel includes 31 genes with reported single nucleotide variants and 9 genes with
reported copy number variation (Table 1). In addition, 15 hotspots of genes that can predict
responses to target drugs under clinical trials were added to allow for analysis of the targets
of 30 targeted therapies including Vandetanib, Trastuzimab, Tofacitinib, Temibromiumus,
Imatinib, Gefitinib, Everolimus, Erlotinib, Dabrafenib, Cruzotinib, Cobbitinib, Cetuximab,
Ceritinib, Cabozozantinib, Axitinib, Affinityib, Avo-trazub, etc. For single nucleotide
variants, oligo primers were designed to target the entire exome of the genes and thereby
target all areas affecting the actual protein structure and expression. To detect amplification
and deletion of the genes, three exons, including the first and last exon of the gene, were
selected as the target. Oligo primer was produced to predict the copy number of the genes
throughout the PCR tendency of the three exons, and the criteria for single nucleotide
variants were applied for genes requiring analysis of both single nucleotide variants and
copy number variation. The detailed target design is provided in the Supplementary Data.

2.2. Tumor Samples

The samples of tissues were collected from three institutes (Seoul National University
Hospital, Korea University Anam Hospital and Asan Medical Center). DNA samples regis-
tered for validation were derived from frozen colon adenocarcinoma (COAD) 241 samples
offered by Seoul National University Hospital, 61 FFPE COAD samples from Korea Univer-
sity Anam Hospital and 10 FFPE non-small cell lung cancer (NSCLC) from Asan Medical
center. Biopsies were performed on diagnosed solid tumor patients; all of the patients
were East Asian and their nationality was South Korean. Every registered patient signed
a human-derived material research informed consent form provided by the Institutional
Review Board. This study is approved by the Institutional Review Board at Seoul National
University hospital.
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Table 1. Target gene lists in the CDX Panel. SNV—single nucleotide variants; CNV—copy number alteration.

Gene Name (Symbol) Description Target Alteration

ERBB2 Erb-B2 Receptor Tyrosine Kinase 2 SNV, CNV
FGFR2 Fibroblast Growth Factor Receptor 2 SNV, CNV
FGFR3 Fibroblast Growth Factor Receptor 3 SNV, CNV
EGFR Epidermal Growth Factor Receptor SNV, CNV
MET MET Proto-Oncogene, Receptor Tyrosine Kinase SNV, CNV

MTOR Mechanistic Target of Rapamycin Kinase SNV, CNV
AKT1 AKT Serine/Threonine Kinase 1 SNV
BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase SNV

BRCA1 BRCA1 DNA Repair Associated SNV
BRCA2 BRCA2 DNA Repair Associated SNV
CEBPA CCAAT Enhancer Binding Protein Alpha SNV

CTNNB1 Catenin Beta 1 SNV
DDR2 Discoidin Domain Receptor Tyrosine Kinase 2 SNV
FLT3 Fms Related Receptor Tyrosine Kinase 3 SNV

HRAS HRas Proto-Oncogene, GTPase SNV
IDH1 Isocitrate Dehydrogenase (NADP(+)) 1 SNV
IDH2 Isocitrate Dehydrogenase (NADP(+)) 2 SNV
JAK1 Janus Kinase 1 SNV
JAK2 Janus Kinase 2 SNV
KIT KIT Proto-Oncogene, Receptor Tyrosine Kinase SNV

KRAS KRAS Proto-Oncogene, GTPase SNV
MAP2K1 Mitogen-Activated Protein Kinase Kinase 1 SNV
MAP2K2 Mitogen-Activated Protein Kinase Kinase 2 SNV

MYC MYC Proto-Oncogene, BHLH Transcription Factor SNV
NPM1 Nucleophosmin 1 SNV
NRAS NRAS Proto-Oncogene, GTPase SNV

PDGFRA Platelet Derived Growth Factor Receptor Alpha SNV

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic
Subunit Alpha SNV

RB1 RB Transcriptional Corepressor 1 SNV
STK11 Serine/Threonine Kinase 11 SNV
TP53 Tumor Protein P53 SNV
CDK4 Cyclin Dependent Kinase 4 CNV
CDK6 Cyclin Dependent Kinase 6 CNV

ARID1A AT-Rich Interaction Domain 1A Hotspot
ATM ATM Serine/Threonine Kinase Hotspot

CDKN2A Cyclin Dependent Kinase Inhibitor 2A Hotspot
DNMT3A DNA Methyltransferase 3 Alpha Hotspot

FAT1 FAT Atypical Cadherin 1 Hotspot
FAT2 FAT Atypical Cadherin 2 Hotspot

KDM6AS Lysine Demethylase 6A Hotspot
MDM2 MDM2 Proto-Oncogene Hotspot
NFE2L2 Nuclear Factor, Erythroid 2 Like 2 Hotspot
PTEN Phosphatase and Tensin Homolog Hotspot
RAC1 Rac Family Small GTPase 1 Hotspot
RHOA Ras Homolog Family Member A Hotspot

RUNX1 RUNX Family Transcription Factor 1 Hotspot
VHL Von Hippel-Lindau Tumor Suppressor Hotspot

2.3. Library Preparation and Sequencing

DNA samples were extracted from frozen cancer tissues and FFPE tissue slides by
using a QIAamp DNA Mini Kit and QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden,
Germany). Targeted sequencing was conducted using a custom AmpliSeq targeted panel
to screen the genetic profile of the samples. The panel contained 1403 primer pairs that
were multiplexed into two pools to avoid primer-dimer formation and interference during
PCR. The range of amplicons amplified by these oligo primer pairs ranged from 125
to 175 bp, and the rate of ‘on target’ coverage for this panel was 98%. DNA fragment
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amplification and library construction were performed using the Ion Amplieq Library Kit
2.0 as described in the manufacturer’s instructions (Thermo Scientific, Waltham, MA, USA).
The combined libraries were sequenced using the Ion Proton platform (Thermo Scientific,
Waltham, MA, USA) and the sequencing quality statistics of the aligned BAM file were
calculated using Picard CollectHSMetrics.

2.4. Single Nucleotide Variants and INDELs Calling

Genomic variants were called using the Torrent Mapping Alignment Program (TMAP),
Torrent Suite Software V5.1 with customized parameter settings to identify somatic variants.
The cutoff values for the variant calling parameters were default TMAP parameter settings
for somatic variants except for two categories. Two cutoff values for allele frequency and
coverage were changed as follows: allele frequency, >0.01 (SNV) and >0.02 (INDEL); cover-
age, >10 (SNV) and >20 (INDEL). Reads from the Ion Proton sequencer are heterogeneous
in length, and additional filtering or trimming steps were not applied.

2.5. Sequencing Quality Control

The sequencing quality statistics including median depth, total aligned read, on-
target coverage and percent coverage 10× of aligned BAM files were gained using Picard
CollectHSMetrics [15]. In addition, uniformity of sequencing coverage with a percentage
of base greater than 50% of the mean base coverage of the sample in the target region was
used for comparison with hotspot panel.

2.6. Comparison Performance with Commercial Hotspot Panel

For the sequencing benchmark, the Ion AmpliSeq Cancer hotspot panel (V2), a com-
mercial product for cancer sequencing, was used. For 27 genes shared by the Korean
Pan- cancer CDX Panel and hotspot panel, we calculated uniformity based on depths of
intersected regions of each panel’s target design files (bed file format). A total of 37 samples
(20 FFPE samples, 17 frozen samples) were sequenced in both of the panels. The Wilcoxon
signed rank test was used for uniformity of FFPE samples and frozen samples between the
two panels. If the p-value was under 0.05, it was supposed to be statistically significant.
We compared hot spot variants that were reported more than ten times by COSMIC (v88)
in both panels [16].

2.7. Optimizing Somatic Variant Filtration

Because the aim of a cancer panel is assessing the actionable variant of tumor tissues
without sequencing normal tissue, it would be necessary to distinguish somatic variants
from germline variants for novel cancer variant research. Somatic tumor variant filtration
strategies suggested in previous reports to optimize tumor-only molecular profiling using
targeted next-generation sequencing panels were used [17]. The strategy for filtration is
composed of four steps.

First was the exclusion criteria that variants were retained only if they were reported
in The Cancer Genome Atlas (TCGA) or the International Cancer Genome Consortium
(ICGC) and thesomatic variant or the gene of variant is known to be an actionable gene
in OncoKB or CIViC (Clinical Interpretation of Variants in Cancer) [18–21]. The second
exclusion criteria was based on the population database and excluded variants if they were
present at a minor allele frequency (MAF) more than 0.2% in any subpopulation in the
1000 Genome Project, Exome Aggregation Consortium (ExAC), Exome Sequencing Project
(ESP), Korea Variant Archive (KOVA) or the Korean Genome Project [22–26]. To minimize
the sequencing artifact, sequencing data from 18 normal blood samples that were not
related to tested tumor samples were used for a germline pool dataset. The third exclusion
criteria for the remaining variants got rid of variants presenting more than 0.2% allele
frequency in the germline pool. The final step removed variants with “benign” or “likely
benign” in Clinvar [27].
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To evaluate filtering performance, 179 frozen tumor–blood normal paired samples
were used. After the variant calling of each pair of samples, the hetero variant in a tumor
sample that did not exist in the paired normal blood sample or homo alternative variant
that was hetero variant in the paired normal blood sample were considered as a true
somatic variant. However, the hetero variant in the tumor samples was supposed to be a
false somatic variant if it was presenting as a hetero or homo variant in the paired blood
normal sample.

2.8. Validation of the KRAS Variant with Direct Sequencing

To evaluate the reproducibility and specificity of the Korean Pan-cancer CDX Panel, we
analyzed the consistency of previously confirmed genetic variants via Sanger sequencing
for the 12th and 13th codons of the KRAS gene by using data of each individual variant
call format (VCF) file of 62 FFPE samples.

2.9. Copy Number Alteration Calling

For copy number detection without matched normal samples, Viscap was used. Viscap
is a computational analysis tool used for inferring copy number alternations from targeted
clinical sequencing data [28]. It calculates the ratio of sequence coverage to target intervals
and computes the log2 ratio of each value to the median of the samples. Since the Korean
Pan-cancer CDX Panel is an amplicon-based panel, input coverages were made from
samples with uniformity (20%) greater than 80% by GATK DepthofCoverage without
deduplication. The parameters of Viscap were that the threshold of the minimum exon was
6 and the threshold of the log2 cutoffs were −0.55 and 0.40, respectively.

To validate the copy number alteration which was inferred by Viscap, the orthogonal
method, Agilent SurePrint G3 Human CGH Microarray 180K with Z-score algorithm
(threshold 4) was applied to detect CNV.

2.10. Annotation

All variants from individual VCF files were annotated using ANNOVAR. The allele
frequency of all subpopulations from the 1000 Genome project and Exome Aggregation
Consortirum (ExAC), variant of ICGC and Clinvar (version 20190813) were downloaded
from the ANNOVAR web database.

In addition, other sources, such as TCGA somatic MC3 data and the Korea Variant
Archive (KOVA), were downloaded from their own web pages and processed for anno-
tation [29]. OncoKB annotator was also used to classify oncogenic variants. If a variant
was annotated ‘Splice site’, ‘Missense’, ’Nonsense’, ‘Inframe insertion’, ’Inframe deletion’,
’frame shift deletion’, ‘frame shift insertion’ or ‘Translation start site’, it was supposed to be
a loss of function (LOF) variant.

3. Results
3.1. Sequencing Performance

The average of total reads of frozen samples and FFPE samples were 1,669,840
(400,361–6,385,388) and 2,280,131 (636,130–5,499,590), respectively (Figure 1). The mean
depth of sequencing was 1070.5× (±1292.25×) in frozen samples and 1278.9× (±2066.34×)
in FFPE samples. The average covered region percentages of more than 10 depth on target
region were 98% (sd: 2.1%) in frozen and 97% (sd: 2.6%) in FFPE. With these results, the
sequencing shows sufficient depth to interrogate the target regions for somatic variants.
There is no significant correlation between depth of coverage and GC contents (−0.018
with Pearson’s p < 2.2 × 10−16 in frozen samples and −0.012 with Pearson’s p = 0.72 in
FFPE). Detailed statistics of sequencing quality have been included in Supplementary data.
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Figure 1. Uniformity of sequence coverage. (A) Distribution of sequence coverage of frozen samples (n = 241) across
targeted amplicons by Korean Pan-cancer CDX Panel. (B) Distribution of sequence coverage of FFPE samples (n = 71) across
targeted amplicons by Korean Pan-cancer CDX Panel. Each bar is 25 coverages. (C) Coverage for amplicons of frozen
samples by percent GC content. (D) Coverage for amplicons of FFPE samples by percent GC content.

Panel sequencing identified that the cohort (n = 312) had 26,389 SNV and 390 INDELs
of all variants including synonymous germline variants. A total of 1,254 loss of function
(LoF) oncogenic SNV and 64 LoF oncogenic INDELs were retained after filtering non-
oncogenic variants (Figure S1). The number of missense alterations and nonsense variants
are 1,114 (84%) and 297 (15%), respectively. The most frequent mutated genes were TP53
(78%, 244/312), KRAS (47%, 147/312), PIK3CA (24%, 74/312), BRCA2 (14%, 44/312),
CEBPA (14%, 43/312) and FLT3 (14%, 42/412). In TP53, the most prevalent mutated codons
were R175 (8%, 27/312), R248 (8%, 24/312), R273 (6%, 19/312) The most frequently altered
codon in KRAS was G12 (30%, 94/312), followed by G13 (11%, 36/312).

3.2. Comparison of Performance with Commercial Hotspot Panel

The existence of 137 hotspot variants was confirmed in genome analysis using both
the Korean Pan-cancer CDX Panel and the Ion AmpliSeq Cancer Hotspot Panel. However,
681 hotspot variants were exclusively detected using the Korean Pan-cancer CDX Panel
(Figure 2). According to the results of uniformity comparison with the Ion AmpliSeq Cancer
Hotspot Panel, however, uniformity of FFPE samples between the two panels showed
no statistical significance and uniformity of frozen samples show statistically significant
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better uniformity (Figure S2). This suggests that the skewness of FFPE samples coverage
distribution is presenting not only in the Korean Pan-cancer CDX Panel but also in other
panel while the uniformity among frozen samples was better. In addition, the CDX Panel
detected not only the variants that were called from the data using the AmpliSeq Cancer
Hotspot Panel but also additional hotspot variants in other regions with stable sequencing
quality.
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were used to compare the CDX Panel and the Hotspot Panel. For example, a total of 116 SNV variants of FLT3 were found
in 37 samples.

3.3. Optimizing Somatic Variant Filtration

A total of 16,781 SNVs and INDELs variants were called as somatic mutation can-
didates from 241 frozen samples using the Korean Pan-cancer CDX Panel. Before the
harmonic filtered steps were applied to the variants, the single steps show the highest per-
centage of true somatic variant was population DB filtration. (74.93%, Figure S3). However,
actionable DB inclusion criteria decreased the true positive somatic variant percentage.
(9.86%) The true somatic alteration percentage of the final filtered variants through all steps
was 93.26% (Figure 3). The histogram indicates that there is no change before or after the
Clinvar filter.

3.4. Reproducibility with KRAS Variant

To evaluate the reproducibility of the Korean Pan-cancer CDX Panel, 62 FFPE samples
that had been analyzed as the KRAS variant using direct sequencing were registered
(Table 2). A total of 6 KRAS variants, including Gly12Ala (c.35G>C), Gly12Asp (c.35G>A),
Gly12Cys (c.34G>T), Gly12Ser (c.34G>A), Gly12Val (c.35G>T) and Gly13Asp (c.38G>A)
have been identified from the 24 samples. These results suggest that all of the variants
that appeared in the Sanger sequencing were also validated in the cancer panel (sensitivity
100%, 24/24). The specificity of the Korean Pan-cancer CDX Panel is 89.5% (34/38) when
obtained from testing samples that have been checked as wild type with Sanger sequencing
(Table S1). Therefore, the accuracy of the test is 93% (58/62) with a positive predictive
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value (PPV) of 85.7%. Although there was discordance between the panel and the Sanger
sequencing, it could be possible that the mutation could be detected because the Korean
Pan-cancer CDX Panel method provides read-level resolution while Sanger sequencing is
only providing a ratio with which it is difficult to distinguish between mutation and wild
type. This result shows that the panel can detect actionable variants in precision oncology
and verifies that it can replace the direct sequencing method as the primary scanning
method to identify alterations contained by the patients.
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Table 2. Reproducibility of known KRAS Variant Samples.

KRAS Variant Status Sample ID
Variant Statistics Sample Statistics

Variant Calling Alt Count * Ref Count ** Mean Depth On Target
Cover Rate

Gly12Ala (c.35G>C)
FFPE 63 Positive 147 804 1206 0.99

Gly12Asp (c.35G>A)
FFPE 9 Positive 1113 3721 3604 0.99

FFPE 14 Positive 230 1087 1150.733 0.99
FFPE 18 Positive 246 510 832.0 0.99
FFPE 29 Positive 91 353 538.9 0.99
FFPE 39 Positive 24 295 594.7 0.99
FFPE 55 Positive 862 1049 1171.9 0.99
FFPE 56 Positive 428 2249 1682.4 0.99
FFPE 85 Positive 213 1213 1352.0 0.99
FFPE 90 Positive 291 699 1310.7 0.99
FFPE 91 Positive 343 2618 2342.8 0.99

FFPE 100 Positive 1156 4165 4310.8 0.99
Gly12Cys (c.34G>T)

FFPE 16 Positive 151 232 450.1 0.99
FFPE 50 Positive 14 5 31.7 0.89

Gly12Ser (c.34G>A)
FFPE 118 Positive 547 2552 2505.1 0.99
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Table 2. Cont.

KRAS Variant Status Sample ID
Variant Statistics Sample Statistics

Variant Calling Alt Count * Ref Count ** Mean Depth On Target
Cover Rate

Gly12Val (c.35G>T)
FFPE 5 Positive 134 793 1105.3 0.99

FFPE 84 Positive 392 1091 1187.9 0.99
FFPE 115 Positive 741 883 1623.3 0.99
FFPE 116 Positive 296 570 1499.9 0.95

Gly13Asp (c.38G>A)
FFPE 15 Positive 115 1003 821.0 0.99
FFPE 30 Positive 290 1954 1985.7 0.99
FFPE 59 Positive 629 2582 2804.4 0.99
FFPE 75 Positive 379 969 1485.9 0.99

FFPE 104 Positive 1697 3056 3665.1 0.99

* Alt count—alternative allele read count; ** Ref count—reference allele read count.

3.5. Copy Number Alteration Calling

The results of the copy number alteration with Viscap were only two copy number
alterations each in two samples (Figure 4). The minimum log2 ratio of EGFR is 2.54. The
median and max of the log2 ratio are 3.01 and 3.57, respectively. In MYC copy number
gain, the minimum log2 is 3.96. The median log2 ratio is 4.29 and the max log2 ratio is 4.66.
The validation results obtained from microarray data with two algorithms (ADM-2 and
Z-score) also show copy number amplification in EGFR (ADM-2: 2.4, Z-score: 249.2) and
MYC (ADM-2: 3.91 Z-score: 107.7). The experimental data suggested that the copy number
detection of the cancer panel was trustable because it was in concordance with different
platforms.
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4. Discussion

With the development of cancer genomics and targeted treatments, the discovery of
genetic variants in certain types of cancer has begun to change into a major factor necessary
to treat cancer. The ability to profile clinically actionable genetic variants from cancer
samples presents a new vision of individualized oncology, allowing for effective cancer
treatment based on genotypes only. Since the next generation sequencing platform facili-
tates simultaneous screening of numerous markers for multiple patients, regular screening
of genetic markers through large-scale parallel sequencing using the NGS platform is
suitable for the clinical diagnostic testing of tumors. Clinical application of the NGS plat-
form requires a panel design considering the characteristics of markers, the number of
markers, the range of covered genes, and the type of genetic variants. Commercial hotspot
panels have great strengths in detecting previously well-known genetic markers, but they
do not cover the markers for various cancer species, and they cover only small regions
of specific genes. These limits make them unable to screen for many types of potential
abnormalities that may occur in cancers. Approaches through whole exon sequencing or
whole genome sequencing can solve these problems, but they have an adverse effect on
test turnaround time due to the limited number of multiplexing samples and increased
interpretation complexity for the variants. In addition, they also cause a rise in the cost of
testing.

Therefore, we have developed the cost-effective CDX Panel optimized for cancer
type-specific therapy in Korean cancer patients across solid cancer types while minimizing
the limitations of existing approaches. The sequencing quality of the panel we developed is
better than the commercial hotspot panel for frozen samples. The analyzed results obtained
using the Korean Pan-cancer CDX Panel showed that all hotspot variants detected using
the commercial hotspot panel were confirmed and additional hotspot variants not detected
in the commercial hotspot panel were also uncovered.

The high concordance of KRAS variant detection between the CDX Panel and Sanger
sequencing shows the high sensitivity of this panel. In addition, the optimized filtering
for somatic variants from tumor-only samples enables researchers to use this panel. After
validation of filtered tumor alteration with paired sequencing, only tumor sequencing
without normal samples can find somatic variants with published genome databases. It
will reduce cost of sequencing for not only targeted therapy but also research.

The Korean Pan-cancer CDX Panel is also designed to cover most of the cancer genome
CNV for targeted therapy. There are other methods for copy number detection such as
fluorescence in situ hybridization (FISH) and array comparative genomic hybridization
(CGH) or qPCR. However, the former two methods could detect only large size CNV
(5–10 Mbp for FISH, 10–25 kbp for CGH) and the latter method is a high-resolution method
that could detect CNV that are too small [30]. Amplicons of the Korean Pan-cancer CDX
Panel were developed to discover small CNVs that the FISH and array CGH methods
could not detect and the Multiplexing PCR method for the panel is more economical
than qPCR for covering most of the cancer genome. All CNVs detected through the
Viscap algorithm were validated by array CGH experiments, but the frequency of CNVs
identified throughout the test samples was too low (0.8%, 2/241). According to COSMIC,
EGFR and MYC, the copy number gain rate in large intestine cancer is 3.48% and 7.8%,
respectively, which is higher than the frequency of CNVs identified in the validation set
of this study. This suggests that the Viscap CNV algorithm is too conservative to detect
sufficient CNV rates and the development of CNV detection algorithms specialized for the
Korean Pan-cancer CDX Panel might be necessary.

This study has several limitations. First, the RNA panel used to analyze fusion genes
has not been validated. The RNA panel was designed to analyze fusion genes as part of
the CDX Panel. However, no fusion genes were from the DNA samples registered for the
validation experiment, even though the reads from DNA amplification were generated in
the target region. We determined that the cause of this limitation is that the fusion genes in
solid cancer patients are very low, with less than 1%. Therefore, RNA panel validation is
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considered possible using the sample verified for the presence of fusion genes by existing
test methods. Second, the four step somatic tumor variant filtration strategy used to
optimize tumor-only molecular profiling using the targeted NGS panel used in this study
had limitations in distinguishing somatic variants from rare germline variants because
they are based on the common germline variant database. In spite of these limitations,
validation experiments for the Korean Pan-cancer Companion Diagnostic (CDX) Panel
show high sequencing quality and variant detection sensitivity for clinical applications.

In summary, we have developed a targeted gene sequencing panel which contains
genes that are reported to be related to the onset of solid carcinoma and genes that are
correlated with targeted treatment through various reviews.

We detected actionable variants of therapeutic targets for each cancer type on 21 genes
that are association with 47 drugs (Table 3) [31–52]. The hotspots of these genes and all exon
regions were included in the panel to maximize the clinical utility of previously known
sequencing markers and additional variants that could be potential targets.

Table 3. Actionable mutations were found in Korean Pan-cancer CDX Panel.

Gene Drug Number of Samples (n = 312)

BRCA2 Olaparib, Talazoparib, Rucaparib, Niraparib 200
BRCA1 Olaparib, Talazoparib, Rucaparib, Niraparib 173
KRAS Trametinib, Cobimetinib, Binimetinib 164

Cetuximab, Panitumumab 117
AMG-510 5

PIK3CA Fulvestrant, Alpelisib 100
BRAF PLX8394 6

Dabrafenib, Trametinib, Vemurafenib, Cobimetinib,
Encorafenib, Binimetinib, Atezolizumab, Panitumumab 10

Trametinib 2
NRAS Cetuximab, Panitumumab 13
PTEN GSK2636771, AZD8186 52
HRAS Tipifarnib 11
ERBB2 Ado-Trastuzumab Emtansine, Neratinib 35
AKT1 AZD5363 7
MTOR Everolimus, Temsirolimus 22
ATM Olaparib 13

PDGFRA Imatinib, Sunitinib, Regorafenib, Ripretinib 17
FGFR2 Debio1347, BGJ398, Erdafitinib, AZD4547 21

MAP2K1 Trametinib, Cobimetinib 17
CDKN2A Palbociclib, Ribociclib, Abemaciclib 3

KIT Imatinib 9
Sunitinib, Regorafenib, Avapritinib, Ripretinib 2

EGFR Afatinib 2
Osimertinib 1

Erlotinib, Gefitinib, Afatinib 2
Poziotinib 1

Erlotinib, Afatinib, Gefitinib, Osimertinib, Dacomitinib 1
MET Capmatinib 2

Crizotinib 2
IDH1 Ivosidenib 2

FGFR3 Debio1347, BGJ398, Erdafitinib, AZD4547 2

5. Conclusions

This gene screening method is expected to reduce test turnaround time and cost,
making it a balanced approach to investigate solid cancer-related gene regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13205112/s1, Figure S1: Oncoplot of oncogenic variants of colon adenocarcinoma
(COAD, n = 302) and non-small cell lung cancer (NSCLC, n = 10) samples, Figure S2: Comparison of
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sequencing uniformity (50%) between Cancer Panel and Hotspot Panel with FFPE samples (A) and
frozen samples (B), Figure S3: Histogram of true somatic mutation and false somatic mutation per
each single filtration, Table S1: Specificity of cancer panel results with KRAS direct sequencing
samples, Data S1: Supplementary data.
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