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Simple Summary: Through targeted next-generation sequencing of thyroid cancer-related genes in
monozygotic twins with papillary thyroid cancer (PTC), we identified common variants of the gene
encoding peroxisome proliferator activated receptor gamma (PPARG). Notably, the expression levels
of PPARYy target genes were frequently deregulated in PTC compared to benign tissues and were
closely associated with disease-specific survival (DSS) outcomes in a TCGA-PTC cohort. Machine
learning-powered personalized scoring index comprising 10 PPARy targets, termed as PPARGI,
achieved a near-perfect accuracy in distinguishing cancers from benign tissues, and further identified
a small subpopulation of patients at high-risk across different profiling platforms.

Abstract: In most cases, papillary thyroid cancer (PTC) is highly curable and associated with an
excellent prognosis. Yet, there are several clinicopathological features that lead to a poor prognosis,
underscoring the need for a better genomic strategy to refine prognostication and patient management.
We hypothesized that PPARY targets could be potential markers for better diagnosis and prognosis
due to the variants found in PPARG in three pairs of monozygotic twins with PTC. Here, we
developed a 10-gene personalized prognostic index, designated PPARGi, based on gene expression of
10 PPARY targets. Through scRNA-seq data analysis of PTC tissues derived from patients, we found
that PPARGI genes were predominantly expressed in macrophages and epithelial cells. Machine
learning algorithms showed a near-perfect performance of PPARGI in deciding the presence of the
disease and in selecting a small subset of patients with poor disease-specific survival in TCGA-THCA
and newly developed merged microarray data (MMD) consisting exclusively of thyroid cancers and
normal tissues.

Keywords: machine learning; prognosis; diagnosis

1. Introduction

The worldwide incidence of thyroid cancer has been rising rapidly in the past three
decades, with the largest contribution being in papillary thyroid cancer (PTC) in all coun-
tries analyzed in a global population-based assessment study [1]. While it remains to be
investigated whether the over-diagnosis is attributed to increased screening programs,
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South Korea has the world’s highest rate of thyroid cancer, which increased 15-fold between
1993 and 2011 [2]. Nevertheless, a 10-year disease-specific survival (DSS) by the American
Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) defined
stages I to IV ranging from 81% (stage IV) to 100% (stage II) [3]. Despite being considered
as an indolent tumor with low occurrence of local invasion, recurrences and regional or
distant metastases, PTC, similar to other types of cancer, show inter- and intra-tumoral
heterogeneity with varying degree of genetic diversity, which could have a significant
impact on prognosis and on the response to targeted therapy [4,5]. The existence of a small
population of tumors having the more aggressive variants of PTC, with distinct clinical,
pathological, and molecular features suggest the need for a robust predictive marker for
patient stratification disease management [4-6].

In thyroid cancer, main driver genetic alterations include BRAF (V600E) and RAS
(NRAS involving codons 12 and 61) mutations, RET gene fusions, and PAX8-PPARG
gene fusions [7,8]. A PAX8-PPARY fusion protein (PPFP) is produced when the promoter
and most of the PAXS8 gene, which encodes an important transcription factor for normal
thyroid gland development, fuse with the coding exons of PPARy, a member of the
steroid /thyroid nuclear receptor family [8,9]. PPFP is found in about one-third of follicular
thyroid carcinomas (FTC) and can act as an oncoprotein, as evidenced by in vivo and
in vitro studies [8,10,11].

Similar to other subtypes of PPAR, PPARy forms heterodimers with retinoid X receptor
alpha (RXRe) and binds to specific DNA sequences, termed as peroxisome proliferator re-
sponse elements (PPREs), in a ligand-responsive manner to trans-activate target genes [12].
Previous studies have revealed cell-specific maps and 3D structure of the intact PPARy-
RXRa complex, including binding sites within gene promoters and intergenic or intronic
regions [12-14]. Variants in the PPARG gene were found to reduce the receptor-binding
affinity to the PPREs and modulate transcriptional activity of its target genes, such as
acyl coenzyme A (acyl-CoA) oxidase, regulating insulin sensitivity and adipose tissue
differentiation [15].

While PPARY is expressed at extremely low levels in the normal thyroid [11], its
expression is highly induced in a variety of immune cells, including monocytes and
macrophages, in addition to the well-studied adipocytes, governing cellular phenotype and
function such as lipid metabolism and secretome through transactivation of PPARY target
genes [11,16,17]. Several key molecular mechanisms regulated by PPARy in macrophages
include differentiation [18], M1-to-M2 polarization [19], lipid metabolism [20], suppression
of the production of pro-inflammatory cytokines (e.g., TNF«, IL-1B, and IL-6), and the
expression of inflammation-related genes (e.g., iNOS and MMP9) [8,21].

Here, we hypothesized that the PPARY target genes could serve as a prognosticator
of outcome in patients with PTC due to the common variants found in an intronic region
located between exon 5 and exon 6 of the PPARG gene encoding the ligand-binding domain
(LBD) of nuclear hormone—a key domain for transactivation of PPARYy targets [11,22]—in
three pairs of monozygotic twins harboring PTC. A newly developed personalized scoring
index computed based on the expression levels of PPARY target genes applied to merged
microarray data (MMD) consisting exclusively of thyroid cancers and normal tissues
and TCGA-THCA (thyroid carcinoma) data revealed its robust diagnostic and prognostic
ability in predicting tissue-based disease-specific survival (DSS). Leveraging single-cell
RNA sequencing (scRNA-seq) data and machine learning algorithms, we further identified
specific cell types contributing predominantly to the PPARGi and demonstrated clinical
significance and applicability of PPARGI assay in a routine clinical setting, regardless of
profiling platform.



Cancers 2021, 13, 5110

30f16

2. Materials and Methods
2.1. Subjects

We performed a retrospective study targeting identical twins who were treated with
surgery for papillary thyroid cancer at Gangnam Severance Hospital, Yonsei University
College of Medicine, between May 2009 and March 2020. Three pairs of identical twins
with papillary thyroid carcinoma, denotated as TP1, TP2, and TP3 were identified. All
methods were carried out in accordance with relevant guidelines and regulations. This
study protocol was approved by the Institutional Review Board of Yonsei University (IRB
3-2020-0281). The IRB of Yonsei University waived the requirement for patient-informed
consent as the study is retrospective by design. The clinicopathologic characteristics of the
patients and tumors including age, sex, operation date, surgical extent, tumor size, and
central and lateral lymph node metastasis are summarized in Table S1.

2.2. Targeted DNA Sequencing and Analysis

Genomic DNA was extracted from FFPE-fixed tumor tissues. Sequencing libraries
were prepared by Macrogen (Seoul, Korea) using SureSelect Target Enrichment kit (Agi-
lent Technologies). Two distinct target panels were designed to detect fusion genes and
mutations in coding exons (Table S52) using SureSelect Custom DNA Target Enrichment
Probes. The libraries were subjected to Illumina platform in paired-end (2 x 150 bp) mode.
Analytical platforms used by Macrogen include (1) FASTQC, fastp (quality check and
trimming); (2) BWA, PICARD, SAMTOOLS, and BEDTOOLS (alignment); and (3) MuTect2
(GATK) and LUMPY (variant calling). The human assembly GRCh37/hg19 was used
for reference genome. The variant call format (VCF v4.2) provided for each sample by
Macrogen was used to identify variants (annotated with SnpEff v4.3), in which only the
passing variants annotated as PASS were considered as true variants.

2.3. Mapping of Protein Mutation Data

MutationMapper tool [23] provided by cBioPortal (cbioportal.org/mutation_mapper;
accessed on 6 April 2021) was used to visualize the identified variants mapped on (1) a
linear protein and its domains (“lollipop” plot); and (2) three-dimensional (3D) protein
structures. Ensembl GRCh37 Release 104 (grch37.ensembl.org; accessed on 6 May 2021)
was used to identify protein domains and the start and end positions of amino acids of LBD
across transcript variants of PPARG. COSMIC (catalogue of somatic mutations in cancer)
GRCh37 v94 database (cancer.sanger.ac.uk/cosmic; accessed on 6 May 2021) [24] was
used to identify patients with thyroid carcinoma harboring CDS (coding DNA sequence)
mutation in LBD of the PPARG.

2.4. MSKCC-ATC and TCGA-THCA Data

Nonsynonymous mutation data and clinical data were obtained directly from the cBio-
Portal (cbioportal.org; accessed on 28 May 2021) for poorly-differentiated and anaplastic
thyroid cancers (MSKCC, JCI 2016) and thyroid carcinoma (TCGA, PanCancer Atlas). The
R TCGADiolinks package [25] (v2.18.0) was used to extract gene expression (RNA-seq) data
from the cancer genome atlas thyroid cancer (TCGA-THCA). Read counts were normalized
by trimmed mean of M-values (TMM) using the R edgeR package [26] (v3.32.1) and were
subjected to the voom function in the limma package [27] (v3.46.0). The MutationAligner
web resource (mutationaligner.org; accessed on 31 May 2021) was used to explore vari-
ants in “Hormone_recep” domain of PPARG in TCGA cohorts across 22 different tumor
types [28]. The PathwayMapper tool (pathwaymapper.org; accessed on 31 May 2021) was
used to export a curated cancer pathway image with alteration frequencies overlaid as
scalable vector graphics from the cBioPortal (TCGA-THCA) [29].
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2.5. MMD-THCA Data

Merged microarray-acquired Data (MMD) were generated for THCA comprising
non-tumor (NT), ATC, PDTC, and PTC tissues, as previously carried out for other major
cancer types [30-33]. The minimum information about a microarray experiment (MIAME)
compliant datasets were carefully selected using gene expression omnibus (GEO), a public
functional genomics data repository (ncbi.nlm.nih.gov/geo; accessed on 28 May 2021),
based on the following criteria: (1) raw data availability (in CEL files); (2) tissue type
annotation (i.e., NT, ATC, PDTC, and PTC); and (3) data derivation from affymetrix human
genome U133 Plus 2.0 (HG-U133_Plus_2) array. Raw data of four selected GEO datasets
(GSE29265, GSE33630, GSE65144, and GSE76039) were processed and normalized with
robust multi-array average (RMA) using the R Affy package [34] (v1.68.0). These processed
independent datasets were merged and corrected for batch effects using the ComBat
function in the R sva package [35] (v.3.38.0). The R umap package (v0.2.7.0) was used
to (1) visually identify technical (i.e., non-biological) variation derived from different
studies and (2) validate the batch effect removal in ComBat-transformed MMD-THCA in
low-dimensional uniform manifold approximation and projection (UMAP) space.

2.6. ScCRNA-Seq Data

Expression matrices with molecule counts per gene per cell index of PTC tissues from
14 patients were obtained directly from GEO under the accession code GSE158291 [36].
For QC and preprocessing of scRNA-seq data, cells having unique feature counts over
10,000 or less than 200 counts and genes having less than 10 molecules across the cells
were filtered out. The filtered data were used to perform normalization, feature selection
(i.e., identification of highly variable genes), linear transformation (i.e., scaling the data),
dimensional reduction (i.e., principal component analysis), cell clustering, and non-linear
dimensional reduction (i.e., UMAP) using the R Seurat package [37] (v4.0.1). Data from
nodular goiter were excluded from further analyses. Cell type identity was assigned manu-
ally to each cluster based on differentially expressed features using the Find AllMarkers
function (Table S3). Expression levels of the identified cell cluster-specific markers were
assessed in a scRNA-seq study named “ICA: Ileum Lamina Propria Immunocyte (Sinai)”
through the Single Cell Portal (singlecell.broadinstitute.org; accessed on 31 May 2021).

2.7. DE, GSEA, and GO Analysis

Differential expression (DE) analyses were performed using the linear modeling
features of the R limma package [27] (v3.46.0). Statistical cutoffs of |log2FC| > 1 and
adjusted p-value < 0.05 were applied to determine genes to be differentially expressed
in both TCGA-THCA and MMD-THCA data. Gene set enrichment analysis (GSEA)
was performed using the R fgsea package [38] (v1.16.0) to assess the enrichment of
“GOBP_THYROID_HORMONE_GENERATION" gene set, which was downloaded from
the Molecular Signatures Database (MSigDB), in PPARGiM8" tumors. Gene ontology (GO)
analysis and the enrichment analysis of disease-gene associations were performed using
the enrichGO function and the enrichDGN function in the R clusterProfiler package [39]
(v3.18.1), respectively.

2.8. CIBERSORT

The proportion of immune cell types in TCGA-THCA and MMD-THCA data was
estimated using CIBERSORT (cibersort.stanford.edu; accessed on 1 July 2021). All PTC
tissues were included in the analysis. The default LM22 (22 immune cell types) gene
signature was used for each run with 100 permutations. The correlation between the
estimated composition of immune cell types and PPARGi was assessed using the Pearson
product-moment correlation test in the R stats package (v4.0.3).
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2.9. ROC and Survival Analysis

The receiver operator characteristic (ROC) area under the curve (AUC) and the most
optimal threshold (i.e., the threshold with the highest sum of sensitivity and specificity)
were computed to evaluate the diagnostic accuracy of the PPARGI in deciding the presence
of the disease using the R pROC package [40] (v1.17.0.1). Univariate Cox proportional
hazards (PH) regression and Kaplan-Meier (KM) survival analyses were performed using
the R survival package (v3.2.11). Samples with missing either disease-specific survival
(DSS) data or gene expression data were excluded from the analysis. The regression
coefficients, the Wald statistic p-values, hazard ratios (HR), confidence intervals (Cls) of
the HR, and log-rank statistics of PPARY target genes in predicting DSS in TCGA-THCA
are listed in Table S4. As previously described [30,32,41], the optimal cut-off used in the
survival analysis was determined using Cutoff Finder [42] (molpathoheidelberg.shinyapps.
io/CutoffFinder_v1; accessed on 31 May 2021).

2.10. PPARG:i Derivation

The PPARgene database (ppargene.org; accessed on 28 May 2021), an open-source
resource that curated the experimentally verified PPAR-«, -3/, and -y target genes [43],
was leveraged to query previously validated PPARy target genes. Among the retrieved
PPARYy target genes, only those annotated with “human” and “up” for “species” and
“regulation”, respectively, were selected (Table S5) for determining their prognostic role
in predicting DSS in TCGA-THCA. Genes having the Wald statistic p-value of less than
0.05 were considered as prognostic and were used to construct a new prognostic index
named PPARGi. PPARGi is computed by the sum of the expression level that is multiplied
by predefined Cox PH regression coefficient of each PPARGIi gene. Expression heatmaps
of PPARGIi-comprising genes were generated by Morpheus (software.broadinstitute.org/
morpheus; accessed on 28 May 2021).

2.11. Machine Learning Algorithms for Disease Selection

Orange (v3.29.3) was used for t-SNE visualization, evaluation of ML models, and
generation of confusion matrices and ROC curves. The schematic workflow is shown in
Figure S1. The processed TCGA-THCA, MMD-THCA (PTC), and MMD-THCA (ATC) data
were sent to the “test and score” widget, in which multiple ML models were tested with
the following defined parameters: (1) k-nearest neighbors (kNN, number of neighbors = 5,
metric = Euclidean, weight = uniform); (2) support vector machine (SVM, cost = 1.00,
kernel = RBF, numerical tolerance = 0.001, iteration limit = 100); (3) neural network (neu-
rons in hidden layers = 100, activation = ReLu, solver = Adam with regularization = 0.0001,
maximum number of iterations = 200); (4) logistic regression (regularization type = lasso
(L1), strength = C1); and (5) random forest (number of trees = 10, subsets smaller than
5 were not split). These five models were evaluated using 10-fold cross-validation. The
evaluation results are summarized in Tables 1-3 using the following defined parame-
ters: (1) AUC = area under the ROC; (2) CA = classification accuracy, defined as the
proportion of correctly classified examples; (3) F1 = weighted harmonic mean of pre-
cision and recall; (4) precision = proportion of TP among instances classified as posi-
tive; and (5) recall = proportion of TP among all positive instances in the given data. For
cross-platform analyses, the ML models trained on TCGA-THCA data, which were TDM-
transformed using the R TDM package (v0.3), as recently shown [33], were applied to
MMD-THCA data consisting exclusively of PTC.

3. Results
3.1. Targeted NGS of Thyroid Cancer-Related Genes in Monozygotic Twins with PTC

Formalin-fixed paraffin-embedded (FFPE) tissues derived from three pairs of identical
twins with PTC, denoted as TP1, TP2, and TP3, were subjected to targeted next generation
sequencing (NGS) for 103 thyroid cancer-related genes (see Section 2.2 of Materials and
Methods; Table S2). A total number of variants observed in twins varied from 98 (TP1)
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to 155 (TP2), in which the pairwise concordance varied from 34.5% (TP3) to 69.0% (TP2)
(Figure S2A). The SnpEff-annotated effects of the identified variants were mostly intronic
variants, while other variants including 3’ and 5" UTR variants, disruptive in-frame deletion,
missense variants, synonymous variants, upstream and downstream gene variants, 5 UTR
premature start codon gain variants, and splice region variants were detected at lower
frequency (Figure S2B).

Notably, all three pairs of twins with PTC had four common variants, of which three
(75%) occurred in the PPARG gene (Figure 1A) and the other variant occurred in the TERT
gene. Using the MutationMapper at cBioPortal (see Section 2.3 of Materials and Methods),
we found that two of the variants of PPARG (chr3: 12468710 and chr3: 12470239) occurred
within the intronic region located between exon 5 and exon 6 of the PPARG gene encoding
the “Hormone_recep” domain (PF00104, domain source: Pfam), which is defined as ligand-
binding domain (LBD) of nuclear hormone receptor (Figure S2C). These genomic positions
mapped onto the previously reported 3D structure of the intact PPAR gamma-retinoid
X receptor (RXR) alpha (PPARy-RXR«) nuclear receptor complex (PDB identifier: 3E00)
are shown in Figure S2D. Thyroid carcinomas harboring the CDS mutations in the LBD of
PPARG were further found in COSMIC GRCh37 v94 database (Figure S3) [24].
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Figure 1. Diagnostic and prognostic performance of PPARGi in TCGA-THCA. (A) Venn diagrams showing the number
of the SnpEff-predicted variants in three pairs of twins (TP1-3). Genomic positions of mutations, including chromosome
(chr) number, and gene symbols are shown in the table (right). (B) Expression heatmap (left) and forest plot (right) of
PPARGi-comprising genes. The data are sorted in increasing PPARGI. The horizontal axis of the forest plot represents
hazard ratio (HR) with 95% confidence intervals (CI) estimated using a Cox proportional hazards model. The regression
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coefficients (Coef) and the Wald statistic p-values (p) are stated. (C) PPARGi computation for patient stratification.
(D) PPARGI of normal (17 = 59) and tumor tissues (n = 505). Mann-Whitney-Wilcoxon test p-values (p) and the num-
ber of samples (1) are stated. (E) The area under the ROC curve (AUC) of the PPARGi classifier. The AUC value and the
optimal cut-off are stated. (F) The hazard ratio (HR), log-rank p-value, and the number of patients successfully stratified (1)
determined from univariate Cox regression analysis are shown on the survival Kaplan-Meier (KM) curve. Black and red
KM curves represent predicted PPARGi!®" and PPARGiM8" group, respectively. (G) Volcano plot depicting differentially
expressed (red and blue) and non-significant (gray) genes in the PPARGi-stratified groups. The number of genes (1) are
stated. (H) GSEA plot showing the enrichment of thyroid hormone generation gene set (GO:0006590) in PPARGi®" tumors.
The cumulative enrichment score (ES) is plotted as the green curve, which is the running sum of the weighted ES as the
analysis walks down the limma-generated ranked list. The vertical black lines on the horizontal axis of the plot indicate the
position of query genes in the ranked list of genes. The bottom plot shows the value of the fold change (log2-base) as the
computation goes down the limma-generated ranked list. Normalized ES (NES) and adjusted p-values (p,q;) are stated.
(I) Dot plot showing top gene sets (downregulated) in PPARGi'®" tumors. (J) Dot plot showing Pearson’s correlations
between PPARGi and CIBERSORT-estimated proportion of immune cell populations.

Of the SnpEff-annotated variants, those predicted with moderate impact in at least
one of the twin pairs were found in ARID1A, ALK, MSH2, FN1, KMT2A, TUBA3C, BRAF,
STRN, KMT2D, and NF1 (Figure S4A). The first twin pair (TP1) had the greatest number
of missense variants in these genes, including an in-frame deletion in MSH2. They were
discordant for missense variants in TUBA3C (p. Tyr262Cys) and BRAF (p. Val640Glu). For
TP2, concordant variants were found in BRAF (p. Val640Glu) and STRN (p. Val620Leu),
while missense variants in KMT2D (p. GIn827His) were present in only one of the twins.
TP3 harbored missense variants in FN1 (p. Asn172Asp) and NF1 (p. Glu836Ala), which
was present only in one of the twins who had recurrent cancer. To explore the frequency
of nonsynonymous mutations in these identified genes in thyroid cancers, we leveraged
cBioPortal-derived MSKCC and TCGA data (see Section 2.4 of Materials and Methods)
for thyroid carcinoma (TCGA-THCA, n = 500) and poorly differentiated and anaplastic
thyroid cancers (MSKCC-ATC, n = 117). Except for BRAF mutation occurring in 60% and
37% of PTC and ATC, respectively, nonsynonymous variants of ARID1A, ALK, MSH2, FN1,
KMT2A, TUBA3C, STRN, KMT2D, and NF1 were found in about 0.2-1.4% and 2.6—6% of
patients in TCGA-THCA and MSKCC-ATC, respectively (Figure S4B,C). These variants
include putative driver mutations (in-frame variant, missense variant, and truncating
variant) as well as amplification and structural variants (Figure S5). The PathwayMapper
tool provided by cBioPortal [29] further identified RTK-RAS pathway as the most altered
signaling pathway with alterations in ALK, BRAF, and NF1 (score = 3.00; Figure S6).

3.2. Clinical Significance of Ppar<y Target Genes in Thyroid Cancer

To examine the diagnostic and prognostic significance of target genes of PPARy, in
which all pairs of twins with PTC harbored the intronic variants, we next shortlisted the
experimentally verified PPARYy target genes using PPARgene database (see Section 2.10
of Materials and Methods). Previous works have reported upregulation of the identified
targets by PPARy in human-derived tissues or cells (Table S5). Univariate Cox regres-
sion survival analyses of TCGA-THCA-derived RNA-seq revealed that of the 39 targets,
10 PPARYy targets (25.6%) were favorable prognostic factor for disease-specific survival
(DSS; Table S4). To construct a personalized scoring system for patient classification, we
developed an index termed as PPARGI, which is computed based on the regression coef-
ficient and expression level of the 10 PPARy target genes (Figure 1B,C). PPARGI varied
greatly across tumor samples (n = 505) and was significantly higher than that of normal
tissues (n = 59; Wilcoxon p-value = 2.2 x 10~6; Figure 1D). Using the area under the
receiver operating characteristic (ROC) curve (AUC), we found that PPARGI distinguishes
cancers from normal tissues with the AUC of 0.876 (Figure 1E), demonstrating the potential
diagnostic use of PPARGI in deciding the presence of the disease.
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PPARGiM8" (11 = 458; 93.5%) and PPARGI'®" (1 = 32; 6.5%) tumors stratified by the
optimal cut-off index determined by Cutoff Finder (see Section 2.9 of Materials and Meth-
ods) had significantly different DSS outcomes (Figure 1F; log-rank p-value = 5.8 x 10716).
Through differential expression (DE) analysis between the two stratified groups, we found
a total of 1775 DE genes with fold change (log2-base) > 1 and adjusted p-value < 0.05,
as shown in Figure 1G. Intriguingly, gene set enrichment analysis (GSEA) revealed the
enrichment of genes related to thyroid hormone generation (GO:0006590) in PPARGi!*"
tumors (normalized enrichment score = 1.72 and adjusted p-value = 0.008), which were
found to highly express DIO1, TPO, IYD, DIO2, TG, DUOXA2, FOXE1, PAXS8, SLC5A5, and
DUOX2 (Figure 1H). Additionally, gene ontology (GO) analysis of downregulated genes
revealed “T cell activation” and “regulation of T cell activation” as top-enriched terms in
PPARGI"" tumors (Figure 1I). These findings are further corroborated by the CIBERSORT
analysis, which identified regulatory T cells (Treg) as one of the immune cell types, in
which their composition is positively corelated with PPARGi (Figure 1J). In addition to Treg,
relative abundance of M0 and M2 macrophages, resting dendritic cells, and activated mast
cells increased with PPARGI, while that of CD4 naive T cells, monocytes, activated natural
killer (NK) cells, eosinophils, plasma cells, and T follicular helper (Tth) cells decreased
(Pearson’s correlation p-value < 0.05).

3.3. Validation of PPARGi in MMD-THCA

To validate diverse expression levels of PPARy target genes and their potential
diagnostic value in thyroid cancer, we next generated a unified, cancer type-specific,
merged microarray dataset (MMD-THCA), as previously carried out for other major cancer
types [30-33]. Briefly, four independent transcriptomic datasets (GSE29265, GSE33630,
GSE65144, and GSE76039) derived from affymetrix human genome U133 Plus 2.0 (HG-
U133_Plus_2) array were normalized, integrated, and corrected for batch effects (see
Section 2 Materials and Methods). These datasets comprised samples derived from anaplas-
tic thyroid cancer (ATC; n = 52), poorly-differentiated thyroid cancer (PDTC; n = 17), pap-
illary thyroid cancer (PTC; n = 69), and normal tissues (1 = 78). As depicted in UMAP
representation (Figure 2A), the newly developed MMD exhibited an overlay of samples
colored by the source of data and a clear separation between samples derived from differ-
ent tissue type (i.e., ATC, PDTC, PTC, and normal), demonstrating successful removal of
batch effects arising from different studies. Technical validity of the ComBat-transformed
MMD was further examined through DE analysis of PTC and normal tissues, in which
the enrichment analysis of disease-gene associations (see Section 2.7 of Materials and
Methods) identified “carcinoma, papillary”, “follicular adenoma”, “thyroid gland follicular
adenoma”, and “follicular thyroid carcinoma” as top enriched terms in PTC (Figure 2B).

MMD-THCA exhibited heterogeneous expression of PPARGi-comprising genes, as
previously seen in TCGA-THCA (Figure 2C). Consistent with our findings in TCGA-THCA,
PPARGI of thyroid cancers was significantly higher than that of normal tissues (Wilcoxon
p-value < 0.0001), of which PTC showed the highest mean of PPARGi among thyroid
cancers (Figure 2D). Further, PPARGI achieved the AUC of 0.760, 0.654, and 0.899 in distin-
guishing cancers from normal tissues in ATC, PDTC, and PTC, respectively (Figure 2E).
To validate the enrichment of genes related to thyroid hormone generation (GO:0006590)
in PPARGI!®Y tumors observed in TCGA-THCA, we next stratified MMD-PTC into two
groups, such that the proportion of PPARGi!®" tumors in MMD (n = 5; 7.25%) would
be comparable to TCGA stratification. DE analysis identified a total of 549 DE genes
(Figure 2F), of which the query gene ontology term was enriched in PPARGi{'®" tumors
(normalized enrichment score = 1.64 and adjusted p-value = 0.012), which were found
to highly express DIO1, TPO, IYD, PAX8, DIO2, FOXE1, DUOXA2, TG, and SLC5A5
(Figure 2G). While we did not find the correlation between PPARGi and the CIBERSORT-
estimated proportion of Tregs previously observed in TCGA-THCA, resting dendritic
cells and M2 macrophages repeatedly showed statistical significance (Pearson’s correla-
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tion p-value < 0.05), highlighting their robust association with PPARGi-comprising genes

(Figure 2H).
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Figure 2. PPARGi in MMD-THCA. (A) UMAP representation of the uncorrected (left) and corrected (right) MMD. Data
are colored by study (top) and tissue type (bottom). The number of samples (1) are stated. (B) Disease-gene associations
depicting the linkages of genes and the enriched diseases as a network. The color and size of the node represent the value of

fold change (FC) and gene count, respectively. (C) Expression heatmap of PPARGi-comprising genes. The data are sorted in
increasing PPARGI. (D) PPARGI of normal and tumor tissues (ATC, PDTC, and PTC). The asterisks represent the statistical
significance assessed by Mann-Whitney-Wilcoxon test (**** p < 0.0001, * p < 0.01, ns: p > 0.05). Kruskal-Wallis p-value (p)
is stated. (E) The area under the ROC curve (AUC) of the PPARGI classifier. The AUC values are stated for ATC (left), PDTC
(middle), and PTC (right). (F) Volcano plot depicting differentially expressed (red and blue) and non-significant (gray) genes
in the PPARGi-stratified groups in PTC. The number of genes (1) are stated. (G) GSEA plot showing the enrichment of
thyroid hormone generation gene set (GO:0006590) in PPARGi'®" tumors. The cumulative enrichment score is plotted as

the green curve, which is the running sum of the weighted ES as the analysis walks down the limma-generated ranked list.

The vertical black lines on the horizontal axis of the plot indicate the position of query genes in the ranked list of genes. The

bottom plot shows the value of the fold change (log2-base) as the computation goes down the limma-generated ranked list.
Normalized ES (NES) and adjusted p-values (p,q;) are stated. (H) Dot plot showing Pearson’s correlations between PPARGi
and CIBERSORT-estimated proportion of immune cell populations.

3.4. Single-Cell Analysis of Ppargi-Comprising Genes in PTC

To identify specific cell types expressing 10 PPARGi-comprising genes in PTC, we next
processed and analyzed a scRNA-seq dataset (GSE158291) derived from PTC tissues from
14 patients. Seurat (v4.0.1) identified a total of 15 cell clusters in PTC comprising 4045 QC-
passed cells, including pericytes, plasma cells, group 1 innate lymphoid cells (ILC), T cells,
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B cells, endothelial cells, fibroblasts, epithelial cells, and macrophages (Figure 3A). Each cell
cluster was defined manually using differentially expressed features (Figure 3B, Table S3),
in which the expression levels of immune cell type-specific features were validated using
an independent scRNA-seq dataset obtained from the Single Cell Portal (see Section 2.6
of Materials and Methods). Notably, PPARGi-comprising genes were expressed predomi-
nantly in epithelial cells and macrophages (Figure 3C,D). While GPD1, CYP27A1, and REN
were rarely expressed in PTC, the remaining genes including DBI, APOE, SAT1, CDKN1A,
KLF4, and PLIN2 showed highly heterogenous levels of expression contributing to varied
range of PPARGI (Figure 3E). GO analysis of PPARGi-comprising genes identified lipid
localization and transport, cholesterol/sterol/steroid catabolic process, and phospholipid
transport as top enriched terms (Figure 3F), consistent with the known and putative roles
of PPARY in governing lipid storage, glucose, and insulin process [12].
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Figure 3. Analysis of PPARGi-comprising genes at the single-cell level in PTC. (A) UMAP of 4045 QC-passed cells depicting
15 cell clusters. (B) Heatmap of top 5 differentially expressed features across the identified cell clusters. The number (1)
and proportion (%) of cells in each cluster are stated. (C) Distribution of PPARGI across different cell clusters. Kruskal-
Wallis p-value (p) is stated. (D) Dot plot depicting average expression of PPARGi-comprising genes across different cell
clusters. (E) Heatmap showing expression levels of PPARGi-comprising genes and PPARGI in macrophages (left) and
epithelial cells (right). The data are sorted in increasing PPARGIi. (F) Dot plot showing top enriched GO terms from
PPARGi-comprising genes.

3.5. Machine Learning for Disease Selection and Risk Stratification

To evaluate the diagnostic performance of expression profiles of PPARGi-comprising
genes, we applied different machine learning (ML) algorithms to TCGA-THCA and MMD-
THCA data annotated with the origin of tissue (see Section 2.11 of Materials and Methods;
Figure S1). As PPARGIi was derived from PTC expression data, cancers (TT) separated
clearly from normal (NT) tissues in both TCGA-THCA (n = 564) and MMD-THCA (PTC,
n = 147) and to a lesser extent in MMD-THCA (ATC, n = 130), as shown in Figure 4A.
Of the tested ML models, LASSO multinomial logistic regression (LASSO) achieved the
AUC of 0.990 in classifying TT from NT tissues in TCGA-THCA, demonstrating near-
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perfect diagnostic performance (Table 1 and Figure 4B). Similarly, thyroid tissues were
best classified into TT and NT with SVM (AUC = 0.937) and LASSO (AUC = 0.945) in

MMD-THCA PTC and ATC, respectively (Table 1 and Figure 4B).
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Figure 4. ML algorithms applied to expression profiles of PPARGi-comprising genes. (A) The t-distributed stochastic
neighbor embedding (t-SNE) visualization of cancers (TT) and normal (TT) tissues in TCGA-THCA (left), MMD-THCA (PTC,
middle), and MMD-THCA (ATC, right). (B) Confusion matrices of LASSO and SVM models in TCGA-THCA (top right),
MMD-PTC (bottom left), and MMD-ATC (bottom right). (C) ROC curves and (D) confusion matrix showing classifying
performance for normal (left) and tumor (right) tissues in MMD-PTC using kNN model developed from TDM-transformed
TCGA-PTC. (E) t-SNE visualization of PPARGi"8" (colored in blue) and PPARG®Y (colored in red) tumors in TCGA-THCA.
(F) Confusion matrix of SVM model in classifying PPARGiM8" from PPARGi'®" tumors. (G) ROC curve showing classifying
performance for PPARGY tumors.

Table 1. ML models for disease selection in thyroid cancer.

Dataset Model AUC CA F1 Precision Recall
kNN 0.980 0.961 0.962 0.963 0.961

SVM 0.989 0.968 0.968 0.967 0.968

TCGA-THCA Random forest 0.975 0.956 0.954 0.954 0.956
Neural network 0.986 0.975 0.976 0.976 0.975

Logistic regression 0.990 0.972 0.972 0.972 0.972

kNN 0.925 0.884 0.884 0.885 0.884

SVM 0.937 0.912 0.911 0.912 0.912

MM(?:F%I;ICA Random forest 0.914 0.871 0.871 0.871 0.871
Neural network 0.928 0.912 0.911 0.913 0.912

Logistic regression 0.929 0.912 0.912 0.912 0.912

kNN 0.944 0.838 0.835 0.841 0.838

SVM 0.929 0.862 0.861 0.861 0.862

MM(I;;I&I?CA Random forest 0.897 0.808 0.807 0.807 0.808
Neural network 0.938 0.862 0.862 0.862 0.862

Logistic regression 0.945 0.892 0.892 0.892 0.892

We next aimed to demonstrate the clinical utility of PPARGIi genes across different
profiling platforms by developing the ML model from RNA-seq-acquired TCGA-PTC data
and applying it to the microarray-acquired MMD-PTC data. Notably, a k-nearest neighbors
(kNN) model developed from TDM-transformed TCGA-PTC data achieved the best AUC
value of 0.942 in classifying TT from NT tissues in MMD-PTC, while the rest of the tested
ML models achieved the AUC ranging from 0.890 (SVM) to 0.925 (neural network), showing
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the clinical applicability of PPARGIi genes regardless of profiling platform (Table 2 and
Figure 4C,D).

Table 2. Cross-platform evaluation results of the ML models.

Dataset Model AUC CA F1 Precision Recall
kNN 0.942 0.864 0.862 0.873 0.864

) SVM 0.890 0.469 0.300 0.220 0.469
Train-test Random forest 0828 0599 0551 0.721 0.599
data Neural network 0.925 0.837 0.836 0.860 0.837
Logistic regression 0.922 0.531 0.368 0.282 0.531

Lastly, we sought to evaluate the predictive potential of ML models in stratifying
patients into PPARGiM8" and PPARGi!°" groups, which were found to have significantly
different prognosis in terms of DSS (Table 3 and Figure 4D). The tested ML models achieved
the AUC ranging from 0.965 (kNN) to 0.998 (SVM) in distinguishing the two risk groups,
highlighting the clinical significance of PPARGI genes predictive of survival outcomes in
thyroid cancer. These data altogether show the promising results of ML-optimized models
built from expression profiles of PPARGIi genes for clinical applications, which can easily
be translated to other sequencing platforms.

Table 3. ML models for risk stratification in thyroid cancer.

Dataset Model AUC CA F1 Precision Recall
KNN 0965 0980 0979 0.979 0.980

SVM 0998 099  0.990 0.990 0.990

TCGA- Random forest 0988 0966 0962 0.964 0.966
THCA Neural network 0997 0982 0982 0.982 0.982
Logistic regression 0.974 0.976 0.975 0.975 0.976

4. Discussion

Despite the well-established role of the PAX8-PPARy fusion oncogene, the expression
landscape of experimentally validated PPARYy target genes remains unclear in thyroid
carcinoma. In this study, we found that three pairs of monozygotic twins with PTC
harbored four common variants, of which two variants occurred in the LBD of nuclear
hormone in the PPARG gene, which have not been reported in healthy Korean population
(Table S6) [44]. We further showed that low expression levels of many of the PPARY target
genes were associated with poor survival outcomes, reinforcing the importance of PPARy-
RXRo pathway in governing immune microenvironment in PTC. Through scRNA-seq data
analysis, we found that PPARGi-comprising genes were expressed most strongly in the
epithelial cells and macrophages among the 15 cell clusters found in patient-derived PTC
tissues. Lastly, ML models developed from RNA-seq-derived TCGA-THCA achieved a
near-perfect performance in selecting the disease from benign tissues and in stratifying pa-
tients into the two risk groups in microarray-derived MMD-THCA, highlighting potential
applicability of expression profiles of PPARGi-comprising genes in the clinical setting for
patient management.

The LBD, situated in the C-terminus, is connected to the DNA-binding domain (DBD)
via a flexible hinge region, which interacts physically with the DNA in PPARy [11]. It
is a key domain for transactivation and transrepression of PPARY target genes that play
important roles in adipogenesis, insulin sensitization, lipid metabolism, and inflammation,
making PPARy an effective target for the management of metabolic diseases, such as type
2 diabetes, obesity, and atherosclerosis [22,45]. The PPARG gene has 15 transcripts (splice
variants), of which four transcripts lack exon 5 and 6, which encode LBD (Figure S3A).
Skipping of PPARG exon 5, for example, induced by ligand-mediated PPARYy activation,
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has been proposed as an alternative splicing event regulating PPARYy activity and PPARy-
related diseases [12].

In cancer, the tumorigenic role of PPARy remains highly controversial. Studies have
observed the inhibitory effects of PPARy-RXR« signaling pathway on tumor growth,
angiogenesis, differentiation, and that of production of inflammatory cytokines and tu-
mor invasiveness, suggesting the anti-tumorigenic role of PPARY in several cancer types
including colon, lung, pancreas, prostate, and breast cancer [11,45]. By contrast, the pro-
tumorigenic role of PPARy has been reported in a variety of cancers, such as bladder tumor,
renal pelvic tumors, hemangioma, lipoma, skin fibrosarcoma, mammary adenocarcinoma,
and hepatic tumors, through distinct molecular mechanisms activated by PPARy ligands
regulating cancer cell proliferation, angiogenesis, and metastasis [46].

The cancer-related loss-of-function PPARy mutations have been found predominantly
throughout the LBD of the PPARG gene with varying degree of impaired ability in inducing
transactivation of target genes [11]. Here, we observed that PPARy target genes were
expressed at significantly higher levels compared with benign tissues, suggesting that the
PPARYy activation might increase the risk of developing thyroid cancer. Further, among PTC
tissues, the low expression levels of PPARGi-comprising genes were closely associated with
poor survival outcomes, indicating that the loss-of-function PPARYy variants might deregu-
late tumor microenvironment, including immune cell-infiltration, through macrophages in
PPARGI!Y tumors. In line with the findings supporting the role of PPARy-RXRo pathway
in modulating immune cell-infiltration, genomic alterations of PPARy-RXRx complex (i.e.,
PPARyHigh /RXRaS5#27F/Y) induced evasion of immunosurveillance and partial resistance
to immunotherapies in muscle-invasive bladder cancer [47].

Through analysis of microarray- and RNA-seq-generated, patient-derived, tissue-level
gene expression and scRNA-seq data, we assessed the expression profiles of diagnostic and
prognostic PPARy targets comprehensively in a cell type-specific manner and identified
specific cell populations contributing the most to the computation of PPARGi in PTC. The
last decade has seen the emergence of PPARY as a key regulator of inflammatory and
immune responses particularly in monocytes and macrophages, with anti-inflammatory
effects in several disease models and clinical studies [48-50]. These studies have sug-
gested that, in macrophages, PPARY represses pro-inflammatory genes such as TNFe,
IL-1B, IL-6, IL-12 MCP-1, and MMP-9 through unique ligand-dependent transcriptional
mechanisms [11,21,48,51-53]. We thus carefully speculate that the poor prognosis observed
in PPARGi!®" PTC tumors might be attributed in part to the suppressed repression of
the production of these pro-inflammatory genes in which the expression levels of many
of the genes are potential predictors for metastasis or shorted survival time in thyroid
carcinoma [54,55].

By curating multiple independent GEO datasets comprising a total of 216 patient-
derived PTC and PTC-free tissues, we generated a merged PTC-specific MMD annotated
with clinical features across different subtypes of thyroid carcinomas, including anaplastic
thyroid cancer, poorly-differentiated thyroid cancer, and papillary thyroid cancer. These
unified data processed using a uniform R pipeline in this paper source would allow
parallel cross-platform analyses with TCGA, as previously shown in other major types of
cancer [30-33]. In this study, we further demonstrated the cross-platform compatibility of
the newly developed PPARGI, providing promising results for its clinical application and
our informatics pipeline, which can be readily translated to other sequencing platforms.

5. Conclusions

It remains to be investigated whether the identified intronic variants found in monozy-
gotic twins in the LBD of the PPARG gene would induce loss-of-function effects on PPARy
or impaired PPARy-RXRa signaling pathway. Further, our sample size was small and
might only represent a small subset of PTC cohort in Korea, although the expression levels
and prognostic performance of PPARGi-comprising genes were extensively validated using
public transcriptomic databases. We thus aim to assess the predictive power of PPARGi in
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a larger validation patient cohort or in a prospectively conducted study. Altogether, the
functional PPARGI personalized scoring system may represent a powerful and effective
genomic tool to improve patient management in PTC.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ cancers13205110/s1, Figure S1: Orange-generated schematic workflow designed for the
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