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Simple Summary: Due to its low frequency, high grade colorectal carcinomas (HG-CRCs) are
underrepresented in molecular series. We intended to further characterize the pathological and
molecular features of these tumors. In addition, morphologically different areas when present, were
analyzed separately to study tumor heterogeneity. We found that most (72.5%) of HG-CRCs showed
mismatch repair (MMR) deficiency. MMR status conditioned the frequency and the clonality of the
molecular alterations found. Thus, whereas BRAF mutations and gene fusions were observed only
in MMR deficient (MMRd) tumors, TP53, KRAS, and gene amplifications predominated in MMR
proficient (MMRp) tumors. In MMRp tumors, gene amplification was a mechanism of progression,
whereas the accumulation of mutations in genes of different pathways such as NOTCH, MMR
or PIK3CA was involved in the clonal diversity of MMRd HG-CRC. In summary, intertumor and
intratumor molecular heterogeneity in HG-CRCs is mainly due to MMR status.

Abstract: High grade colorectal carcinomas (HG-CRCs), which comprise 15% of colorectal carcino-
mas, are underrepresented in reported molecular studies. Clinicopathological, immunohistochemical,
and molecular features of 40 HG-CRCs are described. Moreover, glandular and solid areas of
25 tumors were separately analyzed. The expression of MLH1, PMS2, MSH2, MSH6, p53, E-cadherin,
CDX2, CK20, CD8, PDL1, PAN-TRK, c-MET, SMARCB1, ARID1A, SMARCA2, and SMARCA4 was
analyzed by immunohistochemistry. Promoter MLH1 methylation was analyzed in tumors with
MLH1/PMS2 loss. Next-generation sequencing was used to screen 161 genes for hotspot mutations,
copy number variations and gene fusions. In this series, 72.5% of HG-CRCs showed mismatch
repair deficiency (MMRd). MMR deficient tumor and MMR proficient (MMRp) tumors showed
striking molecular differences. Thus, whereas BRAF mutations were only observed in MMRd tumors,
mutations in KRAS and TP53 were more frequent in MMR proficient tumors. Moreover, gene fusions
(NTRK1 and MET) were detected only in MMRd tumors, whereas gene amplification (MYC, CCND1
and EGFR) predominated in MMRp/TP53-mutated tumors. Loss of expression of proteins involved
in chromatin remodeling, such as ARID1A, was observed only in MMRd HG-CRCs, which also
showed more frequently PD-L1 expression and a higher number of tumor infiltrating lymphocytes.
The separate analysis of glandular and solid areas indicated that the clonal or subclonal nature of
the molecular alterations also depended on MMR status. Mutations in genes such as TP53 and
KRAS were always clonal in MMRp-CRCs but occurred as subclonal events in MMRd-CRCs. Gene
amplification was implicated in the progression of MMRp tumors, but not in MMRd tumors, in
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which clonal diversity was due to accumulation of mutations in genes of different pathways such
as NOTCH, MMR, or PIK3CA. In summary, intertumor and intratumor molecular heterogeneity in
HG-CRCs is mainly due to MMR status.

Keywords: colorectal cancer; next generation sequencing; mismatch repair; microsatellite instability;
gastrointestinal pathology

1. Introduction

Histological grade is not only an important prognostic factor in colorectal carcinoma
(CRC), but is also a variable used for therapy selection. Grading is performed on the
basis of architectural criteria. Recently, the new World Health Organization (WHO) clas-
sification of gastrointestinal tumors has recommended the denomination of high-grade
CRC (HG-CRC) to those previously called poorly differentiated (PD) CRCs, which are
characterized by <50% of glandular differentiation [1]. It is estimated that around 15% of
CRC are PD, however reported frequencies ranged from 2.5% to 30% [2–4], indicating only
fair interobserver reproducibility [4]. HG-CRCs do not only include conventional CRC with
a predominant solid component, but also some special histological types characterized by
a solid growth pattern, such as medullary carcinoma (MC) and undifferentiated carcinoma
(UC). According to WHO’s definition, MC is characterized by sheets of malignant cells with
vesicular nuclei, prominent nucleoli, and abundant eosinophilic cytoplasm. In addition,
these tumors have a prominent infiltration by lymphocytes and neutrophils and pushing
borders. UC lack morphological, immunohistochemical, and molecular evidence of differ-
entiation beyond an epithelial tumor. Moreover, they differ from medullary carcinoma in
their lack of pushing borders, syncytial growth pattern, and prominent lymphoplasmacytic
infiltration [1].

However, the diagnosis of MC and or UC based on histological criteria is difficult
and suffers of lack of reproducibility. Thus, two studies have reported that diagnostic
reproducibility of MC was modest with a k value of only 0.32 [5,6]. In addition, some
authors consider the presence of mismatch repair deficiency (MMRd) necessary for the
diagnosis of MC, whereas others note a very strong association but accept that some
medullary MC may not show MMRd. For example, in the study of Gonzalez et al [7],
the authors studied colonic carcinomas with a solid pattern and considered MCs those
showing MMRd and UCs those that were MMR proficient (MMRp). Interestingly, the
authors only observed statistically significant differences between both tumors’ groups
in lymphocyte and neutrophil infiltration, but no differences were observed regarding
syncytial growth, pushing margins, nuclear pleomorphism, prominent nuclei, necrosis,
and mitotic activity, among others.

During the last years, several studies have performed a comprehensive molecular
characterization of CRC [8]. However, to the best of our knowledge, a detailed analysis
of molecular alterations based on the histological grade has not been performed. Due to
low frequency of HG-CRCs, this group of tumors is usually underrepresented in most
reported series.

Most studies analyzing intratumor heterogeneity (ITH) in CRC have evaluated temporo-
spatial differences between primary tumors and metastasis [8]. Only few studies have
evaluated spatial ITH in primary tumors by analyzing different areas of the tumor [9,10],
the allelic frequency of the mutations [11–13], or by single cell analysis [8]. However, to the
best of our knowledge, the possible molecular differences between the glandular and solid
areas of CRCs have not been analyzed previously.

In this study we analyzed the clinical, pathological, immunohistochemical and molecu-
lar features of a group of 40 HG-CRCs. In addition, we analyzed immunohistochemical and
molecular features of glandular and solid areas in tumors with both components, to evalu-
ate ITH and gain insight into the molecular mechanism involved in tumor progression.
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2. Results
2.1. Mismatch Repair Status

A total of 40 CRCs with >50% of solid component were retrieved. For clarity, and
because MMR status was related with clinical, pathological, and molecular features, we
first presented MMR results. A total of 29 CRCs (72.5%) showed loss of expression of
at least 1 MMR protein (Table S1): MLH1/PMS2 in 21 tumors, MSH2/MSH6 in 3 tu-
mors, MLH1/PMS2/MSH6 in two tumors, PMS2 in 1 tumor, MSH6 in one tumor, and
MLH1/PMS2/MSH2/MSH6 in 1 tumor.

In 27 tumors, we demonstrated at least one molecular alteration in MMR genes. The
most frequent alteration was MLH1 promoter hypermethylation, which was present in
21 out of 24 tumors with loss of at least MLH1/PMS2. Two additional cases had an
invalid result.

We detected MSH2 pathogenic mutations in two tumors with MSH2/MSH6 loss and
a pathogenic PMS2 mutation in a tumor with isolated PMS2 loss of expression (Table S1).
According to allelic frequencies, and the lack of these mutations in normal tissue, we con-
sidered them somatic mutations. However, since we did not perform additional techniques
such as Multiplex ligation-dependent probe amplification (MLPA) to detect large deletions,
we could not exclude Lynch syndrome in these patients.

We were able to demonstrate Lynch syndrome in only one out of 29 (3.4%) patients
with MMRd tumors. This patient carried a germline mutation in MSH6 (T29), which
was also present in non-tumor tissue. In a tumor showing the absence of expression of
MSH2/MSH6, we did not find any molecular alteration in MMR genes (T27).

2.2. Clinicopathological Features

The main clinicopathological features and differences according to MMR status are
presented in Table 1. Clinicopathological data of each patient are presented in Table S2.

Table 1. Clinicopathological differences between MMRp and MMRd CRCs.

Variables MMRp MMRd All p
Value

n 11 (27.5%) 29 (72.5%) 40

Age (mean) 74.64 ± 7.553 69.79 ± 14.644 71.12 ± 13.168 0.181

Sex
Female 3 (27.3%) 15 (51.7%) 18 0.165

Male 8 (72.7%) 14 (48.3%) 22

Localization
Right colon 8 (72.7%) 22 (75.9%) 30 0.838

Left colon &
rectum 3 (27.3%) 7 (24.1%) 10

TNM stage
I & II 0 (0.0%) 9 (31.0%) 9 0.036

III & IV 11 (100.0%) 20 (69.0%) 31

Protein
expression

CK20 ≥ 10% 9 (81.8%) 16 (55.2%) 25 0.120

CDX2 ≥ 10% 7 (63.6%) 14 (48.3%) 21 0.385

p53 mutant
pattern 5 (45.5%) 1 (3.4%) 6 <0.001

Loss of
ARID1A 0 (0.0%) 12 (41.4%) 12 0.011

MET ≥ 10% 1 (9.1%) 16 (55.2%) 17 0.008

PDL1 > 1% 2 (18.2%) 17 (58.6%) 19 0.022

CD8 (mean) 2.27 (±3.379) 10.38 ± 8.533 8.15 ± 8.285 <0.001
Continuous variables are expressed as mean ± standard deviation. Percentages are given for discrete variables.
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Mean age of MMRd CRCs was 69.79 years compared to 74.64 years in MMRp CRCs.
Regarding location, 75.9% and 72.7% of MMRd and MMRp CRCs respectively affected the
right or transverse colon. All MMRp CRCs presented in stage III or IV, whereas 31.0% of
MMRd CRCs presented in stages I and II.

In 25 cases (62.5%), areas of glandular differentiation were present. Focal (<10%)
mucinous differentiation was present in four cases (three MMRd and one MMRp). MMR
status is key to grade and to describe clinicopathological features of CRC.

2.3. Molecular Alterations in High Grade Colorectal Carcinoma

The complete set of mutations detected in glandular and solid areas in this study is
presented in Tables S1 and S3. Next generation sequencing average coverage was above
85% and the average depth was above 800X. The most frequent mutations detected in
this series are presented in Figure 1. This Figure also shows the mutation frequencies
according to MMR status. The most frequent mutated genes in the complete series were
FBXW7, BRAF, KRAS, TP53, NF1, and PIK3CA. BRAF mutation were more frequent in
MMRd tumors. In contrast, KRAS and TP53 were more frequently mutated in MMRp.
Mutations that were overrepresented in MMRd included, among others, those affecting
BRAF, MLH1, NOTCH3, RNF43, and CTNNB1. Mutations in PIK3CA, PIK3R1, and PTEN,
three components of the PIK3 pathway, were mutated at a similar frequency in MMRd and
MMRp tumors.
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Only one MMRp tumor carried a pathogenic mutation (P286C) involving the exonu-
clease domain of POLE (T33).
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For comparison, CRCs data from Giannakis et al [14] cohort was analyzed (Figures S1–S4
and Table S6). The series included 47 HG-CRCs among 619 CRCs reported. HG-CRCs
included 25 (53.19%) MMRd tumors, and 20 (42.55%) MMRp tumors. MMR status was
not reported in 2 tumors. When we analyzed the same 114 genes contained in our panel,
the most frequent mutated genes in Giannakis´series [14] were: BRAF, TP53, RNF43,
PIK3CA, FBXW7, ARID1A, and ATM. BRAF was the most frequent mutated gene among
MSI tumors and TP53 among MSS tumors. In contrast to our results KRAS mutations
were in lower frequencies. We also analyzed in Giannakis´series [14] molecular differences
according to histological grade in both MMRd and MMRp tumors. The main differences
are presented in Figures S3 and S4. Interestingly, BRAF and RNF43, two genes frequently
mutated in MMRd CRCs, were also more frequently mutated in MMRp HG-CRCs than in
LG-CRCs in Ginnaki’s series. These results could be in line with those recently reported by
Wang et al [15] who observed that APC wild type MMRp CRCs had poor prognosis and
that in these tumors BRAF and RNF43 mutations were overrepresented. Unfortunately,
histological grade was not reported in Wang’s study.

In our series, we found gene amplifications in 4 tumors. Among MMRp CRCs, we
found MYC and FLT3 amplification in one tumor (T32), MYC and CCND1 amplification in
1 tumor (T36), and EGFR amplification in one tumor (T38). Three of these tumors carried
TP53 mutations. Only one MMRd CRC had MYC amplification (T26).

A total of 3 intergenic gene fusions were found. Two intergenic gene fusions were
detected by Next-generation sequencing (NGS). One MMRd tumor carried the intergenic
fusion TPR(21)-NTRK1(10), which was additionally validated by RT-PCR, Sanger sequenc-
ing, immunohistochemistry and FISH (T7) (Figure 2). Moreover, another tumor carried
the intergenic fusion TBL1XR1(1)–PIK3CA(2) (T1), although orthogonal validation using
RT-PCR and Sanger sequencing could not confirm its presence. In addition, one NTRK1
fusion was detected by FISH in a tumor overexpressing panNTRK (T24). No fusion was
detected in this case by NGS, despite multiple areas of the tumor were analyzed. More-
over, the intragenic fusion MET(13)-MET(15) (MET exon 14 skipping) was detected in two
tumors (T25 and T28) and validated by RT-PCR and Sanger sequencing.

2.4. Molecular Differences between Glandular and Solid Areas

In order to find molecular alterations related to tumor progression, we analyzed
both glandular and solid areas in 25 tumors showing two morphological differentiated
areas (Table S3 and Figure S5). All but one tumor shared at least one molecular alteration
in both components, indicating clonal relationships. The only tumor (T31) in which
different mutations were observed between both areas was a MMRp tumor showing a
KRAS mutation in the glandular area and PIK3CA mutation in the solid area. However, we
cannot exclude a clonal relationship of both components since our panel did not include
APC, which is the most frequent mutated gene in MMRp CRC.

In four MMRd CRCs and two MMRp CRCs (including the only case with POLE
mutation) we observed three or more different molecular alterations between the glandular
and solid areas (Figure 3). In three MMRp tumors with TP53 mutations, amplification of
EGFR (T38), CCND1 (T36), and MYC (T32 and T36) were detected in the solid component
but not in the glandular areas, which were validated by FISH.
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Figure 2. NTRK fusion in tumor T7. (A) Hematoxylin–eosin staining showing a solid carcinoma with a lymphoid infiltrate.
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validation by RT-PCR.

KRAS and TP53 mutations, each of which were present in 3 MMRd tumors, occurred
as subclonal events in two tumors, respectively. In contrast, in MMRp CRCs TP53 and
KRAS were always present in the two analyzed areas suggesting the clonal nature of the
mutation. FBXW7 and PIK3CA mutations, which were frequently mutated in both MMRd
and MMRp tumors, were always clonal in MMRd, but were subclonal in three and two
MMRp tumors, respectively.
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2.5. Immunohistochemical Features

To further characterize HG-CRCs in this series, several immunohistochemical markers
were analyzed (representative figures of positive and negative tumors can be found in
Figure S6). Among differentiation markers, CK20 was positive in nine (81.8%) MMRp
CRCs and in 16 (55.2%) MMRd CRCs. Moreover, CDX2 was retained in seven (63.6%)
MMRp and in 14 (48.3%) MMRd. Therefore, loss of expression of CK20 and/or CDX2
was more frequent in MMRd CRCs than in MMRp CRCs (Figure 4A–C), although these
differences were not statistically significant (Table 1). E-cadherin was completely lost in
only one tumor that was MMRp (T30) (Figure 4D). Additionally, three tumors (two MMRd
and one MMRp) showed E-cadherin loss in solid-undifferentiated areas (T9, T29, and T40).

P53 immunohistochemistry exhibited an aberrant positive pattern in six tumors (five
MMRp and one MMRd) (Table 1), that correlate with TP53 mutation in five cases. One
MMRp tumor showing an aberrant p53 pattern had any mutation discovered in TP53 in
the genomic analysis (Figure 4E). Three additional cases having mutations in TP53 (T7, T9,
and T36) exhibited native p53 immunohistochemical patterns.

We analyzed the expression of several chromatin-remodeling factors. ARID1A loss
was observed in 12 cases, including two cases with focal loss affecting only solid areas
of the tumor. ARID1A loss of expression only occurred in MMRd CRCs (Table 1). In
addition, we observed one tumor with complete absence of SMARCA4 expression (T19)
(Figure 5A,B) which was associated with a truncation mutation (p.Val1171fs) in SMARCA4
(Figure 5D) and one additional tumor with focal loss in areas of dedifferentiation (T10). No
alterations in the expression of INI1 (SMARCB1) and SMARCB2 were detected.
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Figure 5. Tumor T19 mutated in SMARCA4. (A) Hematoxylin-eosin showing a high-grade colorectal carcinoma. (B)
SMARCA4 immunostaining showing a complete loss of expression. (C) PDL1 had a membranous positivity in more than
50% of epithelial cells. (D) IGV view of SMARCA4 c.3512_3513delTG (p.Val1171fs) mutation.
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C-MET was overexpressed in 16 tumors and it was significantly overexpressed in
a higher proportion of MMRd tumors (55.2%) compared with MMRp tumors (9.1%)
(p = 0.008) (Table 1 and Figure 6A,B). Both tumors showing the intragenic fusion MET(13)-
MET(15) (MET exon 14 skipping) where associated with positive c-MET staining (T25
and T28) (Figure 6C). PanNTRK immunohistochemistry showed positive membrane
staining in two tumors (T7 and T24) that harbored NTRK1 intergenic fusion detected
by FISH (Figure 2A–C).
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PD-L1 expression in over 1% of tumor cells was observed in 17 (58.6%) MMRd CRCs
cases (Figure 5C) and in two (18.2%) MMRp. PD-L1 was expressed in more than 50%
of tumor cells in only 2 MMRd CRCs (T3 and T19) (Figure 5C). The mean number of
intraepithelial lymphocytes (TILs) per HPF was 10.38 for MMRd CRCs and 2.27 for MMRp.
26 MMRd tumors (89.7%) (Figure 2F) and 1 MMRp case (9.1%) showed three or more TILs
per HPF.

2.6. Survival

After a mean follow-up of 65 months, there were 12 deaths (41.4%) among patients
with MMRd CRCs and eight (72.7%) deaths among patients with MMRe CRCs. In the
univariate analysis MMRd CRCs showed better survival (log rank p = 0.043, HR = 0.40, 95%
CI = 0.16–1.01, p = 0.052) (Figure 7). Overall survival was also associated with higher stage
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(log rank p = 0.024, HR = 4.74, 95% CI = 1.07–20.95, p = 0.04). Thus, in the multivariable
analysis, after adjusting for stage, the differences in survival were not statistically significant
(HR = 0.58, 95% CI = 0.23–1.49, p = 0.257).
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3. Discussion

In this study, we analyzed the clinical, pathological, inmunohistochemical and molec-
ular features of a group of HG-CRCs and demonstrated intertumor heterogeneity due to
MMR status, as well as intratumor heterogeneity between areas with glandular and solid
growth pattern.

From a morphological point of view, we did not try to differentiate among conven-
tional adenocarcinoma, MC and UC due to lack of reproducibility of morphological criteria
for the diagnosis of MC and the lack of objective biomarkers for the diagnosis of UC.

The frequency of MMRd in our series of HG-CRCs was 72.5%, a proportion similar to
the 78% reported by Gonzalez et al [7] in a series of 51 HG tumors, and slightly higher than
the 53.19% reported by Giannakis et al. [14] in a series of 47 HG tumors.

There are few NGS studies analyzing molecular differences in CRCs according to
MMR status [14,16–19] and there is specific data on HG-CRCs in only one of them [14].
Our series, as well as previous studies, shows that MMRd CRCs had a different mutational
profile when compared to MMRp CRCs, and demonstrated that the most common mutated
gene in MMRd CRCs was BRAF, whereas in MMRp CRCs were KRAS and TP53. The high
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proportion of BRAF mutations in MMRd CRCs is associated with the high prevalence of
tumors with MLH1 promoter hypermethylation. We did not observe BRAF mutations in
MMRp CRCs. In contrast, KRAS occurred in both groups of tumors. However, BRAF and
KRAS mutations were mutually exclusive, since only 1 out of 14 MMRd CRCs that carried
mutations in BRAF and/or KRAS genes had mutations in both genes.

FBXW7, a component of the NOTCH pathway, was frequently mutated in both MMRd
and MMRp CRCs. In addition, FBXW7 mutations were mutually exclusive with TP53
mutations in MMRp CRCs, since only one out of eight tumors that carried TP53 and/or
FBXW7 had both mutations. A previous study has recently reported that MMRd CRC
are enriched in mutations affecting the NOTCH pathway. In this line, we only observed
mutations in NOTCH1, NOTCH2 and NOTCH3 in MMRd tumors. In accordance with
results reported by Trabucco et al [18] we also observed an increased frequency of mutations
in the MMR genes MLH1, MSH2 and MSH6, and in the WNT genes (RNF43 and CTNNB1
-beta-catenin-) in MMRd.

Recent studies have demonstrated that a low percentage of CRCs carry oncogenic
fusions (OF), which confer specific clinicopathologic features to the tumors. Recent studies
have reported that OF are more prevalent among sporadic MMRd CRCs due to MLH1
promoter hypermethylation, that are KRAS and BRAF wild type [20,21]. Thus, whereas
the frequency of OF is <1% in the unselected population of CRCs, this frequency rises to
5% in MMRd CRCs and to more than 50% in MMRd/KRASwt/BRAFwt CRCs [20–23]. In
our series, we detected by NGS and/or FISH 2 intergenic fusions affecting NTRK1 (with
panTRK overexpression) and 2 MET intragenic fusions, which were found in MMRd CRCs
with wild type KRAS and BRAF. However, whereas NTRK1 fusions occurred in tumors with
loss of MLH1 due to MLH1 promoter hypermethylation, the two MET intragenic fusions
occurred in CRCs with somatic mutations in MSH2 and PMS2, respectively. Only a previous
series have reported MET fusions in four CRC [24]. In both series, MET fusions were
associated with MET overexpression. In addition, 15 cases in present series overexpressed
MET without MET fusion or amplification. MET overexpression by immunohistochemistry
has been reported in 33% to 72% of CRC and has been correlated with worse overall and
disease-free survival [25,26]. Interestingly, in our series there was only overexpression in
1 MMRp case, in contrast to previous reports, describing 73% vs 59% in MMRp and MMRd
cases respectively [26].

Consistent with the role of TP53 in promoting chromosome instability, we observed
that gene amplification was more frequent in MMRp (27%) than in MMRd (9%) CRCs.
Although the sample of MMRp CRCs is small, we observed a relatively higher frequency
of amplification in MYC (18%), EGFR (9%) and CCND1 (9%), than previously reported in
largest CRC series, which reported 4.8% to 5.1% of MYC amplification, 0.7% to 1.4% of
EGFR amplification and 0.2% to 0.7% for CCND1 amplification [19,27]. These data, together
with the observation that amplifications occurred as subclonal events in solid areas, suggest
that gene amplification is associated not only with high grade, but also with progression
in CRC.

Considering differentiation markers, we observed several immunohistochemical dif-
ferences between MMRd and MMRp tumors. In our series CK20 was positive in 55.2% and
81.8% of MMRd and MMRp tumors, respectively. Similar results have been previously de-
scribed considering all grades, 37% in MMRd and 88% in MMRp cases [28]. Discriminating
by grade, a 46% and 81% of CK20 positivity has been reported in high-grade and low-
grade CRC, respectively [29]. In our results, CDX2 was positive in 48.3% of MMRd cases
and in 63.6% of MMRp cases, according with previous results considering all grades [30].
However, some authors have reported more elevated rates of positivity in both MMRd and
MMRp tumors, probably related to the clone used [31].

In present series, only a MMRp CRCs that lacked evidence of differentiation and
did not express CK20 and CDX2 showed complete loss of E-cadherin. In contrast, in
endometrial cancer, a tumor with high frequency of MMRd, we have previously reported
that lack of E-cadherin expression is a good subrogate for the definition of undifferentiated
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carcinoma [32]. In addition, 2 MMRd and 1 MMRp tumors lost E-cadherin focally in
solid/undifferentiated areas, with retention of E-cadherin in more differentiated areas,
a situation reminiscent to that reported in dedifferentiated endometrial carcinoma, a
histological type that occurs more frequently in the context of MMRd [33].

One of the most striking differences that we observed between MMRd and MMRp
CRCs was the loss of expression of ARID1A in 41% of MMRd tumors. According to a
recent metanalysis, the frequency of ARID1A mutation and ARID1A protein expression
loss in CRC patients was approximately 12–13% and was significantly associated with
poorly differentiated grade and advanced tumor depth [34].

In the present series, in addition to ARID1A we also evaluated the expression the
SWI/SNF complex components SMARCB1 (INI1), SMARCA4 (BRG1) and SMARCA2.
We only found one case with complete loss of SMARCA4. This tumor carried a somatic
mutation of the gene, which probably was associated to a second hit not detected in our
molecular analysis. In addition, focal loss of SMARCA4 was observed in undifferentiated
areas of one additional tumor, with retained expression in the glandular areas. Absence
of SMARCA4, which is typical of the small cell carcinomas of the ovary [35] and occurs
in some undifferentiated/dedifferentiated endometrial carcinomas [36], seems to be very
infrequent in CRC. To the best of our knowledge, no cases of complete absence of ex-
pression have been reported. Vanacker et al [37] reported a case in which a SMARCA4
mutation was detected in the neuroendocrine component of a mixed adenoneuroendocrine
carcinoma of the colon, but no immunohistochemical study was performed to confirm
its impact on protein expression. The loss of SMARCA4 expression has been reported
occasionally in undifferentiated carcinomas with rhabdoid features in the small intestine
and stomach [38,39].

PD-L1 expression and the presence of TILs has been associated with microsatellite
instability in CRC [40,41]. In our series of high-grade CRCs, we confirmed this association,
PDL1 was expressed in more than 1% of epithelial cells in 58.6% of MMRd tumors and in
18.2% of MMRp tumors. Median of TILs per HPF in MMRd cases was 10.38 in contrast with
2.27 in MMRp cases. This fact supports the use of immunotherapy in MMRd CRCs [42].

In this study, we analyzed glandular and solid areas in 25 CRCs and demonstrated
the clonal relationship between them. Although in most cases the number of different alter-
ations in both areas were limited, some cases showed a high degree of ITH, as illustrated
by tumor T9 differing in 125 mutations between the two components. A higher degree
of ITH was detected, as expected, in MMRd CRCs, and in the POLE-mutated tumor. In
the three tumors with the higher degree of ITH, subclonal mutations in additional MMR
genes occurred in the solid areas, suggesting a role of secondary MMR gene mutations
in progression.

Studies on spatial heterogeneity in primary CRCs are scarce and have suggested that
mutations in APC, TP53, KRAS, and FBXW7 are clonal, whereas alterations in PIK3CA
and MYC are frequently subclonal [9,12]. However, these studies did not differentiate
between MMRd and MMRp CRCs. Our results suggested that the clonal or subclonal
nature of the molecular alteration in one specific gene depends on the molecular context.
Thus, genes whose mutations were always clonal in MMRp CRCs, such as TP53 and KRAS,
occurred as subclonal events in some MMRd CRCs. Moreover, genes which mutations
were always clonal in MMRd CRCs, such as FBXW7 and PIK3CA, occurred as subclonal
events in some MMRp CRCs. In addition to these molecular differences, the most striking
immunohistochemical differences between solid and glandular areas were the complete
loss of SMARCA4 in the solid component in one tumor and the focal loss of ARID1A in the
undifferentiated area of two tumors. Moreover, the loss of E-cadherin was proven in solid
areas of three tumors that retained its expression in the glandular component. All but one
of these focal losses of E-cadherin occurred in MMRd.

MMRd is reported to be a favorable prognostic factor in CRC [16]. Accordingly, we
observed a longer survival in MMRd HG-CRCs in the univariate analysis. However, no
significant differences in survival were found between MMRd and MMRp HG-CRCs after
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adjusting for stage, although this should be interpreted with caution due to the limited
number of cases included in the study.

4. Materials and Methods
4.1. Cohort Selection

Tumors with a diagnosis of poorly differentiated and undifferentiated CRC in our
institution were retrieved and reviewed by three Pathologists (CP, AN, JP). Final selection
criteria were a solid pattern >50% and tissue available for molecular and immunohisto-
chemical analysis. Cases with mucinous differentiation were excluded except if it was less
than 10% of the tumor. Clinical (age, localization treatment, and outcome) and pathological
data (size, lymph node metastasis) were obtained from clinical and pathological records.

4.2. Immunohistochemistry

Representative areas of the tumors were selected on hematoxylin and eosin-stained
sections and marked on individual paraffin blocks. Two tissue cores (1 mm in diameter)
were obtained from each specimen. The tissue cores were arrayed into a receptor paraffin
block using a tissue microarray (TMA) workstation (Beecher Instruments, Silver Spring,
MD, USA). Cores from the solid and glandular areas were obtained (when available).
Immunohistochemistry was performed on TMA sections using the following antibodies:
MLH1, PMS2, MSH2, MSH6, p53, E-cadherin, CDX2, CK20, CD8, PDL1, PAN-TRK, c-MET,
SMARCB1, ARID1A, SMARCA2, and SMARCA4. Clones, suppliers, and dilutions are
presented in Table S4.

4.3. Nucleic Acid Extraction and Sequencing

For nucleic acid extraction, paraffin blocks were punched in the area selected in
the hematoxylin and eosin-stained tissue sections containing at least 75% of tumor cells.
DNA and RNA were extracted using RecoverAll Total Nucleic Acid Isolation Kit for
FFPE (Invitrogen, Carlsbad, CA, USA) following the manufacturer´s instructions. The
quantification of DNA and RNA were fluorimetrically performed. Qubit dsDNA high-
sensitivity assay kit (Invitrogen, Carlsbad, CA, USA) was used to quantify DNA and Qubit
RNA high-sensitivity assay kit (Invitrogen) was used to quantify RNA.

For NGS, we used the Oncomine Comprehensive Assay v3 (OCAv3, Thermo Fisher
Scientific, Waltham, MA, USA). OCAv3 is a pancancer targeted NGS panel screening for
161 genes, detecting hotspot mutations in 87 genes, covering all exons of 48 genes, detecting
copy number variations (CNVs) in 47 genes, and detecting 51 gene fusions (inter- and intra-
genic). An Ion Chef Instrument (Thermo Fisher Scientific, Waltham, MA, USA) was used for
the automated libraries preparations. NGS libraries were sequenced in an Ion S5 using Ion
540 Chef Kit (Thermo Fisher Scientific) and the data were analyzed using Ion Reporter Soft-
ware 5.10 with default settings (Thermo Fisher Scientific). DNA and RNA sequencing data
were accessed through the Torrent Suite program (5.10 version-Thermo Fisher Scientific).
Reads were aligned with the GRCh37-hg19 human reference genome, and potential muta-
tions and copy number alteration were called with the use of Ion Reporter™ Software (5.10
version-Thermo Fisher Scientific), these processes were done following the manufacturer´s
instructions (https://www.thermofisher.com/es/en/home/technical-resources/technical-
reference-library/next-generation-sequencing-support-center/ngs-software-support.html).
These processes were done following the manufacturer´s instructions. Additionally, we
incorporated an analysis filter selecting only those variants with >500 reads and allelic fre-
quency >5% [43]. The variant calls were manually checked using the integrative genomics
viewer (IGV, Broad Institute, Cambridge, MA, USA). Germline mutations were considered
based on allelic frequency close to 50% and using the Exome aggregation consortium
database (http://exac.broadinstitute.org/) and the human genetic variation database (
http://www.genome.med.kyoto-u.ac.jp/ SnpDB) DNA mutations and CNVs were an-
alyzed in 40 tumors, whereas gene fusions were only tested in 35 cases. ARID1A was
excluded from our analysis because our NGS technique has poor specificity to discriminate

https://www.thermofisher.com/es/en/home/technical-resources/technical-reference-library/next-generation-sequencing-support-center/ngs-software-support.html
https://www.thermofisher.com/es/en/home/technical-resources/technical-reference-library/next-generation-sequencing-support-center/ngs-software-support.html
http://exac.broadinstitute.org/
http://www.genome.med.kyoto-u.ac.jp/
http://www.genome.med.kyoto-u.ac.jp/
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nucleotide changes in homopolymer regions and ARID1A tends to accumulate mutations
in these regions [44]. Fusions detected by NGS were confirmed by RT-PCR and Sanger
sequencing. The primers used for target amplification are presented in Table S5. Genes
differentially mutated between glandular and solid areas were reviewed to avoid false
negative results in any area due to low coverage. Figure 1 showed a combination of the
mutations in solid and glandular compartments.

4.4. MLH1 Promoter Methylation

All cases with loss of MLH1 expression were tested for MLH1 promoter methylation
to discriminate sporadic tumors from presumptive Lynch syndrome associated carcinomas
using the EpiTect Fast DNA Bisulfite Kit and EpiTect MSP Kit (Qiagen GmbH, Hilden,
Germany) following the manufacturer’s instructions. DNA was extracted from complete
tissue sections. No attempt was made to separately analyze glandular and solid areas.

4.5. Fluorescence In Situ Hybridization

Detection of translocations involving human NTRK1 region (1q23.1) was performed by
FISH analysis using the ZytoLight SPEC NTRK1 Dual Color Break Apart Probe (ZytoVision
GmbH, Bremerhaven, Germany). Cutoff value was set at 15%. CCND1 amplification status
was analyzed using ZytoLight SPEC CCND1/CEN 11 Dual Color Probe (ZytoVision GmbH,
Bremerhaven, Germany). A CCND1/CEN 11 ratio >2.0 was considered positive. Study
of chromosomal region 8q24.21 harboring the MYC gene was carried out with ZytoLight
SPEC MYC Dual Color Break Apart Probe (ZytoVision GmbH, Bremerhaven, Germany).

4.6. Public Repository Data Analysis

In order to compare our molecular results with other studies that included a more
extensive cohort of HG-CRC, mutations and clinical data of Giannakis et al. 2016 [14]
were downloaded from cBioPortal. Due to the mutation dataset was generated through
WES, we subset 114 genes of our gene panel included in our analysis. The resulting
mutation dataset was divided into two groups for study differences in the mutation
profiles: Differentiation Grade (Well-Moderate and Poorly) and MSI Status (MSI-High and
MSS). We performed statistical analysis using maftool package in R and an exact Fisher-test
to find overrepresented mutated genes and frequency comparison.

4.7. Statistical Analysis

Contingency tables were used to summarize the relationship between categorical
variables, such as sex, T (TNM 8th edition) stage and protein expression according to IHC
staining. TNM stage was divided into two categories (I & II and III & IV) for analysis.
T-test (with Welch’s correction when with unequal variance) was applied for analysis of
age and to compare CD8+ tumor infiltrating cells (TILs) in the epithelium between MMRd
and MMRp CRCs. Overall survival was plotted in a Kaplan–Meier curve. A long-rank
test and a univariate Cox proportional hazard model was used to compare this parameter.
Multivariate Cox proportional hazard regression model was also used to evaluate the prog-
nostic significance of the variables. The data were analyzed using statistical software IBM
SPSS V19 (Armonk, NY, USA). Differences were considered significant with p values <0.05.

5. Conclusions

In summary, this study shows that intertumor and intratumor molecular heterogeneity
in HG-CRCs is mainly due to MMR status.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/2/233/s1, Figure S1: Oncoplot summarizing the molecular alterations found in Giannakis’
series applying the same panel of genes described in our series, Figure S2: Oncoplot summariz-
ing the molecular alterations found in high-grade tumors in Giannakis’ series applying the same
panel of genes described in our Figure 1, Figure S3: Most significant different genes mutated be-
tween well-differentiated and undifferentiated microsatellite stable tumors in Giannakis’ series,
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Cancers 2021, 13, 233 15 of 17

Figure S4: Most significant different genes mutated between well-differentiated and undifferentiated
microsatellite unstable tumors in Giannakis’ series, Figure S5: Evolutionary trees of all high-grade
colorectal carcinomas included in our series, Figure S6: Representative positive and negative figures
of immunohistochemical staining, Table S1: Microsatellite instability analyzed by patient, Table S2:
Clinicopathological data by patient, Table S3: Complete set of mutations detected in glandular
and solid areas, Table S4: Immunohistochemistry antibodies, Table S5: Primers designed for the
validation of fusions and their location in the target, Table S6: Differences between MSI and MSS
CRCs according to stage in Giannakis’ series.
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