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Simple Summary: The peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTA-octreotate
(LuTate) is recommended for neuroendocrine tumors (NETs) which overexpress somatostatin re-
ceptors (SSTR). A combination of LuTate with chemotherapy improves its objective response in
NET patients, and here we characterized chemotherapy-induced upregulation of SSTR2 receptors
as a cause for this improved response to LuTate. Using multiple NET and non-NET cell lines, we
examined the SSTR2 expression for up to 7 days after exposure to drugs and its effect on LuTate
uptake and cell proliferation. We report that the exposure to varying doses of chemotherapeutic
drugs such as temozolomide for 24 h or 5 days results in upregulation of SSTR2 receptors between
3–7 days. This effect is more pronounced in low SSTR2 expressing BON-1 cells than in high SSTR2
expressing NCI-H727 or non-NET cancer or non-cancer cells. Thus, a properly-timed pre-treatment
with low doses of chemotherapy could improve therapeutic efficacy of LuTate in NET patients.

Abstract: The peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTA-octreotate (LuTate) is
recommended for different types of neuroendocrine tumors (NETs) which overexpress somatostatin
receptors (SSTR). A combination with chemotherapy improves objective response to LuTate in NET
patients and here we characterized chemotherapy-induced upregulation of SSTR2 receptors as a
cause for this improved response to LuTate. The NET cell lines with low (BON-1) or relatively
high (NCI-H727) SSTR2-expression levels, and non-NET cancer and normal cells were treated with
chemotherapeutic drugs and assessed for upregulation of SSTR2. We report that an exposure to low
or high doses of drugs, such as temozolomide for 24 h or 5 day results in upregulation of SSTR2
between 3–7 days, increased LuTate uptake and decreased rate of cell proliferation. This effect is at the
level of SSTR2-mRNA and is more pronounced in low SSTR2 expressing BON-1 than in high SSTR2
expressing NCI-H727 or non-NET cancer or normal cells. Thus, a properly timed pre-treatment
with low-dose chemotherapy could not only improve therapeutic efficacy of LuTate in NET patients
who are presently eligible for PRRT, but also allow PRRT to be administered to patients with low
SSTR-expressing NETs, who would otherwise not respond to this modality because of insufficient
radiation delivery.

Keywords: NETs: neuroendocrine tumors; SSTR: somatostatin receptors; PRRT: peptide receptor
radionuclide therapy; LuTate: 177Lu-DOTA-octreotate; chemotherapy
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1. Introduction

Neuroendocrine tumors (NETs) are rare cancers derived from enterochromaffin cells
of the diffuse neuroendocrine system. They are most frequently observed in the gas-
trointestinal tract and bronchopulmonary system [1–3]. Surgery is a curative option for
localized NETs, but for the majority of the patients, a delayed diagnosis associated with
distant metastases necessitates systemic treatment. Since NETs often overexpress somato-
statin receptors (mostly SSTR2), most patients receive somatostatin analogs (SSA), such
as octreotide or lanreotide, which were initially developed for palliation from the debili-
tating symptoms caused by hormones and bioactive substances released by functioning
NETs. In the randomized phase 3 clinical trials, SSAs have also been shown to prolong
progression-free survival through growth inhibition of low-grade NETs [1,4,5]. However,
SSA rarely cause an objective response, i.e., tumor shrinkage [6]. After progression on
SSAs, or for more aggressive NETs with high proliferative index, other systemic options
include targeted biotherapies such as everolimus or sunitinib, as well as chemotherapeutic
drugs, such as temozolomide (TEM), streptozotocin (STZ) and 5-fluorouracil (5-FU) or its
pro-drug form, capecitabine (CAP). More recently, peptide receptor radionuclide therapy
(PRRT) has emerged as another option for systemic therapy of NETs. PRRT involves use of
SSA tagged with radionuclides, such as 111In, 90Y or 177Lu to deliver targeted therapeutic
internal radiation to NET cells [7]. 177Lu-DOTA-octreotate (LuTate or 177Lu-DOTATATE;
Lutathera®) is the preferred PRRT radiopharmaceutical to date due to its high affinity to
SSTR2 and its optimal β-particle energy offering improved response rates over 111In-based
PRRT and lesser potential for toxicity than 90Y-based PRRT [8]. In a randomized trial,
LuTate provided longer progression-free survival and improved quality of life as compared
to long-acting octreotide [9,10]. PRRT efficacy figures are also more favourable than chemo-
or biotherapies [8,11,12]. The recent guidelines recommend LuTate PRRT as appropriate
therapy for patients with NETs of midgut, pancreas and of unknown origin, as well as for
lung-NET, paraganglioma and pheochromocytoma under specific conditions [13].

Despite being one of the most successful targeted therapies for NETs so far, PRRT needs
to be improved, because complete remissions are anecdotal, and a risk of significant toxicity
remains an obstacle to administer higher radioactivity to all patients [9,14]. Moreover, the
current clinical decision algorithms exclude PRRT for a substantial number of NET patients
whose tumors are of high grade (hence poor prognosis) or classified as having low SSTR
expression, i.e., tumor uptake of 68Ga-DOTATATE on PET scan that is less than that by
liver; and thus benefit to risk ratio is deemed to be poor for such patients [13]. Therefore,
various approaches are being assessed for improving PRRT including modification in the
radiopharmaceutical molecule by use of α-emitting isotopes or attaching the radiolabel to
SSTR antagonists instead of agonist like octreotide/octreotate [15,16]. Another promising
approach is to combine LuTate PRRT with other agents to potentiate its effect on NET via
different routes, such as improved tumor perfusion of LuTate, upregulation of SSTR in
tumor to increase the uptake of LuTate, inducing additional lethal or sublethal damage with
other agents including chemotherapeutic drugs or inhibition of allied pathways associated
with tumor’s response to LuTate therapy, as reviewed recently by us [12].

Some clinical studies have shown that therapeutic combination of LuTate with TEM
and/or CAP is well tolerated with substantial tumor control in different types of NETs [17,18]
and a durable objective response in pancreatic NETs [19]. However, these studies did
not directly compare the advantage of combining LuTate with chemotherapy over LuTate
alone, which is being addressed in an ongoing phase II clinical trial involving pancreatic
and midgut NETs [20]. From clinical reports, the effect of chemotherapy on enhancing
uptake of PRRT is not clear, because in one series of three patients, a significant increase in
the uptake of 68Ga-DOTATATE was seen several months after treatment with everolimus or
CAPTEM [21], whereas in another series of 10 patients treated with LuTate with or without
CAPTEM, no increase in tumor uptake of LuTate occurred over a 15-day period [22].

Studies with NET and non-NET cells in vitro or in animal models have examined the
influence of chemotherapy on SSTR2 expression or LuTate uptake with variable results.
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In four different non-NET pancreatic cancer cell lines which largely express SSTR3 and
no significant levels of SSTR1 or SSTR2, treatment with various chemotherapeutic agents
decreased the high-affinity binding sites for 111In-labeled lanreotide derivative DOTA-
LAN; and increased or decreased the low-affinity binding sites after a few days [23]. In
three different NET cell lines, treatment with 5-FU for 72 h resulted in none, modest or
significant increase in expression of SSTR2 levels in GOT1, NCI-H727 and BON-1 cells,
respectively, which could be consistently increased in all cell lines by additional treatment
with epigenetic modifiers [24]. In a mouse model of NET tumor with H69 small cell
lung cancer cells, a 14-day treatment with TEM did not increase SSTR2 density on cells,
but increased the tumor uptake of 111In-octreotide or LuTate due to increased tumor
perfusion of the radiopharmaceutical [25]. Together these studies reveal the potential of
chemotherapy to improve therapeutic efficacy of LuTate PRRT, provided there is a better
understanding of the mechanism of this action. Here, using NET cells in vitro, we show
that a single dose of chemotherapeutic agents, such as TEM results in a delayed but specific
upregulation of only SSTR2 among all five SSTR subtypes, which results in a significantly
higher uptake of LuTate. Moreover, this benefit is more pronounced in the low SSTR2-
expressing BON-1 cells than in high SSTR2 expressing NCI-H727 cells, indicating another
potential clinical advantage of making patients with low SSTR2-expressing NETs eligible
for PRRT.

2. Results
2.1. Co-Administration of Chemotherapeutic Drugs Increase Uptake of LuTate in Low
SSTR2-Expressing BON-1 Cell

To determine the effect of chemotherapy on SSTR-mediated uptake of LuTate by
NET cells, we used a pair of low and high SSTR2-expressing cells, BON-1 and NCI-H727,
respectively. In these cells, we have previously shown that the extent of intracellular
uptake of LuTate after a 5-day exposure was commensurate with the expression levels
of SSTR2 and SSTR5 [26]. Here, we first examined whether the co-administration of
different chemotherapeutic drugs could influence the uptake of LuTate by these cells. For
BON-1 cells, the extent of LuTate uptake was significantly increased from 5- to 16-fold
by co-administration of 200 µM TEM, 0.5 mg/mL STZ, 15 µM 5-FU or a combination of
STZ+5-FU (Figure 1A, left panel). As expected, the basal level uptake of LuTate in the high
SSTR-expressing NCI-H727 cells was ~5-fold greater than in BON-1 cells (Figure 1A, both
panels). However, the drug-induced increase in the uptake of LuTate in these cells was a
more modest but significant 1.9- to 3.4-fold (Figure 1A, right panel). Interestingly, the levels
of LuTate uptake in BON-1 cells treated with TEM or STZ was 4 times more than the basal
uptake of LuTate in NCI-H727 cells and comparable to that in some of the drug-treated
NCI-H727 cells.

To measure the consequence of increased uptake of 177LuTate, we determined the
proliferation rate of BON-1 and NCI-H727 cells by counting viable cells at 96 h after
treatment of an identical set of cells with drugs and LuTate, exactly as described above
(Figure 1B). The comparison of viable cell-counts at the start and end of the protocol
revealed that the untreated BON-1 cells multiplied ~12-fold during the experimental period,
and LuTate treatment slightly, but significantly suppressed it to 9-fold growth (Figure 1B,
left panel). The treatment with only TEM or STZ caused a significant suppression with
only 3- to 4-fold increase in the viable cell count. However, a combination treatment of
cells with LuTate and either of these two drugs completely suppressed proliferation of
BON-1 cells and even decreased the viable cell count indicating cytostatic and cytotoxic
effect of the combination therapy. Unlike TEM or STZ, the treatment with 5-FU and 5-
FU+STZ that caused a 5- to 8-fold increase in uptake of LuTate (Figure 1A, left panel)
did not translate into additional suppression of growth of cells (Figure 1B, left panel). A
near total suppression of growth of BON-1 caused by given doses of these two drugs may
be the cause for lack of any additional cytostatic or cytotoxic effect of LuTate treatment.
Unlike BON-1 cells, the NCI-H727 cells were very sensitive to growth inhibitory effects
of each of these drugs per se at their given doses, and there was no significant additional
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cytostatic effect of LuTate on these drug-treated cells (Figure 1B, right panel). Our results
indicate that a moderate growth suppressive effect of LuTate in the low SSTR-expressing
BON-1 cells can be potentiated by sub-toxic doses of drugs that increase the uptake of
LuTate. Therefore, we focused on BON-1 cells for further characterization of upregulation
of LuTate-uptake in response to lower sub-toxic doses of drugs, with a view that this could
lead to a clinically relevant benefit for patients with low SSTR-expressing tumors [12,13].
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2.2. A Delayed Upregulation of SSTR2 in TEM-Treated BON-1 Cells

We first examined whether an increased expression of the principle somatostatin
receptor SSTR2 could be one of the reasons for an increased uptake of LuTate in the TEM-
treated BON-1 cells, as described above in Figure 1A. Indeed, the immunoblotting of these
cells harvested at 5 days after treatment with the drugs and LuTate exhibited a robust
drug-induced increase in expression of SSTR2 (Figure 2A). Next, we characterized the drug-
induced upregulation of SSTR2 in BON-1 cells at multiple levels, such as the time-course
of upregulation, minimum treatment time and dose of drug required for upregulation,
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and whether the drug and LuTate need to be administered together or sequentially. To
address these questions, we treated the cells with TEM for either one or five days at 0 (mock
control), 30, 100 or 300 µM doses and compared the SSTR2 expression daily from 2–7 days
(Figure 2B). At all doses of TEM, the SSTR2 upregulation began from 3–4 days and peaked
between 5–7 days. The upregulation was stronger at higher (100 and 300 µM) doses than at
lower (30 µM) dose. Interestingly, the shorter 24 h treatment with the drug was as efficient
as the continuous 5-day treatment in causing the same pattern of delayed upregulation
of SSTR2 (Figure 2B). Lastly, the peak SSTR2 levels remained stable for two more days
after the 5th day, irrespective of whether the drug was removed after 24 h or 5 days. Thus,
TEM-induced upregulation of SSTR2 in BON-1 cells exhibited two key characteristics,
namely a brief 24 h exposure to TEM was as efficient as long-term (5d) exposure, and the
time-delayed upregulation of SSTR2 from 3–5 days persisted at high levels until 7 days.
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Figure 2. Effect of time and dose of TEM treatment on the time course of upregulation of SSTR2 in BON-1 cells. (A)
Chemotherapy-induced upregulation of SSTR2 at five days in BON-1 cells. BON-1 cells treated with different drugs and
LuTate for five days, as described in Figure 1A, were separately processed for immunoblotting for SSTR2. (B) TEM treatment
time and dose-response on time-course of SSTR2 upregulation. BON-1 cells treated for 24 h (24 h lanes) or continuously
for 5 days (Cont lanes) with specified doses of TEM or mock-treated controls (C-lanes) were harvested over 7 days for
assessment of SSTR2 expression by immunoblotting. Ponceau S staining is shown as loading control. The blots shown here
represent identical results obtained in at least two independent experiments for all the conditions.

2.3. Sequential Treatment of TEM and LuTate Also Increases Intracellular Uptake of LuTate in
BON-1 Cells

In view of the 6.7 days half-life of 177Lu and the 5- to 7-day lag period for peak
upregulation of SSTR2 after 24 h treatment with TEM, we reasoned that an optimum
schedule of treatment would be to wait for about 5 days after 24 h treatment with TEM
before administering LuTate to ensure that the radiolabel is delivered at the peak expression
of the receptor. To test this concept, we exposed BON-1 cells to 30 or 100 µM TEM for
24 h, followed by recovery in drug-free medium up to 7 days. During the recovery period,
their capacity for LuTate uptake was measured each day from 4–7 days after a brief 3 h
exposure to LuTate (Figure 3A). The uptake of LuTate was 5- to 9-fold greater from 4 to
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7 days in 30 or 100 µm TEM treated cells, as compared to mock-treated cells where LuTate
uptake remained unchanged during this period. These results indicate that the sequential
administration of TEM followed by delayed administration of LuTate also benefits from
TEM-induced upregulation of SSTR2 in a 4–7 days window after TEM treatment. We
confirmed using multiple dose and time exposure of BON1 cells to LuTate that a brief
(3–6 h) exposure to LuTate is sufficient to measure LuTate uptake by these cells (Figure 3B).
Moreover, we confirmed that ~85% of total LuTate taken up by the cells is internalized
and resistant to acid-wash, whereas residual LuTate that could be eluted with acid wash
was either on the SSTR2 receptors or non-specifically bound to the plasma membrane
(Figure 3C).
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Figure 3. TEM-induced increase in uptake of LuTate by BON-1 cells. (A) LuTate uptake by TEM-
treated BON-1 cells. BON-1 cells treated for 24 h with 30 or 100 µM TEM (or mock) and allowed to
recover in fresh medium for 7 more days. The cells were exposed for 3h to LuTate on days 4–7 after
TEM treatment, and harvested for measuring LuTate uptake and viable cell count. Data derived
from triplicate samples of four independent experiments is represented as mean ± SE (B) Dose and
time-dependent uptake of LuTate by BON-1 cells. The BON-1 cells were incubated for 3 or 6 h with
specified doses of LuTate and assessed for total cellular uptake of radiolabel. (C) Distribution of
total LuTate uptake as internalized in the cell versus plasma membrane-bound activity. BON-1 cells
treated for 3 h with 125 KBq LuTate were processed for measuring total, internalized (acid wash
resistant) and membrane bound (acid-wash removable) LuTate. For panels B and C, the data derived
from two experiments, each with triplicate dishes are represented as Mean ± SE (n = 6).
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2.4. TEM Treatment Specifically Upregulates mRNA of SSTR2 among Five SSTRs

In order to examine the cause for drug-induced increase in SSTR2 in BON-1 cells,
we examined the abundance of mRNA for all five SSTR genes by qRT-PCR for 6 days
after treatment with even lower dose (10 µM) of TEM (Figure 4A). When normalized for
expression levels of either of the two of the control genes GAPDH or G6PD, only the
expression of SSTR2 revealed an upregulation starting at third day and peaking around
fifth day (Figure 4A). We confirmed that there was an absolute increase in copy number
of SSTR2 mRNA during this period. The identical increase in the abundance of SSTR2
transcript relative to two different control genes G6PD and GAPDH, and the lack of
upregulation of other SSTR in the same samples, together exclude unrelated variation
in the mRNA of control or SSTR genes skewing the results. It is also noteworthy that
BON-1 cells have undetectable levels of SSTR4 and higher expression of SSTR5 than
SSTR2, but the treatment that increased SSTR2 did not alter levels of these low or high
expressing SSTR genes, supporting the argument for selective upregulation of SSTR2. The
increased transcription of SSTR2 at 4–5 days was confirmed by immunoblotting for SSTR2
in protein extracts of these cells harvested daily up to 6 days (Figure 4B). Thus, the increased
transcription of SSTR2 gene is a key factor in the drug-induced upregulation of SSTR2
protein and consequent increase in the uptake of LuTate by these cells. We confirmed using
3D spheroids of BON-1 cells [26] that 10 µM TEM treatment for 24 h upregulates SSTR2
expression from 4–6 days as compared to mock-treated spheroids (Figure 4C).

2.5. Effect of Sequential Treatment with Drugs and LuTate on LuTate Uptake and Cell Proliferation

We examined the effect of 24 h treatment with 10 µM TEM, 10 µM 5-FU or 50 µg/mL
STZ on LuTate uptake at the 5th day (Figure 5A) and cell proliferation at the 10th day, i.e.,
five days after administration of LuTate (Figure 5B). The uptake of LuTate was increased
by 2-, 2.9- and 7.8-fold in response to TEM, 5-FU and STZ, respectively (Figure 5A). The
uptake of LuTate after drug treatment was mediated by SSTR, because it was between
5–20 times stronger than the non-specific adsorption of radiolabel to the cells as determined
by incubation with equivalent radioactivity from 177Lu-DTPA (Figure S1). In terms of
suppression of proliferation rate of cells, while LuTate and TEM had some effect in reducing
the growth rate of BON-1 cells, the sequential treatment with 10 µM TEM and LuTate caused
a significantly greater growth-suppressive effect than that caused by either treatment alone
(Figure 5B). In case of STZ, the drug alone caused a significant decrease in proliferation
of cells, but addition of LuTate almost totally suppressed the growth of these cells. For
5-FU-treated cells, there was a moderate suppression of growth by the drug, which was
not increased by treatment with LuTate (Figure 5B) despite 3-fold more uptake of LuTate,
as noted above in Figure 5A. We noted that this is largely due to cells being pushed into
senescence by 5-FU treatment, which could be reversed by treatment with Rapamycin, 5 h
before treatment with 5-FU (Figure S2). Collectively, these results show that combined
or sequential treatment with sub-toxic doses of TEM and STZ stimulates expression of
SSTR2 in low SSTR2-expressing BON-1 cells, which results in increased LuTate-uptake
and improved therapeutic response that is significantly higher than that observed with the
drug or LuTate alone. Moreover, in case of 5-FU, the drug-induced senescence appears to
be a major factor in reducing the impact of uptake of LuTate on cell growth and this could
be alleviated by use of senescence inhibitor.
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2.6. Comparison of TEM-Induced Uptake of LuTate by NET and Other Normal or Cancerous Cells

Finally, we compared the pancreatic and lung NET cells (BON-1 and NCI-H727,
respectively) with other cancer cell lines, such as U2OS, MCF7, HeLa and H187, and
normal cells (NL-20 and HEK) for alterations in their capacity for uptake of LuTate at
the 5th day after 24 h treatment with 30 µM TEM (Figure 6). We confirmed that LuTate
uptake in low SSTR2-expressing BON-1 cells increased by about 5.9-fold in response to
TEM treatment, as compared to 1.6-fold in high SSTR2 expressing NCI-H727 cells. The
HEK cells derived from kidney, which have basal expression of SSTR2 similar to BON-1
cells, responded to TEM treatment with only 1.6-fold increase in LuTate uptake, which
is 4-fold less than the response of BON-1 cells. The basal LuTate uptake in HeLa, NL-20
and MCF-7 was very low and despite TEM-induced increase in uptake ranged from 1.1- to
17.7-fold, none of these TEM-treated cells took up more than 5% of the uptake by TEM-
treated BON-1 cells. The low basal uptake of LuTate in untreated H187 small cell lung
cancer cells increased by ~2-fold after TEM treatment, but it was still 10-times less than
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seen in TEM-treated BON-1 cells. Lastly, the untreated U2OS osteosarcoma cells, which
had basal LuTate uptake that was almost 5-fold more than BON-1, exhibited a modest
1.6-fold increase in LuTate uptake after TEM treatment that was similar to that seen is
high SSTR2-expressing NCI-H727 cells. These results suggest that TEM treatment induced
upregulation of SSTR2 and LuTate uptake in NET cells may not be observed in other
non-target organs irrespective of whether these organs had a tendency for low or high
levels of uptake of LuTate before chemotherapy.
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in LuTate uptake. The TEM-induced changes in uptake of LuTate by NET cell lines BON-1 and
NCI-H727 was compared with other cancer cell lines, such as U2OS (osteosarcoma), HeLa (cervical
cancer), MCF7 (breast cancer) and H187 (small cell lung cancer), as well as with two normal cell
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quadruplicates were treated for 24 h with 30 µM TEM followed by recovery in fresh medium for five
days. Cells were exposed for 4 h to LuTate followed by cell count and measurement of LuTate uptake
per million cells, expressed as Mean ± SD.

3. Discussion

We observed that the exposure of low SSTR2-expressing BON-1 cells to a chemother-
apeutic agent TEM at varying doses (from 10 to 300 µM) for 24 h or 5-days results in a
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significant upregulation of SSTR2 between 3–7 days. The SSTR2 upregulation is associated
with a corresponding increase in the uptake of LuTate and a consequent suppression of
proliferative capacity of these cells. The TEM treatment specifically increases the abundance
of mRNA for SSTR2 and not the other four SSTR subtypes. The TEM-induced upregulation
of SSTR2 is also seen in the 3D-spheroids of BON-1 cells. The higher SSTR2-expressing
NCI-H727 cells also respond to TEM treatment with a significant upregulation of SSTR2
and an increased uptake of LuTate, although to a more modest extent as compared to low
SSTR2-expressing BON-1 cells. Both the cell lines also respond to other drugs, such as STZ
and 5-FU with an increased uptake of LuTate. Finally, as compared to BON-1 cells, the
TEM-induced upregulation was much less pronounced in non-target cells irrespective of
their high or low basal level-expression of SSTR2, suggesting less risk for higher toxicity in
non-target organs.

Together our results show that combining sub-toxic doses of chemotherapy followed
by a targeted administration of LuTate at peak SSTR2 expression can result in better thera-
peutic efficacy of PRRT while minimizing the side-effects chemotherapy if it were to be
given at its prescribed high dose-regimes. Previous clinical studies have reported that
a combination of chemotherapy (CAP and/or TEM) with LuTate provides an improved
objective response while being well-tolerated by the patients, albeit with higher hemato-
logical toxicity rates than reported for LuTate alone [17–19]. In the prospective clinical
trials by Claringbold et al. [17,19], LuTate was administered on the 5th day after start of
CAP treatment for 14 days during which TEM was given in the last five days in each cycle.
After 4 cycles given at 8-week intervals, the follow up of patients revealed an objective
and durable response. In a retrospective study, Yordanova et al. [18], reported that 15 NET
patients for whom PRRT or chemotherapy alone had earlier failed to control the disease,
an objective response was obtained when LuTate was administered either one or 10 days
after TEM or CAPTEM treatment. Based on our results, we argue that the timing of LuTate
administration during the peak SSTR2 upregulation after lower dose chemotherapeutic
regimes could result in better outcome of the combination therapy with much reduced
hematological toxicity as compared to previous studies.

Our observation that chemotherapy-induced upregulation of SSTR2 is more pro-
nounced in low SSTR2-expressing BON-1 cells than in higher SSTR2 expressing NCI-H727
cells is supported by two clinical studies. It has been reported that when patients with
different types of metastatic NETs with low SSTR positivity (or Krenning score) were given
six cycles of CAPTEM, their tumors showed an improved uptake of 68Ga-DOTATATE at the
end of several months of chemo treatment [27]. On the other hand, patients with metastatic
NETs with high SSTR positivity did not get any additional uptake of LuTate when it was
administered 9 days after start of a 14-day CAP regime in which TEM was given for the
last 5 days [22]. Interestingly, in a mouse model of NET tumor with high SSTR2-expressing
NCI-H69 small cell lung cancer cells, Bison et al. [25] showed that chemotherapy can
augment LuTate uptake by the tumor not via increased SSTR2 but via improved tumor
perfusion of LuTate. In our cellular studies in vitro with high SSTR2-expressing NCI-H727
cells, tumor perfusion is not a confounding factor, but we nonetheless observed a modest
but significant increase in the receptor-mediated uptake of LuTate after chemotherapy.
Together, our results along with these reports suggest that chemotherapy could enhance
therapeutic effect of LuTate by improved SSTR2-mediated uptake and via better perfusion
of the radiopharmaceutical in the tumors with low or high SSTR2 status, which need to be
directly assessed in preclinical and randomized controlled clinical studies.

The inhibitors of epigenetic modifiers such as DNA methyl transferases and histone
deacetylases also improve transcription of SSTR and somatostatin in NET and non-NET
cancers [28]. Specifically in BON-1 cells, Veenstra et al. [29] showed that a 7-day treatment
with DNMT inhibitor 5-aza cytidine and HDAC-inhibitor Valproic acid increased the
expression of mRNA of SSTR2, but not any other SSTR subtypes, a pattern of selective
upregulation of SSTR2 similar to that seen by us in these cells with chemotherapeutic
drugs. Teleman et al. [30] also observed upregulation of SSTR2 at mRNA and protein
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levels in BON-1 cells 3 days after treatment with DNMT inhibitor decitabine or HDAC
inhibitor tacedinaline or a combination of both the drugs. The alteration in expression
levels of SSTR2 has also been reported in different NET cell lines in response to 5-FU
combined with decitabine or tacedinaline [24]. This study used BON-1, NCI-H727 as well
as GOT1 and QGP1 NET cell lines to show that 5-FU pre-treatment upregulates SSTR2 at
3 days in BON-1 cells, and it could be enhanced further by combination with epigenetic
modifiers, whereas this effect was less evident in high SSTR2-expressing NCI-H727 and
GOT1 cells. This study did not examine the time course of SSTR2 upregulation or its
beneficial effect on LuTate therapy, but did show increased sensitivity of all the cell lines
to external ionizing radiation after these treatments [24]. Thus, epigenetic drug-induced
upregulation of SSTR2 has the potential for becoming additional therapeutic option for
improving PRRT of NET cancers. Transcriptional upregulation of SSTR2 has also been
shown with physiological factors such as insulin and growth hormones in liver cells of
rainbow trout [31] and it has been correlated with octreotide-induced overexpression
of miR-16-p in INS-1 rat insulinoma NET cell line [32]. Unlike these other approaches
discussed above for increasing SSTR2 expression to improve PRRT, our study suggests that
we could use chemotherapeutic agents, which are already approved for NET treatment,
to achieve exactly the same end-result of upregulation of SSTR2. Moreover, we show that
SSTR2 upregulation and higher uptake of LuTate can be achieved with a single sub-toxic
dose of chemotherapy; and therefore, higher therapeutic efficacy of PRRT by LuTate can be
achieved without using the previously examined full dose-regimes of chemotherapy that
cause incidental toxicity.

4. Materials and Methods
4.1. Chemicals

Majority of the chemicals and fine chemicals were from MilliporeSigma (Oakville,
ON, Canada), and cell culture-related products were from Life technologies-ThermoFisher
(St-Laurent, QC, Canada). Nitrocellulose ECL membrane was from Amersham (Oakville,
ON, Canada) and Immobilon western chemiluminescent HRP substrate (WBKLS0500),
STZ and 5-FU were from MilliporeSigma (Oakville, ON, Canada). TEM and rapamycin
were from Enzo Life Sciences (Ann Arbor, MI, USA).

4.2. Radiopharmaceuticals
177Lu-DOTA-octreotate radiolabeling was performed as described [33]. 177LuCl3

was obtained from IDB Holland BV, and [DOTA0,Tyr3]-octreotate was a gift from the
Erasmus Medical Center (Rotterdam, The Netherlands). Radiochemical purity of 177Lu-
octreotate was >97%, and specific activities ranged from 22,015 to 85,100 MBq/µmole in
different batches.

4.3. Cells, Chemotherapy and LuTate Treatment, Measurement of LuTate Uptake and Viability

The BON-1, established from a human pancreatic carcinoid tumor [34], was main-
tained as described [35]. The bronchopulmonary NET cells NCI-H727 (CRL-5815), U2OS,
MCF7, HeLa, NL20, HEK and H187 cells were from ATCC and maintained as per their
specifications. In general, cells were seeded in triplicate at 10,000 cells/cm2 for viable cell
count and LuTate uptake studies, and another triplicate for survival studies. For studies
requiring additional immunoblotting of SSTR2, a separate set of plates were seeded, since
this antibody probing worked best with scrapped and not trypsinized cells. Viable cell
counts were carried out by Trypan blue (GIBCO) dye exclusion assay with trypsinized cells.

For co-administration of drugs and LuTate for 5 days (Figure 1), BON-1 and NCI-H727
cells were seeded, as above and treated after 2 days with 3.7 MBq (100 µCi) 177Lu-octreotate
alone or with 200 µM TEM, 25 µM 5-FU or 0.5 mg/mL STZ or a combination of 5-FU
and STZ. After 5 days, cells were washed thrice with phosphate buffered saline (PBS) and
trypsinized for removal of non-specifically bound LuTate. The viable cell count was carried
out as above. Cells were spun down and pellet was suspended in 200 µl PBS, mixed with
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5 mL of scintillating liquid for measuring total cellular uptake of radioactivity by liquid
scintillation β-counter (Coulter). A separate set of cells were processed on the 5th day for
immunoblotting of SSTR2 (Figure 2A). For determining the effect of single and combination
treatment on cell survival, a separate set of cells were treated with drug or LuTate alone
or with the combination of drugs, as described above for 5 days, followed by removal of
LuTate and drug on the 5th day and allowed to recover in fresh medium for 4 more days
prior to cell count by trypan blue viability assay. The fold increase in viable cell count over
the entire period from seeding to harvesting was determined for each group.

For a time-course of TEM-induced SSTR2 upregulation (Figure 2B), cells were treated
with specified doses of TMZ (or mock controls) for either 24 h or 5 days. After treat-
ment, cells were allowed to recover in fresh medium without the drugs for up to 7th day.
On each specified day, mock and TMZ treated cells were harvested and processed for
immunoblotting of SSTR2.

For time-course of TEM-induced LuTate uptake in sequential treatment studies
(Figures 3A, 5A and 6), BON-1 or other specified cells seeded as above, were treated with
specified doses of TMZ or mock treated for 24 h followed by recovery in fresh medium for
specified number of days up to 7 days. On the specified day, 3.7 MBq LuTate was added in
the medium for 3–6 h as specified and cells were harvested for cell count and total cellular
uptake of LuTate as described above. To distinguish between internalized and membrane-
bound LuTate (Figure 3B), cells were exposed to specified amount of LuTate (63–630 kBq)
and processed for measuring total uptake of radiolabel by suspending the trypsinized
cells in 0.5 mL PBS containing 20 mM sodium acetate pH 5.2, and incubated at 37 ◦C for
10 min. The cells were spun to collect supernatant as acid-wash (membrane-bound) count,
and cell pellet was processed to measure internalized LuTate activity. The LuTate uptake
was expressed as cpm/106 cells or per mg protein, and is expressed as mean ± S.E. of
3–6 replicates for each sample. To measure cell viability after sequential treatment with
various drugs and LuTate (Figure 5B), a separate set of plates were processed exactly as
above for the drug treatment followed by LuTate after 4 days. After removal of LuTate, the
cells were allowed to recover for 4 days and processed for measuring viable cell count. For
TEM-induced upregulation of SSTR2 in BON-1 spheroids (Figure 4C), the 3D spheroids
were prepared as described earlier [26], treated on the 6th day with TEM for 24 h followed
by recovery in fresh medium for 6 days. The 6–12 spheroids were harvested at each day
from 4–6 day, pooled and processed for immunoblotting of SSTR2.

4.4. Immunoblotting and Antibodies

The cells were harvested by scraping, washed with PBS, suspended in Laemmli buffer
and sonicated with a microtip at 45% power for 20 sec (Fisher Sonic Dismbrator). Protein
concentration was estimated by Bradford and 10–20 µg of protein extracts were resolved
on 6–15% gradient SDS-PAGE, transferred to nitrocellulose membrane and probed with
specific antibodies. Ponceau S staining was used as the loading control. All Western blotting
data were repeated 2–3 times from the extracts derived from two independent experiments,
and results are displayed from one of the replicate experiments with similar results. The
chemiluminescence signal was captured on ChemiGenius under non-saturating conditions.
The antibodies used for immunoblotting were SSTR2 (1:1000, Abcam, Cambridge, MA,
USA) and secondary HRP-conjugated antibodies (1:1250, Jackson Immunoresearch Labs,
Westgrove, PA, USA).

4.5. RT-PCR for SSTR1-5

Quantitative Real-Time PCR measurements were performed by the Gene Expres-
sion Platform of CHU de Québec Research Center by methods compliant with MIQE
guidelines [36]. In brief, monolayers were rinsed with PBS before addition of Trizol (Life
Technologies, ThermoFisher, St-Laurent, QC, Canada) to the dishes. Total RNA was ex-
tracted with RNeasy mini kit on-column DNase (Qiagen, Montréal, QC, Canada), and
concentration was measured using a NanoDrop ND-1000 Spectrophotometer (NanoDrop
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Technologies, Wilmington, DE, USA). Its quality was assayed on an Agilent BioAnalyzer
2100 (Agilent Technologies, Santa Clara, CA, USA). First-strand cDNA was synthesized
at 25 ◦C for 10 min, 50 ◦C for 20 min, inactivation at 80 ◦C for 10 min followed by purifi-
cation on PCR purification kit (Qiagen, Montréal, QC, Canada). cDNA corresponding to
20 ng of total RNA was used to perform fluorescent-based Realtime PCR quantification
using the LightCycler 480 (Roche Diagnostics, Laval, QC, Canada). Reagent LightCycler
480 SYBRGreen I Master (Roche Diagnostics, Laval, QC, Canada) was used with 2% DMSO.
The conditions for PCR reactions were: 45 cycles, denaturation at 98 ◦C for 10 s, annealing
at 60–63 ◦C for 10 s, elongation at 72 ◦C for 14 s and then 74 ◦C for 5 s (reading). Nor-
malization was performed using the reference genes glucose-6-phosphate dehydrogenase
(G6PD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Relative expression of
the target gene (difference between control and TMZ treated samples for that gene) was
divided by relative expression of reference gene (difference between control and TMZ
treated samples for reference gene) to obtain relative quantification ratios for each time
point [37]. The forward/reverse primers (5′ to 3′) used were:

SSTR1: GGGTGCTATCGCTGCTCGTCATCC/AGCCCACCAGCCAGCGTTGAG
SSTR2: ACCCCATCAAGTCGGCCAAGT/TCCGGAGCCCAGCATATATCAT
SSTR3: GTGGCGCTCTTCGTGCTCTGC/CCACCAGGAAGTAGAGCCCAAAGAAG
SSTR4: CAGGCGCTCGGAGAAGAAAATC/TGGCATCAAGGCTGGTCACGA
SSTR5: GAAGGTGACGCGCATGGTGTT/AGAGGATGACCACGAAGAAGTAGAGG
G6PD: GATGTCCCCTGTCCCACCAACTCTG/GCAGGGCATTGAGGTTGGGAG
GAPDH: GGCTCTCCAGAACATCATCCCT/ACGCCTGCTTCACCACCTTCTT

Human 3β-hydroxysteroid dehydrogenase/δ5-δ4-isomerase (3β-HSD) gene intron
was used a negative control to verify the absence of genomic DNA.

5. Conclusions

We have shown that a short, low-dose chemotherapy pre-treatment of NET cells prior
to PRRT can significantly upregulate SSTR2 after a few days, particularly in cells having
a low baseline expression thereof, resulting in enhanced uptake of LuTate and greater
therapeutic efficacy. This represents an appealing approach to enable and potentiate PRRT
for patients with low SSTR-expressing NETs, who would otherwise neither be eligible
nor respond to this modality because of insufficient radiation delivery. Such a limited
chemotherapy exposure would not be anticipated to add significant toxicity to the well-
tolerated PRRT.
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