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Simple Summary: Cholangiocarcinoma is a form of liver cancer that is found, predominantly, in
Thailand. Due to the non-specific symptoms and laboratory investigation, it is difficult to rule
out cholangiocarcinoma from other liver conditions. Here, we demonstrate the development of
a diagnostic tool for cholangiocarcinoma, based on the ATR-FTIR analyses of sera, coupled with
multivariate analyses and machine learning tools to obtain a better specificity. The innovative
approach that shows highly promising results for this otherwise difficult to diagnose cancer.

Abstract: Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. Opisthorchis
viverrini infection is a known high-risk factor for CCA and in found, predominantly, in Northeast
Thailand. The silent disease development and ineffective diagnosis have led to late-stage detection
and reduction in the survival rate. Attenuated total reflectance-Fourier transform infrared spec-
troscopy (ATR-FTIR) is currently being explored as a diagnostic tool in medicine. In this study, we
apply ATR-FTIR to discriminate CCA sera from hepatocellular carcinoma (HCC), biliary disease
(BD) and healthy donors using a multivariate analysis. Spectral markers differing from healthy
ones are observed in the collagen band at 1284, 1339 and 1035 cm−1, the phosphate band (vsPO−

2 )
at 1073 cm−1, the polysaccharides band at 1152 cm−1 and 1747 cm−1 of lipid ester carbonyl. A
Principal Component Analysis (PCA) shows discrimination between CCA and healthy sera using
the 1400–1000 cm−1 region and the combined 1800—1700 + 1400–1000 cm−1 region. Partial Least
Square-Discriminant Analysis (PLS-DA) scores plots in four of five regions investigated, namely, the
1400–1000 cm−1, 1800–1000 cm−1, 3000–2800 + 1800–1000 cm−1 and 1800–1700 + 1400–1000 cm−1

regions, show discrimination between sera from CCA and healthy volunteers. It was not possible to
separate CCA from HCC and BD by PCA and PLS-DA. CCA spectral modelling is established using
the PLS-DA, Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN). The
best model is the NN, which achieved a sensitivity of 80–100% and a specificity between 83 and 100%
for CCA, depending on the spectral window used to model the spectra. This study demonstrates
the potential of ATR-FTIR spectroscopy and spectral modelling as an additional tool to discriminate
CCA from other conditions.

Keywords: cholangiocarcinoma (CCA); attenuated total reflectance-Fourier transform infrared (ATR-
FTIR) spectroscopy; hepatocellular carcinoma (HCC); biliary disease (BD); multivariate analysis;
machine learning
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1. Introduction

Cholangiocarcinoma (CCA) is a malignancy arising from the bile duct epithelium,
which is found, sporadically, all over the world. CCA incidence in western countries was
reported between 0.3 and 3.36 per 100,000 people, while in eastern countries, the rate is
even higher. The highest incidence was found in Northeast Thailand, which reported
85–118.5 cases per 100,000 people with a high prevalence in Khon Kaen [1,2]. The disease
can be caused by various risk factors—primary sclerosing cholangitis, cholelithiasis, biliary
disorders, hepatitis B and C infection and lifestyle-related risk, e.g., alcohol consumption
and cigarette smoking—, while liver fluke infection (Opisthorchis viverrini and Clonorchis
sinensis) is reported as a common risk of CCA in east Asia [3,4]. Approximately, 10% of
chronically infected patients will develop CCA after 30–40 years [2,4].

CCA patients generally have no symptoms, while a long-standing infection and inflam-
mation cause non-specific symptoms, including malaise, jaundice, cholangitis, hepatomegaly,
upper quadrant abdominal pain, fatigue, etc. [5]. Unfortunately, a physical examination
cannot distinguish CCA from these particular symptoms due to the similarity to other
hepatobiliary diseases, especially hepatocellular carcinoma (HCC). Imaging techniques
(ultrasound, magnetic resonance imaging (MRI), magnetic resonance cholangiopancre-
atography (MRCP), computerized tomography (CT) scan) are used to investigate CCA by
detecting biliary obstruction, biliary stricture and mass forming. However, these techniques
are limited by the cancer itself, as the accuracy depends on the type of tumor, anatomical
lesion and tumor size [6]. Laboratory investigations performed by measuring liver function
and tumor markers in patient serum are nonspecific for CCA because liver enzymes and
bilirubin levels can be elevated in hepatic disorders, while CA19-9 levels can also be found
in GI tract cancers [7]. A pathological examination of stained biopsy tissue is the most pre-
cise technique and is currently used as a confirmation method. Nevertheless, this technique
requires an invasive sample collection, complicated sample handling, time consuming-
sample preparation and is labor intensive, which is not suitable for CCA screening or
large-scale studies. Potential tumor markers for CCA screening and diagnosis are still
intensively investigated in the research process; however, most of these markers require a
complicated sample processing and analysis [8]. Although a combination of markers may
provide more accurate results [9], the analysis of all markers of interest renders a high cost
and is time consuming.

Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy
can be used to detect molecular vibrations of molecules in complex biological samples,
including serum [10], which contain a lot of biomolecular information that is useful for a
health status assessment. ATR-FTIR spectroscopy has been used to detect cancer-specific
biomarkers in serum [11]. Advantages of the ATR-FTIR technique include the ease of
sample manipulation and a short measurement time (2 min). Furthermore, ATR-FTIR is
a reagent-less technique, requiring only small volumes of a sample that produce a high-
signal-to noise ratio output for a further chemometric analysis. Additionally, a single scan
of the sample can provide spectral information associated with the molecular phenotype of
the disease agent and/or host response [12].

Vibrational spectroscopy, coupled with machine learning algorithms, has previously
been applied to sera samples for various diseases, providing an excellent discrimination
against controls [13,14]. A study comparing ATR spectra of sera from breast cancer patients
versus heathy sera using a Neural Network reported 92–95% sensitivity and 95–100%
specificity with the main spectral changes observed in the CH stretching band, C-O from
the ribose backbone and P-O vibrations [15]. Toraman et al. [16] applied ATR-FTIR spec-
troscopy to investigate plasma from colon cancer patients using the multilayer perceptron
Neural Network and Support Vector Machine. They reported 76–93% sensitivity, 97–100%
specificity using the Neural Network and a 63–90% sensitivity, 80–95% specificity with the
SVM [16]. An ATR-FTIR study on sera from patients with brain cancer using SVM reported
93.3% sensitivity and 92.8% specificity [17]. These studies set a precedence for diagnosing
other cancers from sera samples with ATR-FTIR spectroscopy.
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In our previous study, we reported FTIR spectral discrimination between cholan-
giocarcinoma and normal tissues and serum samples using an animal model [18]. The
discrimination was based on changes in the phosphodiester bands, amino acid, carboxylic
ester and collagen molecules in tissue and serum, whereas additional bands corresponding
to the amide I, II, polysaccharides and nucleic acid molecules were important in discrim-
inating serum samples from CCA and controls [18]. In this study, we apply ATR-FTIR
spectroscopy to investigate human clinical serum samples with the aim to develop a model
to discriminate the spectra of CCA from healthy, hepatocellular carcinoma (HCC) and
biliary disease (BD) sera using chemometrics. Partial Least Squares Discriminant Analy-
sis (PLS-DA), Support Vector Machine (SVM), Random Forest (RF) and Neural Network
(NN) models are established and evaluated by calculating % accuracy, % sensitivity and
% specificity.

2. Materials and Methods
2.1. Human Sera

Sixty samples of CCA, twenty samples of HCC and twenty samples of BD sera were
supplied by the Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon
Kaen University, Khon Kaen, Thailand. Fifty healthy sera samples were left over from
health checkup program at the Community Medical Laboratory, Faculty of Associated
Medical Sciences, Khon Kaen University. Human samples were approved for use by the
Center for Ethics in Human Research, Khon Kaen University (HE601117). All sera were
aliquoted and kept at −20 ◦C prior to analyses.

2.2. ATR-FTIR Spectroscopy for Serum Analysis

Eight microliters of healthy, CCA, HCC and BD sera was deposited on aluminum
foil, air dried and measured using a portable Agilent ATR-FTIR spectrometer 4500 series
(Agilent technologies, CA, USA). The parameters for sera measurement were 64 co-added
scans for both background and sample, 4 cm−1 spectral resolution in the 4000–650 cm−1

spectral range with 4 replicates for each sample.

2.3. ATR-FTIR Spectral Preprocessing and Analysis

ATR-FTIR spectra acquired from healthy, CCA, HCC and BD human sera were pre-
processed by calculating the 2nd derivatives with 15 smoothing points using Savitzky–
Golay algorithm and unit vector normalization. Multivariate analysis was performed in
5 spectral ranges: (1) 3000–2800 cm−1, (2) 1800–1000 cm−1, (3) 1400–1000 cm−1 and combine
regions, including (4) 1800–1700 + 1400–1000 cm−1 and (5) 3000–2800 + 1800–1000 cm−1.
PCA was performed using The Unscrambler® X (version 10.5, Camo Software, Oslo,
Norway). Two-thirds of the samples acquired from each group were categorized as a
calibration set to perform supervised analysis, including PLS-DA (The Unscrambler®

X version 10.5, Camo Software), Support Vector machine (SVM) (Quasar version 0.9.0,
University of Ljubljana, Slovenia), Random Forest (RF) and Neural Network (NN) using
multilayer perceptron (Weka software version 3.8.4, The University of Waikato, Hamilton,
New Zealand), while averaged spectra from another 1/3 of the samples were appended as
a validation set to predict the established model and calculate % accuracy, % sensitivity
and % specificity. No technical replicates from the same sample were included in both the
training and test set to avoid over optimistic modeling, i.e., the technical replicate trap.

2.4. Method Evaluation and Calculation

Predictive results of each model were assigned in Table 1 for comparison of the
clinical diagnoses and index test results. Percent accuracy, sensitivity and specificity were
calculated by following Formula:

% Accuracy =

(
a + d

a + b + c + d

)
× 100
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% Sensitivity =

(
a

a + c

)
× 100

% Speci f icity =

(
d

b + d

)
× 100

Table 1. Table defines the prediction performance between reference and index tests.

Index Test Clinical Diagnoses
(Predictive Model) CCA Other Condition

CCA a b
Other condition c d

3. Results
3.1. Characteristic Peaks of Healthy, CCA, HCC and BD Spectra

Averaged 2nd derivative spectra of healthy, CCA, HCC and BD sera from the CH
stretching region (3000–2800 cm−1) and fingerprint spectral region (1800–1000 cm−1) are
shown in Figure 1a,b, respectively. A spectral shift from 1289 cm−1 in the healthy group
to 1284 cm−1 in CCA, HCC and BD was observed, which indicated an alteration of col-
lagen molecules. A shoulder at ~1106 and ~1046 cm−1 was found in the healthy group
assigned to the C-O stretching and bending vibration in the C-OH group of carbohy-
drate (Figure 1c) [19].
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Figure 1. 2nd derivative of averaged spectra from healthy (green), CCA (red), HCC (purple) and BD (black) sera in (a) CH
stretching region (3000–2800 cm−1), (b) fingerprint spectral (1800–1000 cm−1) and (c) 1400–1000 cm−1 region.

However, a clear spectral difference could not be observed in the CH stretching region
and amide I, II region. The averaged spectra in certain regions may not provide informative
data due to their common functional molecule or the abundant protein found in serum;
hence, chemometric approaches were required to further interrogate the data.
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3.2. CCA Spectral Discrimination Using Unsupervised Analysis: Principal Component
Analysis (PCA)

Spectra acquired from 60 CCA and 50 healthy serum samples were preprocessed and
analyzed using the Principal Component Analysis (PCA). The PCA scores plot for the
1400–1000 cm−1 region showed discrimination along PC1 (Figure 2a), while the combined
regions 1800–1700 + 1400–1000 cm−1 showed discrimination along PC2 (Figure 2c). The
loadings plot for the 1400–1000 cm−1 region (Figure 2b) showed wavenumber values at
1372, 1338, 1309, 1227, 1152, 1116, 1072 and 1035 cm−1 corresponding to the CCA sera. The
additional wavenumber value at 1747 cm−1 of CCA sera was observed when using the
combined region (1747, 1370, 1339, 1310, 1227, 1152, 1116, 1073 and 1035 cm−1) (Figure 2d).
Peaks at ~1072 and ~1116 cm−1 were assigned to P-O-C modes from phosphodiester groups
in nucleic acids. The discrimination was also based on variance in the amide III region
that included contributions from collagen (~1400–1200 cm−1 and 1035 cm−1) derived from
CH2 bending and in-plane of NH bending and CN stretching vibrations of the protein and
CH2 of collagen [20,21]. Bands at 1152 cm−1 along with ~1073 cm−1 can be indicated as
glycogen or polysaccharide molecules [22]. The ester carbonyl band in CCA appeared at
1747 cm−1, while, in uninfected patients, it shifted to 1733 cm−1. A band at 1702 cm−1 was
assigned to the C=O vibration of nucleic bases [23].
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spectral regions and (d) corresponding PC-2 loadings plot.

A PCA analysis was also performed in the CH stretching region (3000–2800 cm−1), fin-
gerprint spectral region (1800–1000 cm−1) and a combination of the 3000–2800 + 1800–1000 cm−1

spectral regions. However, the PCA scores plots showed no discrimination among the
two groups of sera (Figure S1). Furthermore, the spectra of 20 HCC, 20 BD and 60 CCA
sera were evaluated with a PCA analysis. The PCA scores plots showed no discrimination
among HCC vs. CCA and BD vs. CCA sera (Figure S2). A supervised analysis using the
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Partial Least Squares Discriminant Analysis (PLS-DA) was then applied to provide a better
discrimination and establish the PLS-DA calibration model for CCA sera.

3.3. Establishment and Evaluation of CCA Predictive Model Using Partial Least Squares
Discriminant Analysis (PLS-DA)

Spectra were categorized into two groups: a calibration set and a prediction set.
Forty of the CCA and thirty-five of the healthy sera were modeled in the calibration set
and analyzed using PLS-DA to generate a PLS predictive model. The averaged spectra
of the remaining samples (20 CCA and 15 healthy) were predicted using the generated
PLS model for various spectral regions. The sensitivity and specificity for each of the
spectral regions are shown in Table 2. The PLS model in the fingerprint spectral region
(1800–1000 cm−1) showed discrimination along PC1 (x-axis) (Figure S3a). The regression
coefficients (Figure S3b) showed wavenumber values from the 1743 cm−1 C=O lipid ester
carbonyl, 1687, 1665, 1630 and 1555 cm−1 from C=O and N-H vibrational modes of proteins,
1512 cm−1 of N-H or C-N vibrations and the combination of polysaccharide, glycogen,
amide III, collagen and phosphodiester modes from nucleic acids at lower wavenumber
values (1450, 1408, 1371, 1337, 1307, 1277, 1246, 1225, 1154, 1117, 1074 and 1034 cm−1) corre-
sponding to CCA sera samples. The PLS model in 1400–1000 cm−1 spectral region showed
a clear discrimination along Factor-1 (x-axis) (Figure 3a). The regression coefficients plot
(Figure 3b) appeared to have a similar profile to PLS-DA performed on the 1800–1000 cm−1

region. Moreover, the discrimination trend could also be found in the combined region of
1800–1700 + 1400–1000 cm−1 (Figure S3c) and 3000–2800 + 1800–1000 cm−1 (Figure S3e),
while the CH stretching region alone (3000–2800 cm−1) showed no discrimination between
the two groups (Figure S3d).

Cancers 2021, 13, x  6 of 15 
 

 

discrimination among HCC vs. CCA and BD vs. CCA sera (Figure S2). A supervised anal-

ysis using the Partial Least Squares Discriminant Analysis (PLS-DA) was then applied to 

provide a better discrimination and establish the PLS-DA calibration model for CCA sera. 

3.3 Establishment and Evaluation of CCA Predictive Model Using Partial Least Squares Discri-

minant Analysis (PLS-DA) 

Spectra were categorized into two groups: a calibration set and a prediction set. Forty 

of the CCA and thirty-five of the healthy sera were modeled in the calibration set and 

analyzed using PLS-DA to generate a PLS predictive model. The averaged spectra of the 

remaining samples (20 CCA and 15 healthy) were predicted using the generated PLS 

model for various spectral regions. The sensitivity and specificity for each of the spectral 

regions are shown in Table 2. The PLS model in the fingerprint spectral region (1800–1000 

cm−1) showed discrimination along PC1 (x-axis) (Figure S3a). The regression coefficients 

(Figure S3b) showed wavenumber values from the 1743 cm−1 C=O lipid ester carbonyl, 

1687, 1665, 1630 and 1555 cm−1 from C=O and N-H vibrational modes of proteins, 1512 

cm−1 of N-H or C-N vibrations and the combination of polysaccharide, glycogen, amide 

III, collagen and phosphodiester modes from nucleic acids at lower wavenumber values 

(1450, 1408, 1371, 1337, 1307, 1277, 1246, 1225, 1154, 1117, 1074 and 1034 cm−1) correspond-

ing to CCA sera samples. The PLS model in 1400–1000 cm−1 spectral region showed a clear 

discrimination along Factor-1 (x-axis) (Figure 3a). The regression coefficients plot (Figure 

3b) appeared to have a similar profile to PLS-DA performed on the 1800–1000 cm−1 region. 

Moreover, the discrimination trend could also be found in the combined region of 1800–

1700+1400–1000 cm−1 (Figure S3c) and 3000–2800+1800–1000 cm−1 (Figure S3e), while the 

CH stretching region alone (3000–2800 cm−1) showed no discrimination between the two 

groups (Figure S3d). 

 

Figure 3. PLS-DA results from ATR-FTIR sera spectra, healthy (green) and CCA (red) display in (a) scores plots, (b) regression coef-

ficients and (c) predictive result at 1400–1000 cm−1. The stars (*) indicate the false prediction samples in the model which give 1 false 

positive and 2 false negative predictions. 

Figure 3. PLS-DA results from ATR-FTIR sera spectra, healthy (green) and CCA (red) display in (a) scores plots, (b)
regression coefficients and (c) predictive result at 1400–1000 cm−1. The stars (*) indicate the false prediction samples in the
model which give 1 false positive and 2 false negative predictions.
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Table 2. Evaluation of CCA predictive models in different spectral regions.

Models

Spectral Range

3000–2800 cm−1 1800–1000 cm−1 1400–1000 cm−1 1800–1700 + 1400–1000 cm−1 3000–2800 + 1800–1000 cm−1

%Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec

PLS-
DA Healthy/CCA 62 70 53 80 90 67 91 90 93 83 90 73 80 90 67

SVM
Healthy/CCA 86 85 87 94 95 93 94 95 93 94 95 93 94 95 93

CCA/HCC 73 95 0 81 100 17 85 100 33 81 100 17 81 100 17
CCA/BD 73 95 0 77 90 33 73 85 33 77 90 33 77 90 33

RF
Healthy/CCA 71 85 53 97 100 93 94 100 87 94 100 87 97 100 93

CCA/HCC 73 95 0 81 100 17 81 95 33 77 90 33 85 100 33
CCA/BD 81 95 33 73 85 33 77 90 33 77 90 33 77 90 33

NN
Healthy/CCA 82 90 73 97 95 100 97 95 100 97 95 100 100 100 100

CCA/HCC 84 95 50 92 95 83 92 100 67 88 100 50 88 100 50
CCA/BD 80 85 66 81 80 33 73 70 83 81 85 67 81 80 83

Definitions: %Acc—% accuracy; %Sen—% sensitivity; %Spec—% specificity; PLS-DA—Partial Least Square Discriminant Analysis; SVM—Support Vector Machine; RF—Random Forest; NN—Neural Network.
Bold words indicate the best predictive values in each model.
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According to the predictive model, the positive values were predicted as CCA, while
the negative values were predicted as healthy. The modelling performed in five spectral
regions, ranging from 62 to 91% accuracy, 70 to 90% sensitivity and 53 to 93% specificity.
The results showed that the 1400–1000 cm−1 spectral region (Figure 3c) provided the best
prediction with 14 healthy and 18 CCA, giving one false positive and two false negatives,
based on the minimizing of major proteins, e.g., albumin and globulin in the amide I and II
region. This indicated that the PLS-DA provided a better discrimination between healthy
and CCA sera compared to the unsupervised analysis (PCA).

We further attempted to differentiate between different disease patient groups, which
developed similar clinical symptoms and laboratory test results and, hence, difficult for
physicians to diagnose. PLS-DA was performed on CCA vs. HCC and CCA vs. BD samples
in five spectral regions. Figure S4 shows the PLS scores plots of CCA vs. HCC and CCA
vs. BD, the results indicated no discrimination among each group so a more advanced
machine modelling was required to achieve the differentiation among disease groups.

3.4. Advanced Machine Modelling of CCA Serum

A more advanced machine learning was performed using a Support Vector Machine
(SVM), Random Forest (RF) and Neural Network (NN). The models were established in
five spectral ranges using vector normalized 2nd derivative spectra, 2/3 of the dataset
was used as the calibration set and 1/3 used as the validation set. Firstly, SVM was
applied as a nonlinear analyzing tool for spectral data, which contained high dimensional
input attributes. A radial basis function kernel was chosen for the SVM learning. The
1400–1000 cm−1 spectral model gave the best predictive values for a differentiation of
CCA sera from healthy sera with a 94% accuracy, 95% sensitivity and 93% specificity,
and from HCC patients with a 85% accuracy, 100% sensitivity and 33% specificity. For
a differentiation of CCA from BD, the best prediction was obtained from three spectral
regions—1800–1000 cm−1, 1800–1700 + 1400–1000 cm−1 and 3000–2800 + 1800–1000 cm−1—,
with equal accuracy, sensitivity and specificity at 77%, 90% and 33% (Table 2). Moreover,
candidate scatter plots of 5 spectral ranges were showed in Table S1. Although SVM had
an improved better sensitivity to discriminate CCA from other groups, the specificity
was limited.

To obtain a better specificity, other learning algorithms were applied to analyze these
spectral data. The analysis using RF was performed with a bagging learner, 100 iterations
and 100 batch sizes using a 10-fold cross-validation. The best predictive values for a
differentiation of CCA from healthy and HCC obtained by using the combined regions,
3000–2800 + 1800–1000 cm−1, resulted in an equal 100% sensitivity with 93% and 33%
specificity, respectively. For the CCA and BD model, the 3000–2800 cm−1 spectral region
was found to be the best model for a differentiation with 95% sensitivity and 33% specificity.
Thus, RF was still limited in specificity.

The NN analysis was finally performed by multilayer perceptron with one hidden
layer, which varied the number of nodes from 0 to 35 nodes and one default parameter to
identify the network which provided the best sensitivity, specificity and accuracy. Each
model was set with the same parameters: 0.3 learning rate, 0.2 momentum and 500 epochs
in a 10-fold cross-validation. Compared with the other advance model, NN improved the
prediction outcome in CCA and the healthy model up to a 100% accuracy, 100% sensitivity
and 100% specificity at the combined spectral region at 3000–2800 + 1800–1000 cm−1; how-
ever, the CH stretching region (3000–2800 cm−1) alone resulted in the worst values. This
combined spectral region with no hidden layer tended to be the best model to differentiate
CCA from healthy sera samples (input: hidden node: output = 541: 0: 2) (Table S2).

For the CCA and HCC models, the 100% sensitivity was obtained at the 1400–1000 cm−1

and the combined spectral regions, but with a rather low specificity. The best compromised
model at 1800–1000 cm−1 (input: hidden node: output = 432: 2: 2) was suggested with a
92% accuracy, 95% sensitivity and 83% specificity. In the CCA and BD model, the spectral
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regions 3000–2800 + 1800–1000 cm−1 gave the highest accuracy, sensitivity and specificity
with 81%, 80% and 83%, respectively (input:hidden node:output = 541:14:2).

4. Discussion

In our previous study [18], we reported the discrimination of O. viverrini + NDMA in-
fected from uninfected hamster sera using PCA in the fingerprint spectral region (1800–900 cm−1).
The important spectral signatures included: (i) a band at 1745 cm−1 assigned to the lipid
ester carbonyl C=O, (ii) bands at 1380–1200 cm−1 and 1034 cm−1 from collagen, (iii) a band
at 1071 cm−1 from nucleic acid phosphodiester groups and iv) a band at 1153 cm−1 from
polysaccharide molecules (Table 3). These bands were also observed in the current study
and compared with the animal study in Table 3.

The band at ~1074 cm−1 observed in serum was tentatively assigned to circulating tu-
mor DNA (ctDNA) fragments that were characteristic of cancer and were released into the
blood stream [11,24] or, alternatively, from phosphorylated proteins, which were also found
in the serum [25]. The observed changes in the carbohydrate region 1300–1000 cm−1 could
be explained by two phenomena: the changes in the sugar backbone of nucleic acids and
an elevation in carbohydrates [26] and the byproduct of glucose consumption or glycogen
degradation related to cancer metabolism and cancer progression [27–29]. Furthermore,
collagen released from the tumor microenvironment could be indicative of cancer progres-
sion and, thus, be a prognostic indicator for cancer [30,31]. Prakobwong et al. reported a
significantly increase in type I collagen, hydroxyproline (HYP), metrixmetalloproteinase-7
(MMP-7) and the tissue inhibitor of MMP-2 (TIMP-2) levels in CCA plasma compared to
healthy and benign biliary disease [32]. The specific protein spectral signatures in sera
could be derived from the discharge of some protein from the tumor microenvironment [33].
Additionally, the tumor markers, which were found in the circulating system, could be
CA19-9, α1β-glycoprotein, afamin, MMP-7, HYP, collagen I and γ-Glutamyltransferase,
etc. [8].

Table 3. FTIR spectral markers important in the discrimination of CCA from healthy human serum and hamster serum
using PCA and PLS-DA.

Biomolecule Molecular
Vibration

Wavenumber (cm−1)

References
PCA PLS-DA

Human Serum Hamster
Serum Human Serum Hamster

Serum

Lipid C=O 1747 1745 1743 1736 [34,35]

Collagen

Amide III and
CH2 wagging 1380–1200 1380–1200 1380–1200 1380–1200

[36–40]
CH2 vibration 1339 ~1337 1337 ~1337

1035 1030 1034 1030 [41]

Nucleic acid or
Protein vs

PO−
2 1073 1077 1074 1076 [23,25,34,42]

Polysaccharide C-O stretching 1152 1156 1154 1153 [22,23]

The infrared spectral signatures corresponding to CCA presented in this study were
obtained from the comparison of CCA and healthy sera. However, these spectral peaks can
be observed in various diseases, e.g., the study of cirrhosis and HCC compared to healthy
sera by Thumanu et al. [43]. The abnormalities in liver can be observed in sera spectra via
an alteration of a protein secondary structure and higher lipid accumulation. They reported
a decrease in α-helix at 1648 cm−1 and an increase in the β-sheet secondary structure of
protein at 1639 cm−1 in HCC and cirrhosis. Additionally, the peak at ~1745 cm−1 was
found in cirrhosis sera which confirmed a state of a high lipid level. Sitnikova et al. [44]
also reported the significance differences between healthy and breast cancer sera in the
spectral range 1306–1250 cm−1 corresponding to the vibrations of several functional groups
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of DNA and RNA. Our results also agreed with a recent study on sera from brain cancer
patients using ATR spectroscopy, with changes in the 1540–1490 cm−1 and ~1036 cm−1

regions being observed [45]. Due to the similar biochemical components associated with
CCA, HCC and BD sera being closely related with each other [46], the infrared spectra
also showed similar profiles and, therefore, the discrimination specificity was decreased
among three groups. To enable a more robust classifier, sophisticated mathematical and
chemometric methods were necessary to identify discriminating zones reflecting a different
molecular composition of the spectra [47]. Consequently, more advance machine modelling
was required to achieve a higher degree of differentiation.

According to the diagnostic limitation in CCA, the exact sensitivity and specificity
of each diagnostic technique could not be easily determined. Thus, the integrated tech-
niques are often used to provide a better diagnostic efficacy [48–51]. The tumor marker,
CA 19-9, showed a 50–100 % sensitivity and 50–98% specificity in PSC patients, whereas a
combination with imaging techniques showed a 78% sensitivity and 67% specificity [52,53].
The elevation of CEA levels, which is an indicator of glycoprotein produced by the GI
tract, reported a 33–84% sensitivity and 33–100% specificity, while the combination of
CA 19–9 and CEA levels provided a 86% accuracy in a PSC patient [53]. Several studies
have reported several efficient biomarkers for CCA diagnosis. However, the monitoring of
these markers requires special equipment along with complicate analysis procedures [8,54].
Meanwhile, our candidate CCA spectral modelling using PLS-DA, SVM, RF and NN re-
sulted in a 90% sensitivity and 93% specificity, 90–100% sensitivity and 33–93% specificity,
95–100% sensitivity and 33–93% specificity and 80–100% sensitivity and 83–100% specificity,
respectively.

Several studies on the application of FTIR spectroscopy and chemometric analysis for
cancer diagnosis using sera have been reported. For example, an ATR-FTIR study on brain
cancer sera using SVM provided a high sensitivity and specificity with 93.3% and 92.8%,
respectively [17]. Another study evaluated the diagnostic model of brain cancer using
Random Forest, PLS-DA and SVM, which provided sensitivities and specificities of 93.8%
and 80.1%, 95.9% and 81.7% and 92.1% and 88.7%, respectively [45]. A study of breast
cancer performed using PCA-LDA reported a 92% sensitivity, 85% specificity and 90% ac-
curacy, while a cluster analysis gave a 96% sensitivity, 93% specificity in the 1250–685 cm−1

region [21]. Another breast cancer study reported a Neural Network modelling efficacy
with a 92–95% sensitivity and 95–100% specificity [15]. The differentiation accuracy, test
sensitivity or specificity did not only depend on the learning algorithm, but also the input
attributes, complexity of data and sample size. Hitherto, there is no consensus on the best
analysis method.

This study demonstrated the advantage of ATR-FTIR coupled with a multivariate anal-
ysis or advance machine modelling to differentiate the CCA and other similar conditions
and, thus, showed a promising additional tool for cancer identification. The differenti-
ation between disease (CCA) and healthy sera was more effective than among similar
disease conditions (HCC and BD). CCA-specific analytes could be found in serum, which
is the most complex biofluid carrying over 20,000 different proteins [11]. The FTIR spec-
troscopic technique was suitable for the multi-molecular biochemical analysis, where a
single spectrum can provide biomolecular information on multiple analytes [12]. However,
differentiation among diseases can reduce the % specificity of the model and the judicious
selection of spectral regions was required to improve the specificity.

5. Conclusions

The study herein demonstrated the potential of ATR-FTIR spectroscopy as a clinical
tool. A spectral shift from 1289 cm−1 in the healthy group to 1284 cm−1 in CCA, HCC
and BD was observed in 2nd derivative spectra, which indicated changes of collagen
molecules in serum. Subsequently, spectral bands of collagen were confirmed at ~1339
and 1035 cm−1 from both PCA and PLS-DA analyses. Moreover, ~1073 cm−1 of phosphate
groups, ~1747 cm−1 of lipid ester carbonyl and ~1152 cm−1 of polysaccharides were also
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observed in loading plots of CCA sera in both human and hamster. A spectral analysis
using a multivariate analysis and machine learning tools revealed the differentiation
efficacy of CCA from other underlying diseased and healthy sera. The NN provided the
best sensitivity and specificity of CCA with 80–100% and 83–100% in the selected spectral
model. The portable, simple procedure, rapid and robust features of ATR-FTIR make it an
ideal screening technique for a serum analysis. To test the true efficacy of the approach, a
large-scale clinical trial is required to assess the true specificity against other cancers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13205109/s1, Figure S1: PCA scores plots of healthy and CCA sera using CH stretching
region, fingerprint spectral region and the combined spectral region (3000–2800 + 1800–1000 cm−1),
Figure S2: PCA scores plots of CCA vs. HCC and BD sera using CH stretching region, fingerprint
spectral region and 1400–1000 cm−1, Figure S3: PLS-DA scatter plots of healthy vs. CCA sera in
fingerprint spectral region and corresponding regression coefficients for the fingerprint spectral
region and the scores plots at CH stretching region and combine region 1800–1700 + 1400–1000
cm−1, 3000–2800 + 1800–1000 cm−1 spectral windows, Figure S4: PLS-DA scores plots of CCA vs.
HCC and BD sera using CH stretching region, fingerprint spectral region and 1400–1000 cm−1,
Table S1: indicated Support Vector Machine candidate scatter plots of CCA versus healthy, HCC and
BD in the 5 spectral regions, Table S2: number of nodes in 1 defined as the hidden layer which gave
the best % accuracy, % sensitivity and % specificity in each spectral range.
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Simultaneous FTIR and Raman Spectroscopy in Endometrial Atypical Hyperplasia and Cancer. Int. J. Mol. Sci. 2020, 21, 4828.
[CrossRef] [PubMed]

40. Belbachir, K.; Noreen, R.; Gouspillou, G.; Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal.
Bioanal. Chem. 2009, 395, 829–837. [CrossRef] [PubMed]

41. Callery, E.L.; Morais, C.L.M.; Paraskevaidi, M.; Brusic, V.; Vijayadurai, P.; Anantharachagan, A.; Martin, F.L.; Rowbottom, A.W.
New approach to investigate Common Variable Immunodeficiency patients using spectrochemical analysis of blood. Sci. Rep.
2019, 9, 1–15. [CrossRef] [PubMed]

42. Al-Jorani, K.; Rüther, A.; Martin, M.; Haputhanthri, R.; Deacon, G.B.; Li, H.L.; Wood, B.R. The application of ATR-FTIR
spectroscopy and the reversible DNA conformation as a sensor to test the effectiveness of platinum(II) anticancer drugs. Sensors
2018, 18, 4297. [CrossRef] [PubMed]

43. Thumanu, K.; Sangrajrang, S.; Khuhaprema, T.; Kalalak, A.; Tanthanuch, W.; Pongpiachan, S.; Heraud, P. Diagnosis of liver cancer
from blood sera using FTIR microspectroscopy: A preliminary study. J. Biophotonics 2014, 7, 222–231. [CrossRef]

44. Sitnikova, V.E.; Kotkova, M.A.; Nosenko, T.N.; Kotkova, T.N.; Martynova, D.M.; Uspenskaya, M.V. Breast cancer detection by
ATR-FTIR spectroscopy of blood serum and multivariate data-analysis. Talanta 2020, 214, 120857. [CrossRef] [PubMed]

45. Cameron, J.M.; Butler, H.J.; Smith, B.R.; Hegarty, M.G.; Jenkinson, M.D.; Syed, K.; Brennan, P.M.; Ashton, K.; Dawson, T.; Palmer,
D.S.; et al. Developing infrared spectroscopic detection for stratifying brain tumour patients: Glioblastoma multiforme: Vs.
lymphoma. Analyst 2019, 144, 6736–6750. [CrossRef]

46. Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Cmaj 2005, 172, 367–379. [CrossRef]
47. Zhang, X.; Thiéfin, G.; Gobinet, C.; Untereiner, V.; Taleb, I.; Bernard-Chabert, B.; Heurgué, A.; Truntzer, C.; Ducoroy, P.; Hillon, P.;

et al. Profiling serologic biomarkers in cirrhotic patients via high-throughput Fourier transform infrared spectroscopy: Toward a
new diagnostic tool of hepatocellular carcinoma. Transl. Res. 2013, 162, 279–286. [CrossRef]

48. Khan, S.A.; Davidson, B.R.; Goldin, R.; Pereira, S.P.; Rosenberg, W.M.C.; Taylor-Robinson, S.D.; Thillainayagam, A.V.; Thomas,
H.C.; Thursz, M.R.; Wasan, H.; et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: Consensus document.
Gut 2002, 51, 1–9. [CrossRef]

49. Slattery, J.M.; Sahani, D.V. What Is the Current State-of-the-Art Imaging for Detection and Staging of Cholangiocarcinoma?
Oncologist 2006, 11, 913–922. [CrossRef] [PubMed]

50. Blechacz, B.R.A.; Gores, G.J. Cholangiocarcinoma: Advances in Pathogenesis, Diagnosis, and Treatment. Hepatology 2008, 48,
308–321. [CrossRef] [PubMed]

51. Breitenstein, S.; Apestegui, C.; Clavien, P.A. Positron emission tomography (PET) for cholangiocarcinoma. Hpb 2008, 10, 120–121.
[CrossRef] [PubMed]

52. Tshering, G.; Dorji, P.W.; Chaijaroenkul, W.; Na-Bangchang, K. Biomarkers for the diagnosis of cholangiocarcinoma: A systematic
review. Am. J. Trop. Med. Hyg. 2018, 98, 1788–1797. [CrossRef]

53. Beers, B.E.V.A.N. Diagnosis of cholangiocarcinoma. HPB 2008, 10, 87–93. [CrossRef]
54. Tolek, A.; Wongkham, C.; Proungvitaya, S.; Silsirivanit, A.; Roytrakul, S.; Khuntikeo, N.; Wongkham, S. Serum α1β-glycoprotein

and afamin ratio as potential diagnostic and prognostic markers in cholangiocarcinoma. Exp. Biol. Med. 2012, 237, 1142–1149.
[CrossRef] [PubMed]

http://doi.org/10.1002/ijc.26443
http://doi.org/10.1080/10408363.2017.1414142
http://doi.org/10.1002/1097-0282(2000)57:6&lt;329::AID-BIP20&gt;3.0.CO;2-2
http://doi.org/10.1002/jbio.201960071
http://doi.org/10.1371/journal.pone.0058332
http://doi.org/10.1016/S1054-8807(98)00024-6
http://doi.org/10.1016/j.bbamem.2006.05.006
http://www.ncbi.nlm.nih.gov/pubmed/16806057
http://doi.org/10.3390/ijms21144828
http://www.ncbi.nlm.nih.gov/pubmed/32650484
http://doi.org/10.1007/s00216-009-3019-y
http://www.ncbi.nlm.nih.gov/pubmed/19685340
http://doi.org/10.1038/s41598-019-43196-5
http://www.ncbi.nlm.nih.gov/pubmed/31076587
http://doi.org/10.3390/s18124297
http://www.ncbi.nlm.nih.gov/pubmed/30563229
http://doi.org/10.1002/jbio.201300183
http://doi.org/10.1016/j.talanta.2020.120857
http://www.ncbi.nlm.nih.gov/pubmed/32278436
http://doi.org/10.1039/C9AN01731C
http://doi.org/10.1503/cmaj.1040752
http://doi.org/10.1016/j.trsl.2013.07.007
http://doi.org/10.1136/gut.51.suppl_6.vi1
http://doi.org/10.1634/theoncologist.11-8-913
http://www.ncbi.nlm.nih.gov/pubmed/16951395
http://doi.org/10.1002/hep.22310
http://www.ncbi.nlm.nih.gov/pubmed/18536057
http://doi.org/10.1080/13651820801992583
http://www.ncbi.nlm.nih.gov/pubmed/18773069
http://doi.org/10.4269/ajtmh.17-0879
http://doi.org/10.1080/13651820801992716
http://doi.org/10.1258/ebm.2012.012215
http://www.ncbi.nlm.nih.gov/pubmed/23104505

	Introduction 
	Materials and Methods 
	Human Sera 
	ATR-FTIR Spectroscopy for Serum Analysis 
	ATR-FTIR Spectral Preprocessing and Analysis 
	Method Evaluation and Calculation 

	Results 
	Characteristic Peaks of Healthy, CCA, HCC and BD Spectra 
	CCA Spectral Discrimination Using Unsupervised Analysis: Principal Component Analysis (PCA) 
	Establishment and Evaluation of CCA Predictive Model Using Partial Least Squares Discriminant Analysis (PLS-DA) 
	Advanced Machine Modelling of CCA Serum 

	Discussion 
	Conclusions 
	References

