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Simple Summary: There is a tremendous amount of gene expression information available for
prostate cancer, but very few tools exist to combine the disparate datasets generated across sample
types and technical platforms. We present a method of integrating different types of expression
data from different study cohorts to increase analytic power, and improve our understanding of the
molecular changes underlying the development and progression of prostate cancer from normal to
advanced disease. Using this approach, we identified nine additional disease stage-specific candidate
genes with prognostic significance, which were not identified in any one study alone. We have
developed a free online tool summarizing our results, and making the complete combined dataset
available for further translational research.

Abstract: Next-generation sequencing of primary tumors is now standard for transcriptomic studies,
but microarray-based data still constitute the majority of available information on other clinically
valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed
a robust analytical framework to integrate data across different technical platforms and disease
subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from
single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive
insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade
prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported
stage-specific candidate genes with prognostic significance were also found. Here, we integrate
gene expression data from disparate sample types, disease stages and technical platforms into one
coherent whole, to give a global view of the expression changes associated with the development
and progression of PC from normal tissue through to metastatic disease. Summary and individual
data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly
interface designed for clinicians and laboratory researchers to facilitate translational research.
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1. Introduction

Prostate cancer (PC) is the second most common cancer diagnosis in men worldwide,
and the fifth leading cause of cancer-related death [1]. It is clinically and pathologically
heterogeneous, presenting a challenge to identifying robust molecular biomarkers for
patient management. Although many independent studies have investigated the molecular
mechanisms of PC (reviewed in [2]), none so far has presented a global view of the tran-
scriptomics landscape linking key molecular events across different PC stages. The limited
statistical power of individual studies, different experimental and analytical parameters,
differences in tumor tissue content, and inter- and intra-tumor heterogeneity contribute
to the poor overlap between currently available molecular signatures [3]. Furthermore,
a significant challenge to effective translational research more generally, is that the sheer
volume of ‘-omics’ data available from individual studies is not matched by appropriate
tools to easily synthesize disparate datasets, from different disease stages and generated
on different platforms, into a coherent whole.

PC has a long natural history and can initiate from disrupted prostate epithelium to
develop over many decades. While high-grade prostatic intra-epithelial neoplasia (HGPIN)
is recognized as a precursor of cancer, it is morphologically distinct and may remain stable
for a long time or never progress [4]; its molecular relationship with primary tumor remains
unclear. This makes cross-study analysis an attractive approach to reconcile distinct gene
expression signatures from separate studies and to identify genetic alterations not evident
from individual experiments, leading to more comprehensive biological insights.

While next-generation sequencing (NGS) technologies are now the technique of choice
in transcriptomic studies, reflected in the substantial increase in RNA sequencing (RNAseq)
datasets in public repositories, such studies have generally focused on primary tumors
following radical prostatectomy (e.g., The Cancer Genome Atlas (TCGA) and Interna-
tional Cancer Genome Consortium (ICGC)). On the other hand, microarray-based data
still constitute the majority of publicly-available datasets and is often the only information
available about other, equally important, clinically valuable samples (e.g., benign, HG-
PIN or metastatic tissues) or experimental types (e.g., treatment effects). Therefore, the
integration of data from various NGS and microarray platforms and archived or historic
sample collections presents an excellent opportunity to maximize research output. By
tracking changes in mRNA abundance levels from normal prostate through to HGPIN,
localized tumors and finally metastatic disease, in combination with molecular pathway
and survival analyses, we define the transcriptional landscape of PC to help elucidate the
molecular mechanisms driving the development and progression of this disease.

Compared to meta-analysis, integrating data from separate studies at the raw mRNA
abundance level can significantly increase the number of genuine gene expression changes
identified. Raw data integration also allows for quality checks of preliminary data, a vital
step in integrative analysis, as quality-related problems amplify during downstream data
exploration. Furthermore, the increase in sample size by direct data combination increases
the statistical power to obtain more precise estimates of gene expression differentials
and facilitates the assessment of the overall heterogeneity estimate, resulting in lower
false discovery rates. Several tools for data integration have been developed for cross-
study analyses. However, each has limitations that preclude the exploration of available
transcriptomics data to their full potential. Some resources offer integration of expression
data derived solely from the same platform, which narrows the choice of deposited data
appropriate for the analysis; other methods use transformation or normalization algorithms
to facilitate processing of data from different platforms, but only for those genes present
across all technologies. Indeed, inclusion of data from different platforms presenting
diverse genomic coverage often reduces the overlap of features eligible for downstream
analysis, resulting in the loss of information about potentially important genes.

Here we present a large multi-cohort analysis of PC mRNA abundance profiles,
including 1488 profiles from two RNAseq and 18 array-based datasets from 8 different
platforms. Using these, we developed a cross-platform data integration framework to
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establish a molecular alteration map (MAM) of PC development and progression. The
identification of established PC risk genes and pathways demonstrates the reliability of our
approach. The collected and integrated data, along with analytical and visualization tools
to explore the largest set of high-quality PC-related expression profiles, are freely available
online at the Prostate Integrative Expression Database (PIXdb) (www.pixdb.org.uk).

2. Materials and Methods
2.1. Source Data

PC mRNA expression datasets generated on any commercially available microarray
platform or by RNASeq were identified from the literature, Gene Expression Omnibus
(GEO), Sequence Read Archive (SRA), and ArrayExpress data repositories. No custom ar-
rays were included, and only studies involving untreated biological types were considered,
i.e., tumor, normal, benign, HGPIN, metastatic. Datasets publicly available at December
2013 were considered for inclusion in this study. No studies using FFPE samples were
used. The 3 RNAseq and 21 array-based PC-related gene expression datasets, generated
across 11 different platforms, were identified for inclusion in this study (Supplementary
Table S1). In total, 2396 transcriptomics profiles from 795 histologically non-malignant (130
healthy or benign prostatic hyperplasia (BPH) and 665 normal adjacent to tumor (NAD)
prostate tissues, 49 HGPIN samples, 1409 samples from patients with primary PC without
metastasis (primary tumor), 36 samples from primary PC biopsies from patients with
metastasis (metastatic primary tumor) and 107 samples from metastatic PC tissues (metas-
tasis) were collated (Figure 1, Table S1). Clinical information on biochemical recurrence
(BCR)-free survival, prostate-specific antigen (PSA) level, Gleason score and tumor stage
was also extracted where available. Since the datasets were curated from public repositories
providing minimal or no systematic quality assessment, we set stringent quality criteria to
ensure the robustness of input data for subsequent analysis. Only those passing all quality
controls Table S2) were used in the analytical framework for cross-platform integrative
analysis presented in Figure 2 and described below. A total of two datasets were discarded
entirely at the initial quality control (QC) stage due to poor overall quality. Subsequent
principal component analysis (PCA) and cluster-based data inspection further eliminated
two whole datasets (n = 258) due to unexplained data variation. The data processing steps,
including QC, pre-processing, summarization and integrative analysis, are presented in
Supplementary Figure S1.

2.2. Data QC

The quality of array-based datasets was assessed separately using aroma.affymetrix R
package for Affymetrix exon arrays and arrayQualityMetrics, and simpleaffy Bioconductor
packages for 3′IVT Affymetrix and Illumina microarrays. Aberrant arrays were identified
by means of arrayMvout multivariate outlier detection tool implemented in Bioconductor
project. The raw RNAseq FASTQ files were examined using FastQC quality control tool.

2.3. Non-Malignant Tissue Assessment

To evaluate potential differences at molecular level between healthy prostate, BPH
or NAD tissues, PCA was performed using dataset GSE17951, and three sets of data from
GSE6919, which together contain expression profiles from each tissue type (Supplementary
Figure S2A). Unsupervised hierarchical clustering identified four NADs clustering with
tumor (Supplementary Figure S2B), which were removed. This analysis also revealed
clear differences in normal and NAD expression profiles compared to primary tumor
and metastatic samples, so normal, BPH and remaining NAD samples were subsequently
combined into one control group for downstream analyses.

2.4. Tumor Content Estimation

Most curated data was acquired from surgically resected bulk tissues that contain an
admixture of cell types, and for which tumor content was not typically reported. To reduce
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the variability effect from tissue types in bulk samples, the collected array expression data
were assessed using CellPred algorithm. A 250-gene model was used for in silico prediction
of tissue components in samples processed using Affymetrix Human Genome U133 Plus
2.0, U133A and U95Av2 array platforms (12 datasets). Based on the overall distributions of
tumor tissue percentage estimated across analyzed datasets, a threshold of 40% was set as
minimum acceptable tumor tissue content (Supplementary Figure S2C). Tumor content of
included RNAseq datasets was taken from reported histopathology estimates; the same
40% threshold was applied.

2.5. Stromal Genes Filtering

A list of consistently deregulated stroma-specific genes was compiled from three
resources: (1) 869-gene stroma signature [5], (2) 139 stromal genes used by ESTIMATE,
(3) 179 stromal genes in GSE20758 (Figure S2D). All 1 032 suggested stroma-associated
genes were filtered out prior to data integration, for a more reliable prostate-specific
signature.

2.6. Biological and Laboratory Effects

Cross-study data derived from the same platform were combined and adjusted for
batch effects with ComBat. PCA identified key components of variability in the combined
and batch effects-adjusted mRNA expression data, and showed that the observed variance
correlated with the biological factors (Figure S2E).

The extent of biological and laboratory effects was also assessed by inspecting average
similarities between samples from different studies but the same biological group (e.g.,
tumor), and samples from the same study but different biological groups (e.g., tumor or
benign). In each case, biological effects were significantly stronger than dataset effects
(Kolmogorov–Smirnov p values < 1 × 10−10; Supplementary Figure S2F).

Figure 1. Transcriptomic profiles from a range of prostate tissue types were used in an integrative
analysis. The chart presents collated prostate expression profiles and results of the individual quality
control steps. The most inner circle corresponds to the number of collected samples representing
various tissue types. The second inner, middle, and outer circles reflect the number of samples
remaining after filtering based on initial quality control, estimated tumor tissue content, as well as
principal component analysis and clustering, respectively (see also Methods and Table S2). The pale
areas indicate the proportion of samples filtered out in each biological group in individual filtering
steps. 1488 transcriptomic profiles from histologically non-malignant tissues (normal and normal
adjacent to tumor; NAD, HGPIN, primary tumor without metastases (primary tumor), primary
tumor from patients with metastatic disease (metastatic primary tumor), and metastatic tissues
(metastasis), were analyzed.
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Figure 2. The cross-platform integrative analysis workflow. (A) Pre-processing of multi-study expres-
sion data generated using different technologies and covering various sets of genes. (B) Combination
step including normalization and batch-effect adjustment of expression data derived from the same
platform and containing the same set of genes. (C) Per-platform differential expression analysis
outputting fold-change and p-value (FC, P), and integrative correlation coefficient (ICC) for each gene.
(D) Application of the integrative analysis model, based on the weighted Stouffer’s algorithm, to
compute combined p-values and determine the cross-platform gene rankings (detailed in Methods).
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2.7. Microarray and RNAseq Data Pre-Processing

Microarray and RNAseq data were pre-processed to unify array probes and sequenc-
ing read annotations to increase cross-platform concordance. Microarray probe alignments
to gene sequences were retrieved from Ensembl database and used to increase cross-
platform concordance by removing probes with insufficient specificity. Probe re-mapping
and filtering according to most recent genome sequence annotation was performed to
improve the interpretation of biological results derived from microarrays. Gene expres-
sion data obtained from the same platform were normalized collectively to minimize
batch effects. Data from Affymetrix and Illumina arrays were normalized across samples
using GC-Robust Multi-array Average (RMA) and Robust Spline Normalization (RSN),
respectively. To unify microarray probe and sequencing read annotations across platforms,
multiple probes mapping to the same gene were compiled to build ‘one-probe-to-one-gene’
relational model by selecting probes (Illumina) or probesets (Affymetrix) with the highest
standard deviation across samples.

Raw sequencing data were aligned to human genome (GRCh38) with Bowtie 2 (ver-
sion 2.1.0) and further summarized with HTSeq Gene read-count data were subjected
to conditional quantile normalization (CQN) to remove systematic bias introduced by
non-linear guanine-cytosine content and gene length effects. A voom method was applied
to estimate the mean-variance relationship and transform the sequencing read counts to
log-scale with associated precision weights normalized for sequence depth.

The Ensembl release 90 was used to unify microarray probes and sequencing reads
annotations across datasets. RNAseq, Affymetrix Human Exon 1.0 ST, Affymetrix Hu-
man Genome U133 Plus 2.0 and Illumina HumanHT-12 V3.0 Expression Beadchip arrays
(comprehensive platforms), include most genes present in all other platforms.

2.8. Data Integration and Molecular Alterations Map Assembly

Combined and batch effects-corrected data from the same platform were subjected
to differential expression analysis using limma. For each platform and biological group
comparison (primary tumor vs. normal prostate, HGPIN vs. normal prostate, primary
tumor vs. HGPIN, metastatic primary tumor vs. primary tumor, metastasized vs. primary
tumor), the expression fold-changes (FC) and p-values were computed for all genes. False
discovery rate p-values were corrected for multiple testing by Benjamini–Hochberg.

Cross-platform data integration (Figure 2) was performed in two steps for each group
comparison. First, cross-platform reproducibility for each gene was estimated by calcu-
lating the integrative correlation coefficient (ICC) with MergeMaid. Then, p-values were
combined across platforms using Stouffer’s method with FC values and ICCs used as
weighting factors to account for the change in magnitude and expression measurement
reproducibility, and to ensure the top rankings captured consistent expression patterns
across samples and platforms (Supplementary Figure S3A). Weighting score W for gene a
in platform A was estimated as

WA = |log2FCa| + (|log2FCa| × ICCa
2)

where log2FCa and ICCa indicate the log2 FC value and the ICC for a given gene a,
respectively, as measured in platform A.

Integration-driven discovery rates (IDR) were computed, to evaluate the impact of
integrative analysis on the results. Briefly, IDR estimates the fraction of significant genes
detected in the combined results that are not detected in any of the individual platforms for
a given significance threshold in Z-score scale (Supplementary Figure S3B). Each Z-score
was calculated as the ratio of average effect size over its standard error and represents the
statistical significance of the differential expression across multiple experiments.

To determine the number of genes to be used as hallmark of each disease stage, cross-
datasets concordance was computed for individual biological comparisons by examining
the fraction of genes with log2FC > 1 or < −1 in at least half of the datasets (consistently
deregulated genes) for the cumulative number of top-k ranked genes. No comparisons
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involving HGPINs were considered, since only one dataset contained samples with this
phenotype. Subsequently, the cross-dataset concordances were plotted against gene rank
to determine a threshold close to the points where the plotted lines cross, to ensure that
a similar fraction of consistently deregulated genes was in the top-k ranked gene set for
each comparison (Supplementary Figure S3C). The threshold was set at 500, representing
approximately 60% of consistently deregulated genes in each comparison across datasets.
The overlaps between top 500 ranked gene sets were determined to evaluate their logic
relationships, and expression changes associated with respective PC stages were tracked to
construct a molecular alteration map (MAM).

2.9. Canonical Pathways Analysis

Significant expression changes observed in respective sections of assembled MAM
were mapped to canonical pathways using Ingenuity Pathway Analysis (IPA) (Qiagen).
For further evidence of pathway enrichment, IPA results were complemented with three
additional functional annotation resources: Kyoto Encyclopedia of Genes and Genomes
(KEGG), Protein Analysis Through Evolutionary Relationships (PANTHER) and Reactome
using Database for Annotation, Visualization and Integrated Discovery (DAVID). Data
mining was performed using the same statistical test and criteria for identification of
significantly enriched pathways (Fisher’s exact test; p-value < 0.05).

2.10. Survival Analysis

A univariate Cox proportional hazards regression was applied to available TCGA sur-
vival data that passed QC. 387 TCGA samples were assigned to low and high-risk groups
based on mRNA expression intensities of the selected gene, using the best-performing
cut-off algorithm. In brief, for successive percentiles of expression between the lower
and upper quartiles the log-rank test p-values were computed and the best performing
threshold was used as the final cut-off in regression analysis. Relationships are presented
as Kaplan-Meier plots. Hazard ratios, 95% confidence intervals and associated log rank
p-values were determined.

2.11. Experimental Validation—Patient Samples

A total of 29 patient samples with 87 matched PC, HGPIN, and benign tissues were
identified from formalin-fixed paraffin embedded (FFPE) sections from trans-urethral
resection of the prostate (TURP) material from Barts Cancer Institute Orchid Tissue Bank,
UK, under license number 12,199. Similarly, matched tumor and benign tissues were
macro-dissected from FFPE sections from 25 patients with localized disease. A total of
18 patients with matched PC and benign FFPE tissues from TURP, and 3 patients with
matched tumor, normal and HGPIN FFPE tissues were selected for study at the Department
of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou,
China. Samples were assessed for inclusion by histopathologists S.-F.K.-J., D.M.B., L.B. and
G.R. All patients provided informed consent (fresh tissues; FFPE samples used were excess
to diagnostic requirements). Studies were approved by the East London and City Research
Ethics committee (ref 09/H0704/4+5) and the ethical committee of the First Affiliated
Hospital, Zhejiang University Medical College, China, approval number 2102–2142. Gene
expression targets were tested in either the N/T or N/HGPIN/T cohorts, depending on
their associated MAM section from the integrative analysis.

2.12. Experimental Validation—quantitative PCR(qPCR) Analysis

mRNA was extracted from two 10 µm FFPE tissue sections per patient, using a
modified Qiazol method and mRNEasy mini kits (Qiagen). Briefly, slides were de-waxed
in xylene, before either tumor, benign or HGPIN tissues were macro-dissected and re-
suspended in 100 µL extraction buffer (100 mM NaCl, 1 mM EDTA pH 8.0, 10 mM Tris-
HCL pH 8.0, 0.5% SDS). Samples were incubated with 20 mg/mL Proteinase K at 50 ◦C
overnight, then mechanically lysed in Qiazol reagent at room temperature, combined
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with chloroform and separated by high-speed centrifugation for 5 min. The supernatant
was combined with 100% ethanol to precipitate mRNA, and isolated by centrifugation
through a spin column (Qiagen). Trapped mRNAs were washed with 70% ethanol and
salt solutions, according to manufacturer’s instructions, and finally eluted in nuclease-free
water. Sample concentration and purity was measured by Qubit (ThermoFisher, Waltham,
MA, USA) and Agilent Bioanalyzer 2100.

RNA was reverse transcribed (SuperScript II, ThermoFisher, Waltham, MA, USA),
and assayed in triplicate at each gene target using the 96 × 96 Fluidigm Biomark integrated
fluidic cartridge platform and commercially validated TaqMan assays (Supplementary
Table S3) according to manufacturer’s instructions. Each reaction plate included four refer-
ence cDNA samples, derived from a local, anonymized benign FFPE sample, LNCaP cell
line (ATCC), human normal prostate RNA (Catalogue AM7988, ThermoFisher, Waltham,
MA, USA) and qPCR human reference total RNA (Catalogue 636690, Clontech, Mountain
View, CA, USA), for relative expression determination and normalization across plates.
Endogenous control genes ACTB, HPRT1, MRFAP1 and SLC25A3 were tested. qPCR data
were analyzed using the ∆∆ Ct method using the lowest expressing, least variable genes
(MRFAP1; SLC25A3). We found highly expressed endogenous control genes of limited use
in reliably detecting and quantifying transcripts with much lower expression levels on the
Fluidigm platform.

2.13. Quantification and Statistical Analysis

Relative gene expression levels between each sample type were compared and evalu-
ated using either unpaired t-tests (parametric data) or Mann–Whitney tests (non-parametric
data) in GraphPad Prism v6; statistical significance was assumed at p-value < 0.05.

3. Results and Discussion
3.1. The Transcriptomic Landscape of Prostate Cancer

Several studies have described distinct molecular subtypes of primary PC [6,7], and
key genetic alterations underlying its development are well established. However, no
unified transcriptomics landscape linking the key molecular events across the different
disease stages has been reported. By combining publicly available gene expression datasets
from different prostate tissues and across platforms in a comprehensive integrative analysis,
we mapped several genes known to be associated with tumor initiation (MYC, AMACR,
GSTP1) and progression (TP63, CENPA, PIK3CB, AR, EZH2, and SRD5A1) (Figure S4). We
also identified novel gene expression alterations associated with the transition from normal
prostate to HGPIN, localized cancer and ultimately metastatic disease (Figure 3).

Overall, 1488 of 2396 transcriptomic profiles that passed all QC filtering steps were
used in the subsequent integrative analysis (Figure 1 and Table S2). For each platform and
biological group comparison the expression fold changes (FC) and p-values were computed
for all genes. These data were combined across different platforms using Stouffer’s method
(Figure 2; Methods) to prevent loss of information from genes present on only some
platforms. Finally, the expression changes identified in respective PC stages were tracked
to construct a molecular alteration map (MAM) of PC (Figure 3A).

Among the top ranked genes, 50 were of particular interest given their biological
relevance, novelty or association with other malignancies (Table 1 and Figure 3B). For
instance, NUP210 and CCNB2 were up-regulated in primary PC compared to normal
prostate tissues, but not when compared to HGPIN samples (MAM 2, Figure 3B). Together
with several other cell cycle genes, CCNB2 has recently been found to be over-expressed
in a stem-like sub-population of LNCaP cells with reduced dependence on androgen
signaling [8], which is more usually associated with castration-resistant PC (CRPC) than
early disease development, supporting the idea that there are sub-populations of cells in
primary tumors primed for selection following androgen-deprivation therapy [8]. The
elevated expression of INSM1 and NETO2, on the other hand, demonstrated a strong
association with primary tumor development from both normal prostate and HGPIN
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lesions, mirroring the expression of AMACR, an established PC risk gene included as a
positive control in subsequent experimental validation (MAM 5, Figure 3B).
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Figure 3. The transcriptomic landscape of prostate cancer development and progression. (A) Biological comparisons
between tissue types were performed and the top 500 genes were used to assemble the molecular alteration map (MAM) of
prostate transcriptional space (Methods). Circled numbers 1–8 indicate individual PC development or progression stages
presented in the context of the prostate gland and surrounding organs. The number of up- and down-regulated genes
between stages are indicated by red and blue text, respectively. (B) Diagram (top) and heatmap (bottom) illustrating the
direction and fold-change (FC), respectively, of expression alterations for selected novel or biologically relevant genes across
individual MAM stages (top) and biological comparisons (bottom). The FC values are presented in log2 scale. * in silico
prediction validated in a clinical cohort (p-value < 0.05); ˆ positive control; ˆˆ negative control.

Table 1. Genes associated with prostate cancer or development.

Gene Sample Ns
(T,HGPIN,N)

Validation
p-Value

Confirms in
Silico

Results?

Log-Rank
Test p-Value

(TCGA)

Biological
Role

Association
with other

Malignancies
Reference

AMACR a 55, 0, 36 1.9 × 10−2 Yes (T vs. N) 6.3 × 10−2

Racemase
processing

bile for
degradation

Luminal cell
marker in PC [9]

TP63 b 22, 23, 22 6.9 × 10−3 Yes (T vs. N) 1.3 × 10−3 Tumor
suppressor

Basal cell marker
in PC [9]

CDH1 c 11, 12, 7 0.26 - 1.5 × 10−4 Cell adhesion
Marker of PC in

patients with
HGPIN

[10]

FHL1 c,f 40, 0, 25 1.1 × 10−3 Yes (T vs. N) 4.7 × 10−2

Cell
adhesion,
migration,

colony
formation

Forms epigenetic
field defect in

GISTs
[11]
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Table 1. Cont.

Gene Sample Ns
(T,HGPIN,N)

Validation
p-Value

Confirms in
Silico

Results?

Log-Rank
Test p-Value

(TCGA)

Biological
Role

Association
with other

Malignancies
Reference

PCDH18 d 51, 0, 26 0.3 - -

Cell
adhesion,
migration,

colony
formation

Hypermethylated
in CRC [12]

NEXN d,f 55, 0, 35 7.3 × 10−3 Yes (T vs. N) 8.3 × 10−2
Cell

adhesion,
migration

Cardiomyopathy [13]

SYNPO2 f 23, 22, 24 1.2 × 10−2 Yes (T vs. N) 5.5 × 10−4 Cell
migration

Invasive cancer
biomarker [14]

PGM5 d 49, 0, 28 8.1 × 10−3 Yes (T vs. N) 9.1 × 10−5
Adherens-

type cellular
junctions

Downregulated
in CRC [15]

RASAL2 d 21, 20, 18 0.5 - - RHO-GAP;
cell invasion

Key roles in
tumor

progression and
metastasis

[16]

LGR4 f 55, 0, 35 3.4 × 10−3 Yes (T vs. N) 1.7 × 10−1
Activates

Wnt
signaling

Key protein in
PC metastasis [17]

SH2B2 d,f 21, 15, 14 0.63 - - Cellular
proliferation

FRMD6 d 56, 0, 33 3 × 10−4 Yes (T vs. N) 2.3 × 10−4 Cellular
proliferation

Tumor
suppressor in

BrCa
[18]

PARM1 d 57, 0, 35 4.1 × 10−3 Yes (T vs. N) 1.8 × 10−3 Cellular
proliferation

Oncogenic in
leukemias [19]

CCNE1 d 10, 12, 14 0.65 - - Cell cycle
progression

Chromosomal
instability and
trastuzumab

resistance; poor
prognosis in

multiple cancers

[20,21]

INSM1 d 24, 24, 22 0.61 - - Cell cycle
progression

Regulates NE
differentiation in

several tumor
types

[22]

CCNB2 8, 3, 9 0.79 - - Cell cycle
progression Recurrent PC [8]

MKI67 26, 0, 7 5.1 × 10−3 - - Cell cycle
progression Recurrent PC [8]

MELK 49, 0, 29 0.14 - 3.5 × 10−6 Cell cycle
progression High-grade PC [23]

NUSAP1 e 45, 0, 22 0.83 - - Cell cycle
progression

Promotes
invasion and
metastasis PC

[24]

PLK1 e 11, 13, 10 0.8 - - Cell cycle
progression Recurrent PC [8]
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Table 1. Cont.

Gene Sample Ns
(T,HGPIN,N)

Validation
p-Value

Confirms in
Silico

Results?

Log-Rank
Test p-Value

(TCGA)

Biological
Role

Association
with other

Malignancies
Reference

CENPF e 54, 0, 29 0.56 - 3.3 × 10−9 Cell cycle
progression Recurrent PC [8]

TOP2A e 45, 0, 21 0.46 - - Cell cycle
progression

Marker of
aggressive PC [25]

MYC 14, 15, 10 0.39 - -
Cell cycle

progression;
apoptosis

Upregulated in
HGPIN and PC [26]

TCERG1 d,f 7, 8, 6 0.22 - -

Transcriptional
elongation

and splicing;
lipid

homeostasis
(C.elegans)

Sensitizes cell to
apoptosis [27]

ATG5 f 19, 23, 21 0.63 - - Apoptosis;
autophagy

Increased levels
in NE PC [28]

ABCC5 d 25, 25, 26 0.75 - 1.9 × 10−8

Cellular
export of

cyclic
nucleotides

Paclitaxel
resistance in

nasopharyngeal
cancer

[29]

GSTM2 57, 0, 35 1.8 × 10−3 Yes (T vs. N) 2.9 × 10−2

Detoxification
of

electrophilic
compounds

Prognostic
marker in PC [30]

SLC35A5 d,f 19, 19, 18 0.77 - - Transmembrane
protein

SNPs associated
with paclitaxel

sensitivity
[31]

GSTP1 c 56, 0, 33 6 × 10−4 Yes (T vs. N) 1.2 × 10−2

Drug
metabolism;

cell cycle
regulation

Hypermethylated
in PC [32]

ZCCHC6 d 24, 23, 21 0.67 - - Uridylation
of mRNA

Loss (C.elegans
homologue)

leads to
chromosomal

instability

[33]

MPZL1 d 23, 23, 23 0.69 - - Cell signaling
via c-Src

Amplification
promotes cell
migration in

HCC

[34]

NETO2 d 18, 17, 10 0.41 - -
Glutamate

signaling in
neurons

Prognostic in
CRC [35]

PID1 d 54, 0, 34 3.6 × 10−2 Yes (T vs. N) 3.8 × 10−3 Insulin
signaling

Tumor
suppressor in

brain tumors and
gliomas

[36]
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Table 1. Cont.

Gene Sample Ns
(T,HGPIN,N)

Validation
p-Value

Confirms in
Silico

Results?

Log-Rank
Test p-Value

(TCGA)

Biological
Role

Association
with other

Malignancies
Reference

NCOA2 f 21, 23, 21 0.47 - -

Transcriptional
coactivator of

nuclear
hormone
receptors

AR co-repressor
with

antiandrogens
[37]

CYP3A5 14, 0, 13 0.4 - -
Nuclear

translocation
of AR

Regulates
growth PC [38]

EZH2 40, 0, 20 0.81 - - Transcriptional
regulator

Marker of
aggressive PC [25]

ACSS3 d 41, 0, 25 1.8 × 10−2 Yes (T vs. N) 3.4 × 10−4 Cholesterogenesis

Prognostic
marker in

neuroblastoma,
gastric cancer

[39,40]

MNX1 33, 0, 13 0.33 - - Lipid
synthesis

Upregulated in
African

American PC
[41]

CYP27A1 54, 0, 30 1.1 × 10−2 Yes (T vs. N) 5.6 × 10−5
Cellular

cholesterol
homeostasis

Associated with
poor prognosis

in PC
[42]

YEATS2 d,f 44, 0, 24 0.29 - -

Cellular
metabolism;
epigenetic
regulation

Mutated in
multiple tumor

types
[43]

DBT d,f 43, 0, 23 0.77 - -

Branched-
chain amino

acid
metabolism

Mutated in
maple syrup
urine disease

[44]

PCCB d 56, 0, 32 0.77 - -
Catabolism

of propionyl-
CoA

Reduced
expression in

CRC
[45]

NUP210 d 53, 0, 35 0.2 - 7.6 × 10−3
Muscle and
neuronal dif-
ferentiation

Upregulated in
cervical cancer [46]

EVA1C d 53, 0, 28 1.3 × 10−2 Yes (T vs. N) 7.6 × 10−2
Axon

guidance
(mouse)

[47]

CFL2 d, f 21, 21, 18 5.1 × 10−2 Yes (T vs. N) 1.5 × 10−2 Axon
guidance

Associated with
progression in
gastric cancer

[48]

CDC6 9, 16, 10 0.26 - -
DNA

damage
repair

Elevated in
progression to

PC
[49]

EYA4 d 56, 0, 35 2.6 × 10−3 Yes (T vs. N) 2.8 × 10−3
DNA

damage
repair

Hypermethylated
in several
cancers

[50]
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Table 1. Cont.

Gene Sample Ns
(T,HGPIN,N)

Validation
p-Value

Confirms in
Silico

Results?

Log-Rank
Test p-Value

(TCGA)

Biological
Role

Association
with other

Malignancies
Reference

GNAL d 24, 0, 23 0.65 - - Odorant
signaling Mutated in HCC [51]

EFR3A d,f 54, 0, 36 0.92 - - Responsiveness
of GPCRs

SNPs associated
with CRC [52]

SH3BGRL2
d 31, 0, 54 0.34 - - Unknown

C15orf41 d 28, 0, 52 0.17 - - Unknown

Congenital
dyserythropoi-

etic
anemia

[53]

SELENOM
d 35, 0, 57 1.3 × 10−2 Yes (T vs. N) 3.0 × 10−3 Unknown IHC marker of

aggressive HCC [54]

a positive control, b negative control, c driver of epigenetic field of cancerization, d not previously reported in PC, e cell cycle progression
signature (Cuzick et al., 2011), f reversible expression in HGPIN. Abbreviations: GIST: gastrointestinal stromal tumor; CRC: colorectal
cancer; BrCa: breast cancer; NE: neuroendocrine; HCC: hepatocellular carcinoma; AR: androgen receptor.

We also confirmed the over-expression of known cell cycle genes in the development
of primary tumor (CCNB2) and the progression to advanced disease (CDC6, MKI67), and
identified four members of a prognostic mRNA gene signature [55] that are particularly
relevant in PC progression and the development of metastatic disease: NUSAP1, PLK1,
CENPF, TOP2A (MAM 6–8, Figure 3B). In agreement with the mechanism of action of
docetaxel (microtubule stabilization and mitotic arrest at G2/M), cell cycle genes including
CCNB2 have been shown to be downregulated in patients with advanced disease treated
with docetaxel and androgen-deprivation therapy [56].

A further four genes were found to be consistently upregulated in the progression
to metastatic disease—ABCC5, MPZL1, CCNE1, and RASAL2—that were not found in
previous, individual studies, despite having clear roles in metastatic progression in other
contexts (MAM 6 and 8, Figure 3B). ABCC5 has previously been associated with paclitaxel
resistance [29]. Elevated MPZL1 levels have been shown to enhance the migratory and
metastatic potential of hepatocellular carcinoma cells [18], while CCNE1 is a marker of poor
prognosis in breast, ovarian, and lung cancers, and is frequently over-expressed in tumors,
resulting in widespread genomic instability and resistance to trastuzumab in HER2+ breast
cancer patients [20]. RASAL2 typically acts as a tumor and metastasis suppressor, except
in triple-negative breast cancer (TNBC), where its activation is oncogenic [57]. RASAL2
up-regulation has also been seen in high-grade serous ovarian cancer, which has been
found to share a similar molecular portrait to TNBC [58]. Given the shared etiology of
these hormone-related cancers, a similar mechanism may be triggered in advanced PC.

Several genes were down-regulated in primary PC compared to benign tissues, and
almost all were further down-regulated in the progression to metastatic disease—EVA1C,
ACSS3, C15orf41, PARM1, EYA4, GSTM2 and GSTP1 (MAM 1, 2 and 7, Figure 3B). EVA1C
has not previously been reported in cancer, but ACSS3 is a marker for gastric cancer [40].
PARM1 is androgen regulated, with a role in cell proliferation [59]. EYA4 has been impli-
cated in several cancers due to its role in DNA double strand break repair and apopto-
sis [50], while GSTM2 expression reduces oxidative-stress associated inflammation and
apoptosis [60]. GSTP1 is involved in the viability and motility of PC cells and GSTP1 hy-
permethylation has been suggested as a urinary biomarker of PC [61]. Together with EYA4
and GSTM2, GSTP1 undergoes significant epigenetic silencing in primary tumors [30,50]
and HGPIN [61], where it may be particularly informative in identifying men suspected of
having cancer despite negative biopsies.
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CDH1 has also been identified as a prognostic urinary marker of undiagnosed PC in
men with HGPIN [10]. Both CDH1 and FHL1 have roles in cell adhesion and migration,
and are upregulated in HGPIN compared to benign tissues (MAM 3, Figure 3B). Their loss
is associated with progression in several cancers [10,11], and we confirmed the reduction
in FHL1 expression from primary to metastatic disease (MAM 5 and 7, Figure 3B). Interest-
ingly, CDH1, FHL1, and GSTP1 have been identified as genetic drivers of an epigenetic
field of cancerization in apparently histologically normal tissues in several solid tumors,
including prostate [11,32]. Their identification here, and the usefulness of GSTP1 and
CDH1 as prognostic markers of PC in some men with negative biopsies [10,61], appears to
confirm the significance of the tumor microenvironment as an important factor in prostate
tumorigenesis even after filtering the stroma-associated signal (Methods).

Other genes we identified as down-regulated in the progression from primary can-
cer to more aggressive disease include FRMD6, CYP3A5, GNAL, PGM5, SH3BGRL2,
PID1, CYP27A1, and TP63—an established PC risk gene included as a negative control
in the subsequent experimental validation (MAM 5–7, Figure 3B). CYP3A5 facilitates the
translocation of the androgen receptor into the nucleus, and, together with CYP27A1 (hy-
permethylated across all TCGA PC subtypes), has been suggested as a therapeutic target
for anti-androgen therapies [38]. GNAL and PGM5 are novel candidates in PC.

3.2. In Silico Predictions Validate in Clinical Samples

Of the top 500 genes predicted to be significantly dysregulated in the transcriptomic
landscape of PC by our analysis, we selected 50 genes for further testing by qPCR based on
their biological function, novelty or reports of association with other malignancies (Table 1).
Gene expression targets were tested in 38 patients with 59 macro-dissected normal/tumor
(N/T) formalin-fixed paraffin-embedded (FFPE) tissues and 29 patients with 87 macro-
dissected N/HGPIN/T FFPE tissues (Methods; Table S3). We validated 18 genes in this
way (p-value < 0.05), including 9 genes not previously reported in PC (Table 1): NEXN,
PGM5, FRMD6, PARM1, PID1, ACSS3, EVA1C, EYA4 and SELENOM.

We next performed survival analyses for each gene, using TCGA data (n = 387;
Methods): 14 of the 18 validated genes stratified patients into prognostic groups based
on low vs. high expression levels, including TP63, and 7 of the 10 novel targets—PGM5,
FRMD6, PARM1, PID1, ACSS3, EYA4, and SELENOM (Figure 4). Associated Kaplan–Meier
log-rank p-values are listed in Table 1. This further supports the identification of these genes
as transcriptionally important in the development of PC, and their potential usefulness as
prognostic markers.

Our transcriptomic landscape has confirmed several known PC risk genes in pathways
involved in various key stages of the development (oxidative stress, inflammation) and
progression (EMT, dsDNA break repair, cell cycle control) of the disease. It has also revealed
several new candidate genes with biological significance and prognostic potential that add
to our understanding of the mechanisms underlying the transitions from normal tissue to
HGPIN, localized tumor or metastatic disease.
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Figure 4. Genes identified by the integrative analysis validate in a clinical cohort. Predicted in silico expression patterns
across PC development and progression stages for 7 experimentally validated genes (left panels), including (A) PGM5,
(B) FRMD6, (C) PARM1, (D) PID1, (E) ACSS3, (F) EVA4 and (G) SELENOM, which were validated in the clinical cohort
(middle panels) and stratified TCGA patients into prognostic groups based on low vs. high expression levels (right panels).
The in silico expression profiles are based on combined data from 5 Affymetrix HG U133 Plus 2.0 datasets containing
191 samples representing all biological groups used for PC MAM construction. Only genes previously unreported in PC are
shown. ˆ Mann-Whitney; * unpaired t-test; HR: hazard ratio; BCR: biochemical relapse.
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3.3. HGPIN Molecular Changes

Our integrative analysis identified a number of known and novel gene expression
targets relevant in the progression of PC, and the inclusion of a single small study with
HGPIN samples (n = 33 after stringent QC; the only suitable dataset available) in our in
silico analysis allowed us to identify several genes with previously undescribed reversible
expression patterns in HGPIN tissue, compared to benign or primary PC (e.g., LGR4,
TCERG1, SLC35A5, DBT, CFL2, EFR3A; MAM 3 and 4/5; Figure 3B, Table 1). Expression
levels of these genes were initially elevated or reduced in HGPIN compared to benign,
and subsequently decreased or increased in the progression to primary tumor. In some
cases, further alterations in gene expression were associated with progression to aggressive
disease (e.g., FHL1, NEXN, SYNPO2, SH2B2, ATG5, NCOA2, YEATS2; MAM 3 and 4, and
6–8; Figure 3B). Overall, 8 of the 13 genes identified are new candidates in PC (Table 1), and
warrant functional follow-up study as potential biomarkers, particularly in the context of
HGPIN. A total of five have roles in cellular proliferation (SH2B2), adhesion or migration
(NEXN, FHL1, SYNPO2) or epithelial to mesenchymal transition (LGR4) and have been
associated with progression to aggressive disease in various cancers [62]. Significantly, in
addition to contributing to an epigenetic field effect (with CDH1 and GSTP1), Src-mediated
phosphorylation of X-linked FHL1 tumor suppressor has recently been reported to convert
this gene to a tumor promoter, even when total expression is reduced [63]. This may
help explain the apparently ‘reversible’ mRNA expression patterns observed in HGPIN
compared to benign or primary tumor tissues, with altered FHL1 contributing at least in
part to these changes. However, only SYNPO2 subsequently validated in a comparably
sized (n = 29) clinical cohort with matched tumor, normal and HGPIN tissues (Figure S5),
while FHL1, NEXN, LGR4, and CFL2 showed differential expression only between T vs. N.

The significant technical challenges involved in accurately identifying, isolating and
analyzing HGPIN samples are neatly summarized by Haffner and Barbieri (2016) [64], and
we are therefore wary of over-interpreting these data. Additional HGPIN transcriptomic
datasets are needed to validate these early intriguing findings, and elucidate the under-
lying molecular mechanisms and their clinical implications, given the recently reported
observation of clonal expansions of cells into histologically-normal tissue [65] and the
emerging shift in clinical importance of HGPIN [64].

3.4. Pathways Involved in Prostate Cancer Development and Progression are Distinct

The analysis of gene function generally provides a better description of tumor biology
than an analysis of each individual differentially expressed gene [66]. So, in addition to the
biological roles of particular genes identified (Table 1), adding to the gene expression and
survival analysis data, we also applied Ingenuity Pathway Analysis (IPA) to the expression
changes observed in the assembled MAM to identify and map affected pathways to
individual stages of PC development and progression. The 232 significantly deregulated
canonical pathways (p value < 0.05) across all areas on the MAM were complemented
with pathway enrichment results based on KEGG, PANTHER, and Reactome pathway
databases. Overall, substantial agreement was observed between the resources: there
were 34 of 58 (59%), 13 of 27 (48%), and 14 of 19 (74%) significantly enriched pathways in
common between IPA and KEGG, PANTHER, and Reactome, respectively (Supplementary
Figure S6A). In this way, we confirmed several common biological pathways known to
be essential in the development, progression and maintenance of the disease, including
androgen signaling, cell cycle and checkpoint regulation, DNA damage control, and protein
biosynthesis, and mapped them to the MAM (Figure S6B).

We compared our findings to the ‘molecular concepts’ identified by Tomlins et al.
(2007) [67] in 22 benign, 13 HGPIN, 30 primary tumor, and 20 metastatic laser captured
micro-dissected samples. We found substantial overlap with their progression model, with
androgen signaling predominantly enriched at the HGPIN stage and the cell cycle-related
pathways correlating with disease progression in both our studies (Figure S6B). However,
whereas we found protein biosynthesis to be correlated with HGPIN phenotype, Tomlins
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et al. found it associated with both HGPIN and metastatic disease. The inverse enrichment
levels observed between androgen receptor (AR) signaling and cell cycle-related pathways
between primary and advanced disease also agree with the inverse association of AR
activity with cell proliferation reported by [68] in 176 primary and metastatic tumors, and
confirmed in the Grasso et al. (2012) [69] dataset (n = 61 metastatic or localized PC).

We also found substantial overlap (35 of 39) between the pathways identified in our
study and those identified in a meta-analysis of 18 array datasets, where IPA was used to
identify canonical pathways involved in the transition from normal prostate to localized
and metastatic disease [70]. Interestingly, many pathways involved in the transition from
normal prostate to primary tumor by Gorlov et al. [70] were associated with HGPIN in our
study. This could be due to the limited analyses performed, as gene expression changes
associated with HGPIN were not explored at the pathway level in that study. Notably,
the significant enrichment of integrin signaling in our dataset (Figure S6) is consistent
with their key finding that dysregulation of integrin-based cell adhesion is essential in PC
progression, which formed the basis of their ‘collagen hypothesis’ of prostate tumorigenesis.
Indeed, this is one of only two deregulated pathways we found to be significantly enriched
by all resources, and predominates in the transition from localized to metastatic disease
(MAM 6–8), which accords with the increased disorganization and motility of cells as
they detach from the extra-cellular matrix with an age-associated reduction in integrin
ligands like collagen. This is further supported by our identification of deregulated actin
cytoskeleton signaling as enriched in the development of PC (MAM 1-3-4-5, p = 0.02; data
not shown), the biological function most frequently associated with clinically relevant
traits [66], as well as multiple genes with roles in cell adhesion, migration, and invasion
(Table 1).

Insulin receptor (IR) signaling was also enriched across all resources (Figure S6A),
with the closely related insulin-like growth factor 1 (IGF1) signaling pathway significantly
enriched in HGPIN (MAM 1–3, Figure 5A). Binding of their respective ligands activates
distinct downstream pathways controlling glucose, lipid and protein metabolism (IR),
and proliferation (IGF1), reflected in the MAM. IR and IGF1 signaling pathways are
deregulated in Type 2 Diabetes (T2D) and targeted by metformin, which also suppresses
androgen signaling pathways that sustain proliferation of normal and tumor prostate
cells. However, the anti-neoplastic effects of metformin in PC are not straightforward,
especially in the presence of obesity as a confounder, where it appears that metformin
can nullify the apparently protective effect of T2D against PC, at least in the early stages
of tumor development (reviewed in [71]). Indeed, insulin receptor signaling appears to
track androgen signaling in our analysis and are both particularly enriched in the early
stages of PC (MAM 1-3-4-5 Supplementary Figure S6B), suggesting that metformin use
at these stages in men without T2D may be an effective treatment period. Clinical trials
like the METAL study (Metformin and longevity) [72] are currently underway to clarify
the mechanism of action of metformin on localized PC, and the optimal stage of disease
development to target this drug. While our findings broadly agree with earlier meta-
analyses [70], those original data were from limited numbers of samples profiled mainly
with low-coverage microarray platforms and representing only certain stages of the disease,
so our integrative approach provides a more comprehensive overview of pathways across
all stages of PC. Based solely on p values ≤ 0.01, the greatest number of deregulated
canonical pathways were found in the transition from benign to HGPIN (88/229) and
from HGPIN to primary tumor (28/229) (Figure 5 and Figure S7), which agrees with our
understanding of the vast cascade of events required to push a cell towards tumorigenesis,
absent the activation of key oncogenes
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Figure 5. Pathways enriched at distinct stages of disease development and progression. Enrichment patterns across PC
development and progression stages for selected pathways significantly associated with (A) HGPIN, (B) primary and (C)
metastatic disease (p-value < 0.01). Corresponding MAM stages (x-axis) are denoted by circled numbers under the plots.
The pathways enrichment is based on IPA p-values (Fisher’s exact test) presented in -log10 scale (y-axis).

This broad insight into PC transcriptional architecture also revealed distinct enrich-
ment patterns of pathways at particular disease stages. For instance, our analysis re-
vealed the significant enrichment of multiple pathways related to axon guidance (RANK,
semaphorin, ephrin B, ephrin receptor, HGF, and axonal guidance signaling) in the pro-
gression to primary tumor via HGPIN (Figure 5A), which is a key process in the formation
of the neuronal network. Associated genes also affect cellular proliferation, invasion, and
angiogenesis [73], supporting its involvement in early neoplastic transformation and tumor
progression. At the gene level, EVA1C, CFL2 and NUP210 were identified, which may be
particularly relevant given their apparent up-regulation in the development of HGPIN and
primary tumor from benign tissues (MAM 2–4, Figure 3B; Table 1). Pathways relating to
inflammation (which supports multiple hallmarks of cancer) were also enriched in this
transition (CCR3 signaling in eosinophils, NFAT in regulation of the immune response,
CXCR4, IL-1, IL-8, thrombin, relaxin and G beta gamma signaling). Furthermore, several
genes we identified are involved in the many coordinated biological processes that com-
prise the immune response. Insulin-like growth factor 1 (IGF1) signaling was also seen here,
which has a central role in the progression of many tumors including PC, via activation
of the PI3K/AKT pathway. Elevated IGF1 signaling has also been linked with androgen
independence and as such suggested as a drug target in CRPC (reviewed by [74]). More
generally however, HGPIN appeared to lack abnormal metabolism pathways and is under-
represented for oxygen and other stress-related cellular response pathways compared to
primary or metastatic disease.
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In contrast, far fewer pathways were enriched in the ‘direct’ development of cancer
from benign tissue (MAM 1-2-5), i.e., not via HGPIN (7 vs. 21; Figure 5B), and included
functions relating to specific metabolic alterations (pyridoxal 5’-phosphate (vitamin B6)
salvage, glutathione-mediated detoxification, proline biosynthesis, salvage pathways of
pyrimidine ribonucleotides). Proline synthesis has been observed as a major metabolic shift
in several cancer models, and has a critical role in promoting tumor cell growth [75]. Fur-
thermore, proline can be derived from collagen degradation [76], and proline biosynthesis
was uniquely enriched in this transition, where regulation of the epithelial-to-mesenchymal
transition pathway was also observed. Together, these further support the collagen hypoth-
esis of PC development [70].

Overall, three pathways broadly relating to cellular damage by reactive oxygen species
(ROS) and exogenous compounds were enriched in both the development of primary tu-
mor (MAM 1-2-5) and in the progression to aggressive disease (MAM 6–7, Figure 5B). The
LPS/IL-1 mediated inhibition of Retinoid X Receptor (RXR) is associated with impaired
metabolism of cholesterol and xenobiotics [77]. RXR/LXR activation pathways were also
found to be significantly downregulated in a recent urinary proteomic analysis [78]. The
NRF2-mediated oxidative stress response pathway activates cytoprotective antioxidants
and detoxifying enzymes, but hyperactivation of NRF2 is associated with chemoresistance,
due to its rapid action preventing the necessary accumulation of drugs and inhibiting the
desired treatment-associated apoptotic response [79]. Glutathione-mediated detoxification
of ROS and xenobiotics is central in maintaining cellular redox balance and the elimination
of carcinogens. However, elevated levels of glutathione are also associated with tumor
phenotype and, with increased levels of glutathione-S transferases (GST), can contribute to
chemoresistance, by attenuating the desired effects of a given drug [80] by mechanisms
broadly similar to those described above. At the gene level, our analysis identified numer-
ous targets involved in these processes (GSTP1, GSTM2, CYP3A5, TCERG1, ATG5, ABCC5,
SLC35A5, ZCCHC6, MPZL1, NETO2, and PID1), three of which validated (T vs. N) in
a clinical cohort, and which were also prognostic in TCGA data: GSTM2, GSTP1, PID1
(Table 1).

Overall, three main biological processes were identified in the progression to metastatic
disease: cell cycle control, DNA damage response and cholesterol biosynthesis (MAM
6–8, Figure 5C). The latter is consistent with the idea that cholesterol is part of the ‘cell
economy’ and a vital aspect of cell proliferation and growth [81]. Elevated cholesterol
levels are associated with PC progression [82], and a precursor of intra-tumoral de novo
androgen synthesis observed in the progression to castration-resistant PC [83]. At the gene
level, ACSS3 and CYP27A1 were both found to be downregulated in the development of
primary tumor (MAM 2, 5) and in the development of aggressive disease (MAM 5–7). Both
targets validated (T vs. N; p-value = 0.018 and 0.011, respectively) in the clinical cohort
and were also prognostic in TCGA data (Figure 4 and Table 1). ACSS3 activates acetate for
use in lipid synthesis, while CYP27A1 encodes an enzyme involved in regulating cellular
cholesterol homeostasis. It is dramatically downregulated in PC, and associated with
higher tumor grade and reduced disease-free survival [42].

Deregulated cell cycle control is an established feature of tumor development, exem-
plified in our analysis with the enrichment of pathways relation to de novo dTMP synthesis,
cell cycle control of chromosomal replication, estrogen-mediated S-phase entry and mitotic
roles of polo-like kinase (MAM 6–8, Figure 5C), as well as specific genes (Table 1) Closely
related pathways relating to DNA integrity were also over-represented, including G2/M
DNA damage checkpoint regulation, DNA damage sensor ATM signaling, its downstream
target GADD45 signaling, and the tumor suppressor DNA damage-induced 14-3-3 sigma
signaling pathway. Notably, mutations and deletions in DNA repair genes affected almost
20% of the TCGA cohort. Specifically, ATM was recurrently mutated in 6% of all primary
tumors and across all TCGA subtypes, emphasizing the broad clinical significance of DNA
damage repair in PC. At the gene level, we identified and validated down-regulated EYA4
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as a novel target in the development of aggressive disease (T vs. N, p = 0.026) and also
found it to be prognostic in TCGA data (log-rank p-value = 2.8 × 10−3) (Figure 4).

4. Conclusions

In summary, this is the largest multi-cohort study of PC gene expression to date and
provides a comprehensive overview of the transcriptomic landscape of PC. We established
an alternative analytic approach that bypasses the current limitations of available tools
and supports the comprehensive integration of data derived from different microarray and
sequencing platforms and disease subtypes to connect distinct disease stages and reveal
potentially relevant genes not identifiable from single studies alone. The application of our
methodology to the combined total of TCGA data and several other high-quality studies
into different PC stages and grades facilitated the reconstruction of the molecular history
of this disease.

Our identification of known risk genes and biological pathways known to be relevant
in the development of PC demonstrates the reliability of our cross-platform data integration
approach to identify novel targets supported by qPCR validation of specific gene targets,
associated survival analysis of TCGA dataset, and disease-stage specific pathway analysis
using IPA, KEGG, Reactome, and Panther. The ability to identify genes associated with
particular stages of disease development or progression provides a resource for novel
biomarker development that we believe will help to understand underlying disease mech-
anisms. By adopting this global approach, pathways relating to both integrin and insulin
signaling have emerged as particularly relevant in the global transcriptomic landscape of
PC, supporting earlier suggested fundamental disease mechanisms (collagen hypothesis;
insulin signaling). To allow others to explore the assembled data, we also developed
a user-friendly integrative expression database. We hope these findings and associated
online tool will enhance translational research and inform patient management.

The collected and integrated data along with analytical and visualization tools (e.g.,
PCA, gene expression analyses or heatmaps and Pearson correlations, gene networks,
survival analyses) are freely available online through our Prostate Integrative Expression
Database at www.pixdb.org.uk.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/2/345/s1, Figure S1: Microarray and NGS processing pipeline, Figure S2: Sample and tissue
type quality control, Figure S3: Cross-platform integrative analysis model optimization, Figure
S4: The transcriptomic landscape: known genes, Figure S5: Reversible gene expression, Figure S6:
Enriched pathways, Figure S7: Pathways enriched at distinct disease stages, Table S1: Datasets used,
Table S2: Samples filtering steps and results, Table S3: Gene expression assays.

Author Contributions: Conceptualization, C.C. and Y.-J.L.; methodology, J.M., J.W., H.R.-A., X.M.,
Y.-J.L. and C.C.; software, J.M., S.P., E.G. and C.C.; validation, H.R.-A., Y.Z., X.M., E.S. and S.-F.K.-J.;
formal analysis, J.M., H.R.-A., A.S.A., B.V.N., Y.-J.L. and C.C.; investigation, J.M., H.R.-A., Y.Z. and
X.M.; resources, X.M., S.-F.K.-J., E.S., S.C.K., L.B., G.R., D.M.B., Y.-J.L.; data curation, J.M., Y.Z., H.R.-A.,
Y.-J.L.; writing—original draft preparation, J.M., H.R.-A.; writing—review and editing, J.M., H.R.-A.,
Y.-J.L., C.C.; visualization, J.M., S.P.; supervision, Y.-J.L., C.C. (Principal Investigator); funding
acquisition, C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by an Orchid Charity grant. J.M. was supported by an Engineer-
ing and Physical Sciences Research Council studentship awarded to C.C., researchfish award 1225895.
Funding for Open Access charge: Engineering and Physical Sciences Research Council 1225895.

Institutional Review Board Statement: Studies were approved by the East London and City Re-
search Ethics committee (ref 09/H0704/4+5) and the ethical committee of the First Affiliated Hospital,
Zhejiang University Medical College, China, approval number 2102–2142.

Informed Consent Statement: Participants at each of the study sites provided written informed consent.

Data Availability Statement: Requests for further information, access to processed data files or
laboratory reagents used can be directed to corresponding author Helen Ross-Adams (h.ross-

www.pixdb.org.uk
https://www.mdpi.com/2072-6694/13/2/345/s1
https://www.mdpi.com/2072-6694/13/2/345/s1


Cancers 2021, 13, 345 21 of 24

adams@qmul.ac.uk), at the Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute,
Charterhouse Square, Queen Mary University of London, EC1M 6BQ, LONDON, UK. Publicly
available datasets supporting this work are listed in Supplementary Table S1. The processed datasets
used in the development of this project are available for interrogation, analysis and visualization
using Prostate Integrative Expression Database (PIXdb), at www.pixdb.org.uk.

Acknowledgments: This research utilized Queen Mary University of London’s Apocrita High
Performance Computing (HPC) facility, supported by Queen Mary University of London (QMUL)
Research-IT (http://doi.org/10.5281/zenodo.438045). Dan Mercola shared clinical information for
GSE17951 dataset.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65,

87–108. [CrossRef] [PubMed]
2. Spratt, D.E.; Zumsteg, Z.S.; Feng, F.Y.; Tomlins, S.A. Translational and clinical implications of the genetic landscape of prostate

cancer. Nat. Rev. Clin. Oncol. 2016, 13, 597–610. [CrossRef] [PubMed]
3. Lange, L.A.; Hu, Y.; Zhang, H.; Xue, C.; Schmidt, E.M.; Tang, Z.Z.; Bizon, C.; Lange, E.M.; Smith, J.D.; Turner, E.H.; et al.

Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am. J. Hum. Genet.
2014, 94, 233–245. [CrossRef] [PubMed]

4. De Marzo, A.M.; Haffner, M.C.; Lotan, T.L.; Yegnasubramanian, S.; Nelson, W.G. Premalignancy in prostate cancer: Rethinking
what we know. Cancer Prev. Res. 2016, 9, 648–656. [CrossRef] [PubMed]

5. Lai, X.; Wang, M.; McElyea, S.D.; Sherman, S.; House, M.; Korc, M. A microRNA signature in circulating exosomes is superior to
exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017, 393, 86–93. [CrossRef] [PubMed]

6. Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A.; et al. The
Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [CrossRef]

7. Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.J.; Yousif, F.; Lin, X.; Masella, A.P.;
et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017, 541, 359–364. [CrossRef] [PubMed]

8. Horning, A.M.; Wang, Y.; Lin, C.K.; Louie, A.D.; Jadhav, R.R.; Hung, C.N.; Wang, C.M.; Lin, C.L.; Kirma, N.B.; Liss, M.A.;
et al. Single-Cell RNA-seq reveals a subpopulation of prostate cancer cells with enhanced cell-Cycle–Related transcription and
attenuated androgen response. Cancer Res. 2018, 78, 853–864. [CrossRef]

9. Singh, V.; Manu, V.; Malik, A.; Dutta, V.; Mani, N.S.; Patrikar, S. Diagnostic utility of p63 and α-methyl acyl Co A racemase in
resolving suspicious foci in prostatic needle biopsy and transurethral resection of prostate specimens. J. Cancer Res. Ther. 2014, 10,
686–692.

10. Sequeiros, T.; Bastarós, J.M.; Sánchez, M.; Rigau, M.; Montes, M.; Placer, J.; Planas, J.; De Torres, I.; Reventõs, J.; Pegtel, D.M.; et al.
Urinary biomarkers for the detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. Prostate
2015, 75, 1102–1113. [CrossRef]

11. Asada, K.; Ando, T.; Niwa, T.; Nanjo, S.; Watanabe, N.; Okochi-Takada, E.; Yoshida, T.; Miyamoto, K.; Enomoto, S.; Ichinose,
M.; et al. FHL1 on chromosome X is a single-hit gastrointestinal tumor-suppressor gene and contributes to the formation of an
epigenetic field defect. Oncogene 2013, 32, 2140–2149. [CrossRef] [PubMed]

12. Zhou, D.; Tang, W.; Su, G.; Cai, M.; An, H.X.; Zhang, Y. PCDH18 is frequently inactivated by promoter methylation in colorectal
cancer. Sci. Rep. 2017, 7, 1–12. [CrossRef] [PubMed]

13. Wu, C.; Yan, H.; Sun, J.; Yang, F.; Song, C.; Jiang, F.; Li, Y.; Dong, J.; Zheng, G.Y.; Tian, X.L.; et al. NEXN is a novel susceptibility
gene for coronary artery disease in Han Chinese. PLoS ONE 2013, 8, e82135. [CrossRef] [PubMed]

14. Kai, F.; Fawcett, J.P.; Duncan, R. Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to
promote lamellipodia formation and prostate cancer cell migration. Oncotarget 2015, 6, 11162–11174. [CrossRef] [PubMed]

15. Uzozie, A.C.; Selevsek, N.; Wahlander, A.; Nanni, P.; Grossmann, J.; Weber, A.; Buffoli, F.; Marra, G. Targeted proteomics for
multiplexed verification of markers of colorectal tumorigenesis. Mol. Cell. Proteom. 2017, 16, 407–427. [CrossRef]

16. McLaughlin, S.K.; Olsen, S.N.; Dake, B.; De Raedt, T.; Lim, E.; Bronson, R.T.; Beroukhim, R.; Polyak, K.; Brown, M.; Kuperwasser,
C.; et al. The RasGAP Gene, RASAL2, Is a Tumor and Metastasis Suppressor. Cancer Cell 2013, 24, 365–378. [CrossRef] [PubMed]

17. Luo, W.; Tan, P.; Rodriguez, M.; He, L.; Tan, K.; Zeng, L.; Siwko, S.; Liu, M. Leucine-rich repeat-containing G protein-coupled
receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J. Biol. Chem. 2017, 292,
15525–15537. [CrossRef]

18. Visser-Grieve, S.; Hao, Y.; Yang, X. Human homolog of Drosophila expanded, hEx, functions as a putative tumor suppressor in
human cancer cell lines independently of the Hippo pathway. Oncogene 2012, 31, 1189–1195. [CrossRef]

19. Charfi, C.; Levros, L.C.; Edouard, E.; Rassart, E. Characterization and identification of PARM-1 as a new potential oncogene. Mol.
Cancer 2013, 12, 84. [CrossRef]

www.pixdb.org.uk
http://doi.org/10.5281/zenodo.438045
http://doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/25651787
http://doi.org/10.1038/nrclinonc.2016.76
http://www.ncbi.nlm.nih.gov/pubmed/27245282
http://doi.org/10.1016/j.ajhg.2014.01.010
http://www.ncbi.nlm.nih.gov/pubmed/24507775
http://doi.org/10.1158/1940-6207.CAPR-15-0431
http://www.ncbi.nlm.nih.gov/pubmed/26813971
http://doi.org/10.1016/j.canlet.2017.02.019
http://www.ncbi.nlm.nih.gov/pubmed/28232049
http://doi.org/10.1016/j.cell.2015.10.025
http://doi.org/10.1038/nature20788
http://www.ncbi.nlm.nih.gov/pubmed/28068672
http://doi.org/10.1158/0008-5472.CAN-17-1924
http://doi.org/10.1002/pros.22995
http://doi.org/10.1038/onc.2012.228
http://www.ncbi.nlm.nih.gov/pubmed/22689052
http://doi.org/10.1038/s41598-017-03133-w
http://www.ncbi.nlm.nih.gov/pubmed/28588296
http://doi.org/10.1371/journal.pone.0082135
http://www.ncbi.nlm.nih.gov/pubmed/24349201
http://doi.org/10.18632/oncotarget.3578
http://www.ncbi.nlm.nih.gov/pubmed/25883213
http://doi.org/10.1074/mcp.M116.062273
http://doi.org/10.1016/j.ccr.2013.08.004
http://www.ncbi.nlm.nih.gov/pubmed/24029233
http://doi.org/10.1074/jbc.M116.771931
http://doi.org/10.1038/onc.2011.318
http://doi.org/10.1186/1476-4598-12-84


Cancers 2021, 13, 345 22 of 24

20. Scaltriti, M.; Eichhorn, P.J.; Cortés, J.; Prudkin, L.; Aurac, C.; Jiménez, J.; Chandarlapaty, S.; Serra, V.; Prat, A.; Ibrahim, Y.H.; et al.
Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc. Natl.
Acad. Sci. USA 2011, 108, 3761–3766. [CrossRef]

21. Teixeira, L.K.; Wang, X.; Li, Y.; Ekholm-Reed, S.; Wu, X.; Wang, P.; Reed, S.I. Cyclin e deregulation promotes loss of specific
genomic regions. Curr. Biol. 2015, 25, 1327–1333. [CrossRef]

22. Rosenbaum, J.N.; Guo, Z.; Baus, R.M.; Werner, H.; Rehrauer, W.M.; Lloyd, R. V INSM1: A Novel Immunohistochemical and
Molecular Marker for Neuroendocrine and Neuroepithelial Neoplasms. Am. J. Clin. Pathol. 2015, 144, 579–591. [CrossRef]
[PubMed]

23. Kuner, R.; Fälth, M.; Pressinotti, N.C.; Brase, J.C.; Puig, S.B.; Metzger, J.; Gade, S.; Schäfer, G.; Bartsch, G.; Steiner, E.; et al. The
maternal embryonic leucine zipper kinase (MELK) is upregulated in high-grade prostate cancer. J. Mol. Med. 2013, 91, 237–248.
[CrossRef] [PubMed]

24. Gordon, C.A.; Gong, X.; Ganesh, D.; Brooks, J.D. NUSAP1 promotes invasion and metastasis of prostate cancer. Oncotarget 2017,
8, 29935–29950. [CrossRef] [PubMed]

25. Labbé, D.P.; Sweeney, C.J.; Brown, M.; Galbo, P.; Rosario, S.; Wadosky, K.M.; Ku, S.-Y.; Sjöström, M.; Alshalalfa, M.; Erho, N.; et al.
TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clin. Cancer Res. Off. J. Am. Assoc. Cancer
Res. 2017, 23, 7072–7083. [CrossRef] [PubMed]

26. Barros-Silva, J.D.; Linn, D.E.; Steiner, I.; Guo, G.; Ali, A.; Pakula, H.; Ashton, G.; Peset, I.; Brown, M.; Clarke, N.W.; et al.
Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and
Cancer. Cell Rep. 2018, 25, 3504–3518. [CrossRef] [PubMed]

27. Montes, M.; Coiras, M.; Becerra, S.; Moreno-Castro, C.; Mateos, E.; Majuelos, J.; Oliver, F.J.; Hernández-Munain, C.; Alcamí, J.;
Suñé, C. Functional consequences for apoptosis by transcription elongation regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95
Alternative Splicing. PLoS ONE 2015, 10, e0139812. [CrossRef]

28. Morell, C.; Bort, A.; Vara-Ciruelos, D.; Ramos-Torres, Á.; Altamirano-Dimas, M.; Díaz-Laviada, I.; Rodríguez-Henche, N. Up-
Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP
Cells. PLoS ONE 2016, 11, e0162977. [CrossRef]

29. Hou, Y.; Zhu, Q.; Li, Z.; Peng, Y.; Yu, X.; Yuan, B.; Liu, Y.; Liu, Y.; Yin, L.; Peng, Y.; et al. The FOXM1-ABCC5 axis contributes to
paclitaxel resistance in nasopharyngeal carcinoma cells. Cell Death Dis. 2017, 8, e2659. [CrossRef]

30. Ashour, N.; Angulo, J.C.; Andrés, G.; Alelú, R.; González-Corpas, A.; Toledo, M.V.; Rodríguez-Barbero, J.M.; López, J.I.; Sánchez-
Chapado, M.; Ropero, S. A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and
prognosis. Prostate 2014, 74, 1171–1182. [CrossRef]

31. Njiaju, U.O.; Gamazon, E.R.; Gorsic, L.K.; Delaney, S.M.; Wheeler, H.E.; Im, H.K.; Dolan, M.E. Whole-genome studies identify
solute carrier transporters in cellular susceptibility to paclitaxel. Pharmacogenet. Genom. 2012, 22, 498–507. [CrossRef] [PubMed]

32. Møller, M.; Strand, S.H.; Mundbjerg, K.; Liang, G.; Gill, I.; Haldrup, C.; Borre, M.; Høyer, S.; Ørntoft, T.F.; Sørensen, K.D.
Heterogeneous patterns of DNA methylation-based field effects in histologically normal prostate tissue from cancer patients. Sci.
Rep. 2017, 7, 1–14. [CrossRef] [PubMed]

33. Thornton, J.E.; Du, P.; Jing, L.; Sjekloca, L.; Lin, S.; Grossi, E.; Sliz, P.; Zon, L.I.; Gregory, R.I. Selective microRNA uridylation by
Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Res. 2014, 42, 11777–11791. [CrossRef] [PubMed]

34. Jia, D.; Jing, Y.; Zhang, Z.; Liu, L.; Ding, J.; Zhao, F.; Ge, C.; Wang, Q.; Chen, T.; Yao, M.; et al. Amplification of MPZL1/PZR
promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res. 2014, 24,
204–217. [CrossRef] [PubMed]

35. Hu, L.; Chen, H.Y.; Cai, J.; Yang, G.Z.; Feng, D.; Zhai, Y.X.; Gong, H.; Qi, C.Y.; Zhang, Y.; Fu, H.; et al. Upregulation of NETO2
expression correlates with tumor progression and poor prognosis in colorectal carcinoma. BMC Cancer 2015, 15, 1–10. [CrossRef]

36. Erdreich-Epstein, A.; Robison, N.; Ren, X.; Zhou, H.; Xu, J.; Davidson, T.B.; Schur, M.; Gilles, F.H.; Ji, L.; Malvar, J.; et al. PID1
(NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas. Clin. Cancer Res. 2014, 20, 827–836. [CrossRef]

37. Takeda, K.; Hara, N.; Nishiyama, T.; Tasaki, M.; Ishizaki, F.; Tomita, Y. Corepressive function of nuclear receptor coactivator 2 in
androgen receptor of prostate cancer cells treated with antiandrogen. BMC Cancer 2016, 16, 332. [CrossRef]

38. Mitra, R.; Goodman, O.B. CYP3A5 regulates prostate cancer cell growth by facilitating nuclear translocation of AR. Prostate 2015,
75, 527–538. [CrossRef]

39. Decock, A.; Ongenaert, M.; Hoebeeck, J.; De Preter, K.; Van Peer, G.; Van Criekinge, W.; Ladenstein, R.; Schulte, J.H.; Noguera, R.;
Stallings, R.L.; et al. Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
Genome Biol. 2012, 13, R95. [CrossRef]

40. Chang, W.C.; Cheng, W.C.; Cheng, B.H.; Chen, L.; Ju, L.J.; Ou, Y.J.; Jeng, L.B.; Yang, M.D.; Hung, Y.C.; Ma, W.L. Mitochondrial
Acetyl-CoA Synthetase 3 is Biosignature of Gastric Cancer Progression. Cancer Med. 2018, 7, 1240–1252. [CrossRef]

41. Zhang, L.; Wang, J.; Wang, Y.; Zhang, Y.; Castro, P.; Shao, L.; Sreekumar, A.; Putluri, N.; Guha, N.; Deepak, S.; et al. MNX1 Is
Oncogenically Upregulated in African-American Prostate Cancer. Cancer Res. 2016, 76, 6290–6298. [CrossRef]

42. Alfaqih, M.A.; Nelson, E.R.; Liu, W.; Safi, R.; Jasper, J.S.; Macias, E.; Geradts, J.; Thompson, J.W.; Dubois, L.G.; Freeman, M.R.; et al.
CYP27A1 loss dysregulates cholesterol homeostasis in prostate cancer. Cancer Res. 2017, 77, 1662–1673. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.1014835108
http://doi.org/10.1016/j.cub.2015.03.022
http://doi.org/10.1309/AJCPGZWXXBSNL4VD
http://www.ncbi.nlm.nih.gov/pubmed/26386079
http://doi.org/10.1007/s00109-012-0949-1
http://www.ncbi.nlm.nih.gov/pubmed/22945237
http://doi.org/10.18632/oncotarget.15604
http://www.ncbi.nlm.nih.gov/pubmed/28404898
http://doi.org/10.1158/1078-0432.CCR-17-0413
http://www.ncbi.nlm.nih.gov/pubmed/28899973
http://doi.org/10.1016/j.celrep.2018.11.069
http://www.ncbi.nlm.nih.gov/pubmed/30566873
http://doi.org/10.1371/journal.pone.0139812
http://doi.org/10.1371/journal.pone.0162977
http://doi.org/10.1038/cddis.2017.53
http://doi.org/10.1002/pros.22833
http://doi.org/10.1097/FPC.0b013e328352f436
http://www.ncbi.nlm.nih.gov/pubmed/22437668
http://doi.org/10.1038/srep40636
http://www.ncbi.nlm.nih.gov/pubmed/28084441
http://doi.org/10.1093/nar/gku805
http://www.ncbi.nlm.nih.gov/pubmed/25223788
http://doi.org/10.1038/cr.2013.158
http://www.ncbi.nlm.nih.gov/pubmed/24296779
http://doi.org/10.1186/s12885-015-2018-y
http://doi.org/10.1158/1078-0432.CCR-13-2053
http://doi.org/10.1186/s12885-016-2378-y
http://doi.org/10.1002/pros.22940
http://doi.org/10.1186/gb-2012-13-10-r95
http://doi.org/10.1002/cam4.1295
http://doi.org/10.1158/0008-5472.CAN-16-0087
http://doi.org/10.1158/0008-5472.CAN-16-2738
http://www.ncbi.nlm.nih.gov/pubmed/28130224


Cancers 2021, 13, 345 23 of 24

43. Takai, E.; Totoki, Y.; Nakamura, H.; Morizane, C.; Nara, S.; Hama, N.; Suzuki, M.; Furukawa, E.; Kato, M.; Hayashi, H.; et al.
Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci. Rep. 2015, 5, 1–10. [CrossRef]
[PubMed]

44. Jaafar, N.; Moleirinho, A.; Kerkeni, E.; Monastiri, K.; Seboui, H.; Amorim, A.; Prata, M.J.; Quental, S. Molecular characterization
of maple syrup urine disease patients from Tunisia. Gene 2013, 517, 116–119. [CrossRef] [PubMed]

45. Cherbonnel-Lasserre, C.L.; Linares-Cruz, G.; Rigaut, J.P.; Sabatier, L.; Dutrillaux, B. Strong decrease in biotin content may correlate
with metabolic alterations in colorectal adenocarcinoma. Int. J. Cancer 1997, 72, 768–775. [CrossRef]

46. Rajkumar, T.; Sabitha, K.; Vijayalakshmi, N.; Shirley, S.; Bose, M.V.; Gopal, G.; Selvaluxmy, G. Identification and validation of
genes involved in cervical tumourigenesis. BMC Cancer 2011, 11, 80. [CrossRef]

47. James, G.; Foster, S.R.; Key, B.; Beverdam, A. The Expression Pattern of EVA1C, a Novel Slit Receptor, Is Consistent with an Axon
Guidance Role in the Mouse Nervous System. PLoS ONE 2013, 8, e74115. [CrossRef]

48. Bian, Y.; Guo, J.; Qiao, L.; Sun, X. miR-3189-3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and
migration of gastric cancer cells by targeting CFL2. Int. J. Mol. Sci. 2018, 19, 236. [CrossRef]

49. Karanika, S.; Karantanos, T.; Li, L.; Wang, J.; Park, S.; Yang, G.; Zuo, X.; Song, J.H.; Maity, S.N.; Manyam, G.C.; et al. Targeting
DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling. Cell Rep. 2017, 18,
1970–1981. [CrossRef]

50. Towle, R.; Truong, D.; Garnis, C. Epigenetic mediated silencing of EYA4 contributes to tumorigenesis in oral dysplastic cells.
Genes Chromosom. Cancer 2016, 55, 568–576. [CrossRef]

51. Zhang, Y.; Qiu, Z.; Wei, L.; Tang, R.; Lian, B.; Zhao, Y.; He, X.; Xie, L. Integrated analysis of mutation data from various sources
identifies key genes and signaling pathways in hepatocellular carcinoma. PLoS ONE 2014, 9, e100854. [CrossRef] [PubMed]

52. Zhou, D.; Yang, L.; Zheng, L.; Ge, W.; Li, D.; Zhang, Y.; Hu, X.; Gao, Z.; Xu, J.; Huang, Y.; et al. Exome Capture Sequencing of
Adenoma Reveals Genetic Alterations in Multiple Cellular Pathways at the Early Stage of Colorectal Tumorigenesis. PLoS ONE
2013, 8, 1–8. [CrossRef]

53. Babbs, C.; Roberts, N.A.; Sanchez-Pulido, L.; McGowan, S.J.; Ahmed, M.R.; Brown, J.M.; Sabry, M.A.; Bentley, D.R.; McVean, G.A.;
Donnelly, P.; et al. Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic anemia
type I. Haematologica 2013, 98, 1383–1387. [CrossRef] [PubMed]

54. Guerriero, E.; Accardo, M.; Capone, F.; Colonna, G.; Castello, G.; Costantini, S. Assessment of the Selenoprotein M (SELM)
over-expression on human hepatocellular carcinoma tissues by immunohistochemistry. Eur. J. Histochem. 2014, 58, 287–290.
[CrossRef] [PubMed]

55. Cuzick, J.; Swanson, G.P.; Fisher, G.; Brothman, A.R.; Berney, D.M.; Reid, J.E.; Mesher, D.; Speights, V.O.; Stankiewicz, E.; Foster,
C.S.; et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate
cancer: A retrospective study. Lancet Oncol. 2011, 12, 245–255. [CrossRef]

56. Rajan, P.; Stockley, J.; Sudbery, I.M.; Fleming, J.T.; Hedley, A.; Kalna, G.; Sims, D.; Ponting, C.P.; Heger, A.; Robson, C.N.; et al.
Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic
biopsies from patients with advanced prostate cancer. BMC Cancer 2014, 14, 977. [CrossRef]

57. Feng, M.; Bao, Y.; Li, Z.; Li, J.; Gong, M.; Lam, S.; Wang, J.; Marzese, D.M.; Donovan, N.; Yu Tan, E.; et al. RASAL2 activates RAC1
to promote triple-negative breast cancer progression. J. Clin. Investig. 2014, 124, 5291–5304. [CrossRef]

58. Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.;
Mardis, E.R.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70.

59. Fladeby, C.; Gupta, S.N.; Barois, N.; Lorenzo, P.I.; Simpson, J.C.; Saatcioglu, F.; Bakke, O. Human PARM-1 is a novel mucin-like,
androgen-regulated gene exhibiting proliferative effects in prostate cancer cells. Int. J. Cancer 2008, 122, 1229–1235. [CrossRef]

60. Li, Y.; Yan, M.; Yang, J.; Raman, I.; Du, Y.; Min, S.; Fang, X.; Mohan, C.; Li, Q.Z. Glutathione S-transferase Mu 2-transduced
mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting
oxidation and inflammation. Stem Cell Res. Ther. 2014, 5, 1–15. [CrossRef]

61. Gonzalgo, M.L.; Pavlovich, C.P.; Lee, S.M.; Nelson, W.G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy
urine specimens. Clin. Cancer Res. 2003, 9, 2673–2677. [PubMed]

62. Li, X.; Jia, Z.; Shen, Y.; Ichikawa, H.; Jarvik, J.; Nagele, R.G.; Goldberg, G.S. Coordinate suppression of Sdpr and Fhl1 expression
in tumors of the breast, kidney, and prostate. Cancer Sci. 2008, 99, 1326–1333. [CrossRef] [PubMed]

63. Wang, X.; Wei, X.; Yuan, Y.; Sun, Q.; Zhan, J.; Zhang, J.; Tang, Y.; Li, F.; Ding, L.; Ye, Q.; et al. Src-mediated phosphorylation
converts FHL1 from tumor suppressor to tumor promoter. J. Cell Biol. 2018, 217, 1335–1351. [CrossRef] [PubMed]

64. Haffner, M.C.; Barbieri, C.E. Shifting Paradigms for High-grade Prostatic Intraepithelial Neoplasia. Eur. Urol. 2016, 69, 831–833.
[CrossRef] [PubMed]

65. Cooper, C.S.; Eeles, R.; Wedge, D.C.; Van Loo, P.; Gundem, G.; Alexandrov, L.B.; Kremeyer, B.; Butler, A.; Lynch, A.G.; Camacho,
N.; et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in
neoplastic and morphologically normal prostate tissue. Nat. Genet. 2015, 47, 367–372. [CrossRef]

66. Gorlov, I.P.; Byun, J.; Logothetis, C.J. In silico functional profiling of individual prostate cancer tumors: Many genes, few functions.
Cancer Genom. Proteom. 2012, 9, 109–114.

67. Tomlins, S.A.; Mehra, R.; Rhodes, D.R.; Cao, X.; Wang, L.; Dhanasekaran, S.M.; Kalyana-Sundaram, S.; Wei, J.T.; Rubin, M.A.;
Pienta, K.J.; et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 2007, 39, 41–51. [CrossRef]

http://doi.org/10.1038/srep18425
http://www.ncbi.nlm.nih.gov/pubmed/26669280
http://doi.org/10.1016/j.gene.2012.12.097
http://www.ncbi.nlm.nih.gov/pubmed/23313820
http://doi.org/10.1002/(SICI)1097-0215(19970904)72:5&lt;768::AID-IJC11&gt;3.0.CO;2-5
http://doi.org/10.1186/1471-2407-11-80
http://doi.org/10.1371/journal.pone.0074115
http://doi.org/10.3390/ijms19010236
http://doi.org/10.1016/j.celrep.2017.01.072
http://doi.org/10.1002/gcc.22360
http://doi.org/10.1371/journal.pone.0100854
http://www.ncbi.nlm.nih.gov/pubmed/24988079
http://doi.org/10.1371/journal.pone.0053310
http://doi.org/10.3324/haematol.2013.089490
http://www.ncbi.nlm.nih.gov/pubmed/23716552
http://doi.org/10.4081/ejh.2014.2433
http://www.ncbi.nlm.nih.gov/pubmed/25578973
http://doi.org/10.1016/S1470-2045(10)70295-3
http://doi.org/10.1186/1471-2407-14-977
http://doi.org/10.1172/JCI76711
http://doi.org/10.1002/ijc.23185
http://doi.org/10.1186/scrt408
http://www.ncbi.nlm.nih.gov/pubmed/12855646
http://doi.org/10.1111/j.1349-7006.2008.00816.x
http://www.ncbi.nlm.nih.gov/pubmed/18422756
http://doi.org/10.1083/jcb.201708064
http://www.ncbi.nlm.nih.gov/pubmed/29434030
http://doi.org/10.1016/j.eururo.2015.11.020
http://www.ncbi.nlm.nih.gov/pubmed/26651925
http://doi.org/10.1038/ng.3221
http://doi.org/10.1038/ng1935


Cancers 2021, 13, 345 24 of 24

68. Kumar, A.; Coleman, I.; Morrissey, C.; Zhang, X.; True, L.D.; Gulati, R.; Etzioni, R.; Bolouri, H.; Montgomery, B.; White, T.; et al.
Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate
cancer. Nat. Med. 2016, 22, 369–378. [CrossRef]

69. Grasso, C.S.; Wu, Y.; Robinson, D.R.; Cao, X.; Saravana, M.; Khan, A.P.; Quist, M.J.; Jing, X.; Robert, J.; Brenner, J.C.; et al. The
mutational landscape of lethal castration-resistant prostate cancer. Nature 2013, 487, 239–243. [CrossRef]

70. Gorlov, I.P.; Byun, J.; Gorlova, O.Y.; Aparicio, A.M.; Efstathiou, E.; Logothetis, C.J. Candidate pathways and genes for prostate
cancer: A meta-analysis of gene expression data. BMC Med. Genom. 2009, 2, 1–11. [CrossRef]

71. Hankinson, S.J.; Fam, M.; Patel, N.N. A review for clinicians: Prostate cancer and the antineoplastic properties of metformin. Urol.
Oncol. 2017, 35, 21–29. [CrossRef] [PubMed]

72. Crawley, D.; Chandra, A.; Loda, M.; Gillett, C.; Cathcart, P.; Challacombe, B.; Cook, G.; Cahill, D.; Santa Olalla, A.; Cahill, F.; et al.
Metformin and longevity (METAL): A window of opportunity study investigating the biological effects of metformin in localised
prostate cancer. BMC Cancer 2017, 17, 494. [CrossRef] [PubMed]

73. Mehlen, P.; Delloye-Bourgeois, C.; Chédotal, A. Novel roles for Slits and netrins: Axon guidance cues as anticancer targets? Nat.
Rev. Cancer 2011, 11, 188–197. [CrossRef] [PubMed]

74. Denduluri, S.K.; Idowu, O.; Wang, Z.; Liao, Z.; Yan, Z.; Mohammed, M.K.; Ye, J.; Wei, Q.; Wang, J.; Zhao, L.; et al. Insulin-like
growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015, 2, 13–25.
[CrossRef] [PubMed]

75. Liu, W.; Hancock, C.N.; Fischer, J.W.; Harman, M.; Phang, J.M. Proline biosynthesis augments tumor cell growth and aerobic
glycolysis: Involvement of pyridine nucleotides. Sci. Rep. 2015, 5, 1–13. [CrossRef] [PubMed]

76. Phang, J.M.; Liu, W.; Hancock, C.N.; Fischer, J.W. Proline metabolism and cancer: Emerging links to glutamine and collagen. Curr.
Opin. Clin. Nutr. Metab. Care 2015, 18, 71–77. [CrossRef]

77. Zhou, J.; Lam, B.; Neogi, S.G.; Yeo, G.S.H.; Azizan, E.A.B.; Brown, M.J. Transcriptome Pathway Analysis of Pathological and
Physiological Aldosterone-Producing Human Tissues. Hypertension 2016, 68, 1424–1431. [CrossRef]

78. Davalieva, K.; Kiprijanovska, S.; Kostovska, I.M.; Stavridis, S.; Stankov, O.; Komina, S.; Petrusevska, G.; Polenakovic, M.
Comparative proteomics analysis of urine reveals down-regulation of acute phase response signaling and LXR/RXR activation
pathways in prostate cancer. Proteomes 2018, 6, 1. [CrossRef]

79. Choi, B.H.; Kwak, M.K. Shadows of NRF2 in cancer: Resistance to chemotherapy. Curr. Opin. Toxicol. 2016, 1, 20–28. [CrossRef]
80. Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of

glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev. 2013, 2013, 972913. [CrossRef]
81. Ribas, V.; García-Ruiz, C.; Fernández-Checa, J.C. Mitochondria, cholesterol and cancer cell metabolism. Clin. Transl. Med. 2016, 5,

1–24. [CrossRef] [PubMed]
82. Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol. 2012, 12, 751–759. [CrossRef]

[PubMed]
83. Leon, C.G.; Locke, J.A.; Adomat, H.H.; Etinger, S.L.; Twiddy, A.L.; Neumann, R.D.; Nelson, C.C.; Guns, E.S.; Wasan, K.M.

Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-
resistant prostate cancer in a mouse xenograft model. Prostate 2010, 70, 390–400. [CrossRef] [PubMed]

http://doi.org/10.1038/nm.4053
http://doi.org/10.1038/nature11125
http://doi.org/10.1186/1755-8794-2-48
http://doi.org/10.1016/j.urolonc.2016.10.009
http://www.ncbi.nlm.nih.gov/pubmed/27836248
http://doi.org/10.1186/s12885-017-3458-3
http://www.ncbi.nlm.nih.gov/pubmed/28732480
http://doi.org/10.1038/nrc3005
http://www.ncbi.nlm.nih.gov/pubmed/21326323
http://doi.org/10.1016/j.gendis.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/25984556
http://doi.org/10.1038/srep17206
http://www.ncbi.nlm.nih.gov/pubmed/26598224
http://doi.org/10.1097/MCO.0000000000000121
http://doi.org/10.1161/HYPERTENSIONAHA.116.08033
http://doi.org/10.3390/proteomes6010001
http://doi.org/10.1016/j.cotox.2016.08.003
http://doi.org/10.1155/2013/972913
http://doi.org/10.1186/s40169-016-0106-5
http://www.ncbi.nlm.nih.gov/pubmed/27455839
http://doi.org/10.1016/j.coph.2012.07.006
http://www.ncbi.nlm.nih.gov/pubmed/22824430
http://doi.org/10.1002/pros.21072
http://www.ncbi.nlm.nih.gov/pubmed/19866465

	Introduction 
	Materials and Methods 
	Source Data 
	Data QC 
	Non-Malignant Tissue Assessment 
	Tumor Content Estimation 
	Stromal Genes Filtering 
	Biological and Laboratory Effects 
	Microarray and RNAseq Data Pre-Processing 
	Data Integration and Molecular Alterations Map Assembly 
	Canonical Pathways Analysis 
	Survival Analysis 
	Experimental Validation—Patient Samples 
	Experimental Validation—quantitative PCR(qPCR) Analysis 
	Quantification and Statistical Analysis 

	Results and Discussion 
	The Transcriptomic Landscape of Prostate Cancer 
	In Silico Predictions Validate in Clinical Samples 
	HGPIN Molecular Changes 
	Pathways Involved in Prostate Cancer Development and Progression are Distinct 

	Conclusions 
	References

