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Simple Summary: In patients with advanced hepatocellular carcinoma, systemic therapy is recom-
mended by most treatment guidelines. Sorafenib and lenvatinib are both 1st-line treatments for
inoperable advanced HCC. Regorafenib, cabozantinib, and ramucirumab have been approved as
2nd-line targeted therapy in patients who show progression or do not tolerate sorafenib. However,
there is a lack of imaging biomarkers for predicting survival outcomes in patients receiving 2nd-line
targeted therapy after sorafenib failure. In this paper, we try to predict survival outcomes via early
changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted
therapy following sorafenib failure, taking data from two different prospective clinical trials. We
found that an early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day
14, may predict survival outcomes in these participants. For the further clinical development of anti-
angiogenic therapies, optimal participant selection with predictive biomarkers, such as DCE-MRI, is
essential in order to improve treatment outcomes.

Abstract: In this paper, our main objective was to predict survival outcomes using DCE-MRI
biomarkers in patients with advanced hepatocellular carcinoma (HCC) after progression from 1st-
line sorafenib treatment in two prospective phase II trials. This study included 74 participants
(men/women = 64/10, mean age 60 ± 11.8 years) with advanced HCC who received 2nd-line tar-
geted therapy (n = 41 with lenalidomide in one clinical trial; n = 33 with axitinib in another clinical
trial) after sorafenib failure from two prospective phase II studies. Among them, all patients un-
derwent DCE-MRI at baseline, and on days 3 and 14 of treatment. The relative changes (∆) in the
DCE-MRI parameters, including ∆Peak, ∆AUC, and ∆Ktrans, were derived from the largest hepatic
tumor. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors
(RECIST 1.1). The Cox model was used to investigate the associations of the clinical variables and
DCE-MRI biomarkers with progression-free survival (PFS) and overall survival (OS). The objective
response rate (ORR) was 10.8% (8/74) and the disease control rate (DCR) was 58.1% (43/74). The
median PFS and OS values were 1.9 and 7.8 months, respectively. On day 3 (D3), participants with
high reductions in ∆Peak_D3 (hazard ratio (HR) 0.4, 95% confidence interval (CI) 0.17–0.93, p = 0.017)
or ∆AUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better PFS. On day 14,
participants with high reductions in ∆Peak_D14 (HR 0.51, 95% CI 0.26–1.01, p = 0.032), ∆AUC_D14
(HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ∆Ktrans_D14 (HR 0.26, 95% CI 0.12–0.56, p < 0.001) had a
higher PFS than those with lower reduction values. In addition, high reductions in ∆AUC_D14 (HR
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0.53, 95% CI 0.32–0.9, p = 0.016) or ∆Ktrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated
with a better OS. Among the clinical variables, ORR was associated with both PFS (p = 0.001) and
OS (p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089). Cox multivariable
analysis revealed that ∆Ktrans_D14 (p = 0.002) remained an independent predictor of PFS after con-
trolling for ORR and DCR. An early reduction in tumor perfusion detected by DCE-MRI biomarkers,
especially on day 14, may predict favorable survival outcomes in participants with HCC receiving
2nd-line targeted therapy after sorafenib failure.

Keywords: magnetic resonance imaging; hepatocellular carcinoma; survival; axitinib; lenalidomide

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the fourth
leading cause of cancer-related death worldwide [1]. In advanced-stage patients, such
as those with vascular invasion or distant metastasis, systemic therapy is recommended
by most treatment guidelines [2]. Currently, various vascular-endothelial growth factor
(VEGF)-targeted anti-angiogenic drugs are available. Sorafenib and lenvatinib are both
1st-line treatments for inoperable advanced HCC [3,4]. Regorafenib, cabozantinib, and
ramucirumab have been approved as 2nd-line treatment alternatives in patients who show
progression or do not tolerate sorafenib. In addition to anti-angiogenic agents, the immune-
programmed cell death protein-1/programmed cell death protein ligand-1 checkpoint
inhibitors have recently shown promising outcomes in phase II trials [5]. Recently, combin-
ing immunotherapy (atezolizumab) with anti-angiogenic therapy (bevacizumab) has been
approved for patients with unresectable or metastatic HCC who have not received prior
systemic treatment [6].

Axitinib, a selective inhibitor of VEGF receptor tyrosine kinases 1–3, was approved as
a 2nd-line treatment for advanced renal cell carcinoma [7]. Axitinib has been evaluated
as a 2nd-line therapy for patients with advanced HCC [8,9]. Lenalidomide, which has
both anti-angiogenic and immunomodulatory effects, has also demonstrated efficacy as a
2nd-line treatment for advanced HCC [10,11].

A major challenge in developing anti-angiogenic therapy is identifying the biomarkers
needed for predicting treatment efficacy [12,13]. Dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) is a sensitive method that can be used for detecting tumor
blood flow and vascular permeability changes. This method has been actively investigated
in cancer clinical trials to explore its clinical potential for monitoring the efficacy of anti-
angiogenic therapies [14–17]. Previous studies have shown that DCE-MRI biomarkers,
such as Peak and Ktrans (volume transfer constant), appear to be capable of predicting
therapeutic efficacy in HCC patients receiving anti-angiogenic targeted therapy [18–20].
Therefore, the tumor perfusion changes evaluated by DCE-MRI are potential predictive
imaging biomarkers for anti-angiogenic therapy in HCC.

There is a lack of imaging biomarkers for predicting survival outcomes in patients
receiving 2nd-line targeted therapy after sorafenib failure. Based on previous studies, we
hypothesize that the vascular responses detected by DCE-MRI may help us to identify
HCC patients who would benefit from 2nd-line targeted therapy. The purpose of this
study was to predict survival outcomes via early changes in the DCE-MRI biomarkers
in participants with advanced HCC after 2nd-line targeted therapy following sorafenib
failure, taking data from two different prospective clinical trials.

2. Materials and Methods

We pooled data from two prospective, open label, phase II clinical trials on the efficacy
of 2nd-line targeted therapy after sorafenib failure (study 1 on lenalidomide and study 2
on axitinib, Figure 1). Both studies were single-arm investigator-initiated clinical studies
and are registered at ClinicalTrials.gov (NCT01273662 and NCT01545804). This study was
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approved by the Institutional Research Ethics Committee of the National Taiwan University
Hospital. Written informed consent was obtained from all participants.
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Figure 1. Study flowchart presenting a summary of the final study participants. HCC = hepa-
tocellular carcinoma; RECIST = Response Evaluation Criteria in Solid Tumors; DCE = dynamic
contrast enhanced.

The primary results of these two trials have been previously published [11,21]. Both
trials required progression during sorafenib treatment, had consistent eligibility criteria,
and collected the same baseline demographic variables. Disease assessments were per-
formed after 4 and 8 weeks of treatment and every 8 weeks thereafter. The response was
assessed using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The primary
endpoint was the disease control rate (DCR), which was defined as a complete or partial
response or as stable disease according to RECIST1.1, meaning there was no progression
of tumor-related symptoms for at least eight weeks. The secondary endpoints included
the objective response rate (ORR) and PFS according to RECIST1.1, OS, and the alpha-
fetoprotein (AFP) response. The objective response was assessed in the subset of patients
who had measurable disease and was defined as achieving the best response of either a
confirmed or unconfirmed partial or complete response. Disease control was assessed in
all patients and was defined as the absence of evidence of progression at the first follow-up
disease assessment. PFS was defined as the duration from the date of treatment to the
date of documented disease progression or death from any cause. OS was defined as the
duration from the date of treatment to the date of death from any cause.

2.1. Inclusion and Exclusion Criteria

The inclusion criteria for both studies were as follows: receiving a histological or
imaging diagnosis of HCC; having documented progression under treatment with, or intol-
erance to, sorafenib or other systemic therapies; having an Eastern Cooperative Oncology
Group score of 0 or 1; being classified into Child–Pugh class A; and having at least one
measurable lesion according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1.
The exclusion criteria were more than one line of systemic therapy, elevated liver function,
or recent gastrointestinal bleeding. Lenalidomide (25 mg/day) was administrated on days
1–21 and every 4 weeks (study 1), and axitinib 5 mg was given orally twice daily (study 2)
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until objective disease progression, the development of unacceptable toxicity, or voluntary
discontinuation occurred.

2.2. MRI Protocol

Participants were considered feasible for evaluation by DCE-MRI if the target lesions
were identified in the liver. All participants underwent a DCE-MRI in two different MRI
systems—study 1, 3-T Magnetom Verio (Siemens Healthcare, Erlangen, Germany); study 2,
1.5-T system Signa HD (GE Healthcare, Milwaukee, WI)—at baseline, and on days 3 and 14
of treatment. A dose of 0.1 mmol/kg of gadobutrol (Gadovist®, Bayer Healthcare, Berlin,
Germany) was injected with an automated injector at a rate of 4 mL/sec followed by a 20
mL saline flush. All participants were asked to hold their breath for as long as they could
tolerate and then breathe slowly and smoothly during imaging. The initial 10 s of imaging
were used as the baseline images. The DCE-MRI parameters were as follows:

Study 1: Oblique coronal three-dimensional T1-weighted volumetric interpolated
breath-hold examination sequence. Section thickness/gap, 5 mm/0 mm; repetition time
msec/echo time msec, 2.2/2.5; flip angle, 9◦; field of view, 400 × 313 mm; matrix size,
420 × 448; temporal resolution, 6.4 sec; total acquisition time, 170 sec; 600 dynamic images
from each participant.

Study 2: Oblique coronal two-dimensional T1-weighted fast spoiled gradient-echo se-
quence. Section thickness/gap, 8 mm/4 mm; repetition time msec/echo time msec, 3.2/1.1;
flip angle, 12◦; field of view, 380 × 380 mm; matrix size, 256 × 256; temporal resolution,
3.52 sec; total acquisition time, 110 sec; 720 dynamic images from each participant.

2.3. Image Analysis

The DCE-MRI data were analyzed using a commercial software tool (MIStars; Apollo
Medical Imaging, Melbourne, Australia). The motion correction algorithm used a 2D rigid
body with three adjustable parameters: translation in the x- and y-direction, and in-plane
rotation. The semiquantitative parameters Peak (maximal signal intensity minus baseline
signal intensity/baseline signal intensity) and AUC (initial area under the gadolinium
concentration–time curve at 60 s after contrast injection) were obtained by analyzing the
characteristics of the tumor enhancement curves. Furthermore, pharmacokinetic modeling
was conducted using a single-input two-compartment model using the aorta as the arterial
input function [19,20]. The quantitative parameter Ktrans (forward volume transfer constant)
was automatically calculated pixel by pixel using a constrained non-linear least-squares
fitting algorithm with an adjustable delay time. For the tumor perfusion measurement, a
region of interest (ROI) was drawn on the perfusion map on a single slice of the largest
tumor area, and the follow-up DCE-MRI was selected to be on the same level as the tumor
(Figure 2). The hypo-enhanced or necrotic area within the tumor was included. In patients
with multiple HCCs, the largest hepatic tumor was chosen for analysis. All ROIs were
drawn by the same radiologist. The mean ROI in the tumors was 81.7 ± 51.2 cm2.

To evaluate the interobserver variability of these parameters, ROI placement was per-
formed on 40 randomly selected tumors by another radiologist with 27 years of experience
in MR imaging.
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Figure 2. Images from a 51-year-old man who received axitinib with a progression-free survival
of 0.9 months and an overall survival of 13 months. (A) A coronal contrast-enhanced T1-weighted
image depicting a hepatocellular carcinoma in the right upper lobe (arrow) on day 0 (baseline, A),
day 3 (B), and day 14 (C). Serial changes in Peak compared to the baseline value (D) show that there
is a marked decrease on day 3 (−40%, (E)) and day 14 (−45%, (F)). Serial changes in Ktrans also show
a marked decrease on day 3 (−61%, (E)) and day 14 (−74%, (F)) when compared to the baseline (G).

2.4. Statistical Analyses

Data are expressed as means ± standard deviations or as the median with interquartile
range when the data were not normally distributed. Interobserver variability was calculated
using the intraclass correlation coefficient. The relative changes in Peak, AUC, and Ktrans

were expressed as ∆Peak, ∆AUC, and ∆Ktrans, respectively. The comparison of changes
in DCE-MRI biomarkers among subjects on days 3 and 14 according to ORR or DCR
was performed with the Mann–Whitney U test. The Kaplan–Meier method was used to
plot survival curves, and the two-sided log-rank test was used to assess the differences
in PFS and OS between the subgroups. Each DCE-MRI biomarker was dichotomized
based on the cutoff value determined using the maximally selected rank statistics from
the ‘maxstat’ [22] package in the R statistical software (R, version 4.0.2; R Foundation for
Statistical Computing, Vienna, Austria). Multivariable analyses were performed using a
stepwise forward Cox proportional hazard model that included age, sex, tumor size, AFP,
ECOG, liver cirrhosis, vascular invasion, extrahepatic spread, ORR, and DCR. Hazard ratios
and 95% confidence intervals (CI) were calculated. The R statistical software and IBM SPSS
Statistics software (version 24; IBM Corp., Armonk, NY, USA) were used for the statistical
analyses. A p-value < 0.05 was considered to indicate a statistically significant difference.

3. Results
3.1. Participants Characteristics

From April 2011 to March 2016, 74 participants (64 men, 10 women, mean age
60 ± 11.8 years) with advanced HCC were enrolled for DCE-MRI examination. Among
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them, 41 participants (36 men, 5 women, mean age 59.7 ± 11.6 years) received lenalido-
mide, while 33 participants (28 men, 5 women, mean age 58 ± 9.7 years) received axitinib
treatment (Table 1). All participants had documented disease progression after sorafenib
treatment prior to enrollment. Some participants had received prior loco-regional therapy,
including surgery (48.6%), ablative therapy (25.7%), or transarterial chemoembolization
(81.1%). Using the RECIST 1.1 criteria, the best responses were partial response (PR) in 8
(10.8%) participants, stable disease (SD) in 35 (47.3%) participants, and progressive dis-
ease (PD) in 31 (41.9%) participants. The disease control rate and objective response rate
were 58.1% (43/74) and 10.8% (8/74), respectively. All participants experienced disease
progression and died before April 2018. The median PFS and OS values were 6.9 months
(95% CI 2.6–4.7) and 8.6 months (95% CI 8.2–13.2), respectively.

Table 1. Patient characteristics and treatment response.

Characteristics Lenalidomide Axitinib p-Value All Participants

Number 41 33 74

Age, year (mean, SD) 59.7 (11.6) 58 (9.7) 0.825 60 (11.8)

Sex (women) 5 (12.2) 5 (15.2) 0.978 10 (13.5)

Tumor size (mean, SD) 78.6 (51.3) 85.6 (51.6) 0.564 81.7 (51.2)

Etiology

Hepatitis B 26 (63.4) 25 (75.8) 0.375

Hepatitis C 8 (19.5) 6 (18.2) 1

Alcoholic 4 (9.8) 2 (6.1) 0.88

ECOG 0.059

0 7 (17.1) 13 (39) 20 (27.0)

1 34 (82.9) 20 (60.6) 54 (73.0)

AFP > 400 ng/mL 27 (65.9) 14 (42.4) 0.059 41 (55.4)

Liver cirrhosis 31(75) 24 (73) 0.172 55(74.3)

Vascular invasion 22 (53.7) 19 (57.6) 0.919 41 (55.4)

Extrahepatic spread 35 (85.4) 28 (84.8) 1 63 (85.1)

Child–Pugh = 5 <0.001 *

5 23 (43.7) 33 (100) 55 (74.3)

6 19 (46.3) 0 19 (25.7)

BCLC stage 0.195

B 0 2 (6)

C 41 (100) 31 (94)

Prior therapy

Surgery 19 (46.3) 17 (51.5) 0.835 36 (48.6)

Ablation 8 (19.5) 11 (33.3) 0.278 19 (25.7)

TACE 33 (80.5) 27 (81.8) 1 60 (81.1)

RECIST 1.1 response 0.105

PR 6 (14.6) 2 (6.1) 8 (10.8)

SD 15 (36.6) 20 (60.6) 35 (47.3)

PD 20 (48.8) 11 (33.3) 31 (41.9)
Note: Unless otherwise indicated, data are reported as numbers, and data in parenthesis are percentages. ECOG
= Eastern Cooperative Oncology Group; AFP = alpha-fetoprotein; BCLC = Barcelona Clinic Liver Cancer; TACE =
transarterial chemoembolization; RECIST = Response Evaluation Criteria in Solid Tumors; PR = partial response;
SD = stable disease; PD = progressive disease. *: p-value indicates a significant difference.
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3.2. Intraclass Correlation Coefficients of MR Quantitative Parameters

The intraclass correlation coefficients for inter-observer variability were 1.00 (95% CI:
1.00, 0.999) for Peak, 0.999 (95% CI: 0.998, 0.999) for AUC, and 0.998 (95% CI: 0.996, 0.999)
for Ktrans.

3.3. Comparison of Changes in DCE-MRI Biomarkers between Treatment Groups

All 74 participants underwent a baseline and day 3 (D3) DCE-MRI. Two patients did
not receive the DCE-MRI on day 14 (D14) because of their poor general condition.

The changes in the DCE-MRI biomarkers between day 3 and day 14 are shown in
Table 2. On day 3, ∆AUC_D3 (p = 0.008) and ∆Ktrans_D3 (p = 0.024) in the axitinib group
were significantly lower than those in the lenalidomide group. On day 14, ∆Peak_D14
(p = 0.04), ∆AUC_D14 (p = 0.002), and ∆Ktrans_D14 (p = 0.003) in the axitinib group were
all significantly lower than those in the lenalidomide group (Table 2).

Table 2. Comparison of changes in the DCE-MRI parameters between lenalidomide and axitinib
between day 3 and day 14.

DCE-MRI Parameters Lenalidomide Axitinib p-Value All

Number of participants
on Day 3 41 33 74

∆Peak_D3 (%) −3.7
(−11.9, 5.2)

−7.5
(−17.8, 3.6) 0.265 −4.3

(−13, 3.8)

∆AUC_D3 (%) −8
(−18.9, 23.7)

−25.7
(−53.4, 7.3) 0.008 * −12

(−37.4, 1)

∆Ktrans_D3 (%) −0.9
(−40.8, 74.1)

−30.6
(−64.2, −8.8) 0.024 * −21.4

(−49.6, 28.5)

Number of participants
on Day 14 39 33 72

∆Peak_D14 (%) −2.9
(−11.7, 5.7)

−11.9
(−22.4, 1.4) 0.04 * −4

(−15.9, 4)

∆AUC_D14 (%) −3.1
(−24.8, 20.2)

−39.1
(−52.25, −5.9) 0.002 * −19.5

(−43.8, 11.5)

∆Ktrans_D14 (%) −7.7
(−45.3, 45.8)

−47.8
(−71.6, −14.2) 0.003 * −22.3

(−57.6, 26.3)
Note: The data are expressed as the median and interquartile range. * p-value indicates a significant difference.

3.4. Comparison of Changes in the Imaging Characteristics and DCE-MRI Biomarkers According
to Treatment Response

There were no significant differences in imaging characteristics (tumor size, cirrhosis,
vascular invasion, or extrahepatic spread) when the participants were grouped according
to their treatment response (Supplementary Table S1).

There were no significant differences in the changes in the DCE-MRI biomarkers when
participants were grouped according to ORR (all p > 0.05). However, ∆Ktrans_D14 was
significantly decreased in participants with PR or SD compared to participants with PD
(p = 0.01). The area under the receiver operating characteristic was 0.68, with a sensitivity
of 0.63 and a specificity of 0.76 when using −11.8% as the cutoff value for ∆Ktrans_D14
(Supplementary Table S2).

3.5. Factors Associated with PFS and OS

Among clinical variables, ORR was associated with both PFS (p = 0.001) and OS
(p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089) (Table 3).
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Table 3. Factors associated with PFS and OS based on univariable and multivariable analyses.

Survival
outcomes

PFS OS

Univariate Multivariate Univariate Multivariate

Parameter HR
(95 % CI) p-Value HR

(95 % CI) p-Value HR
(95 % CI) p-Value HR

(95 % CI) p-Value

Drug (axitinib vs.
lenalidomide) 0.79 (0.49–1.28) 0.347 0.84

(0.52–1.37) 0.488

Age (>60 vs. ≤60
y/o) 1.03(0.64–1.67) 0.89 0.97

(0.64–1.58) 0.915

Sex (man vs.
woman) 1.62 (0.82–3.2) 0.166 1.19

(0.58–2.44) 0.636

Size 1.15 (0.72–1.85) 0.559 1.17
(0.71–1.93) 0.528

AFP (>400 ng/mL) 0.99 (0.62–1.59) 0.956 1.37
(0.85–2.23) 0.198

ECOG 0.87 (0.51–1.49) 0.622 0.89
(0.51–1.56) 0.687

Liver cirrhosis 0.82 (0.62–1.08) 0.151 0.84
(0.63–1.12) 0.241

Vascular invasion 0.93 (0.58–1.5) 0.778 1.12
(0.70–1.80) 0.638

Extrahepatic
spread 1.21 (0.63–2.32) 0.566 1.23

(0.60–2.50) 0.569

ORR 0.19 (0.07–0.49) 0.001 * 0.2
(0.07–0.52) 0.001 * 0.26

(0.1–0.66) 0.005 * 0.29
(0.11–0.76) 0.012 *

DCR 0.51 (0.31–0.84) 0.002 * 0.65
(0.39–1.01) 0.089

DEC-MRI parameters

∆Peak_D3 (%) 0.4 (0.17–0.93) 0.017 * 0.55
(0.25–1.21) 0.13

∆AUC_D3 (%) 0.51 (0.25–1.04) 0.043 * 0.61
(0.31–1.21) 0.15

∆Ktrans_D3 (%) 0.67 (0.44–1.13) 0.1 0.68
(0.4–1.15) 0.15

∆Peak_D14 (%) 0.51 (0.26–1.01) 0.032 * 0.6 (0.3–1.04) 0.064

∆AUC_D14 (%) 0.54 (0.33–0.9) 0.009 * 0.53
(0.32–0.9) 0.016 * 0.63

(0.37–1.07) 0.085

∆Ktrans_D14 (%) 0.26 (0.12–0.56) <0.001 * 0.29
(0.14–0.63) 0.002 * 0.47

(0.23–0.98) 0.038 *

Note: ECOG = Eastern Cooperative Oncology Group; HR = hazard ratio; CI = confidence interval; ORR = objective response rate; DCR =
disease control rate. * p-value indicates a significant difference.

On day 3, participants with high reductions in ∆Peak_D3 (HR 0.4, 95% CI 0.17–0.93,
p = 0.017) or ∆AUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better
PFS. On day 14, participants with high reductions in ∆Peak_D14 (HR 0.51, 95% CI 0.26–
1.01, p = 0.032), ∆AUC_D14 (HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ∆Ktrans_D14 (HR
0.26, 95% CI 0.12–0.56, p < 0.001) had a longer PFS than those with low reduction values
(Figure 3). In addition, high reductions in ∆AUC_D14 (HR 0.53, 95% CI 0.32–0.9, p = 0.016)
or ∆Ktrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated with a longer OS
(Figure 4). Cox multivariable analysis revealed that ∆Ktrans_D14 (HR 0.29, 95% CI 0.14–0.63,
p = 0.002) remained an independent predictor of PFS after controlling for ORR and DCR.
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4. Discussion

This study, based on two different prospective clinical trials, found that an early
reduction in DCE-MRI biomarkers may predict survival outcomes in participants with
HCC using a 2nd-line targeted therapy after sorafenib failure. On day 3, high reductions in
∆Peak_D3 or ∆AUC_D3 were associated with longer PFS. On day 14, high reductions in
∆Peak_D14, ∆AUC_D14, or ∆Ktrans_D14 were associated with a longer PFS. In addition,
high reductions in ∆AUC_D14 or ∆Ktrans_D14 were associated with a longer OS. When
ORR and DCR were incorporated in the multivariable analysis, ∆Ktrans_D14 (p = 0.002)
remained an independent predictor of PFS. Therefore, DCE-MRI can be used to identify
possible responders to targeted therapy as early as on day 3 and to predict PFS as early as
14 days post-treatment in these patients. These results were achievable regardless of the
MR vendor and magnetic strength (1.5 vs. 3.0 Tesla).

We found a higher reduction in DCE-MRI biomarkers in the axitinib group than in
the lenalidomide group on both day 3 and day 14. These results may be explained by the
different pharmacokinetic pathways of these two drugs. Axitinib is a pure anti-angiogenesis
drug, whereas lenalidomide has both anti-angiogenic and immunomodulatory effects. It
appears that the anti-angiogenesis effect of axitinib was stronger than that of lenalidomide,
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which could be reflected by the high early reduction in DCE-MRI biomarkers. However, in
a 2nd-line therapy setting, the high anti-angiogenesis effect of Axitinib may not necessarily
lead to higher tumor shrinkage or longer survival outcomes than with lenalidomide because
all tumors already showed progression after the 1st-line angiogenic agent (sorafenib).
Therefore, the drug parameter was not significant in the univariate analysis of PFS or OS.
Currently, whether DCE-MRI could detect perfusion changes by immunomodulatory drugs
or immunotherapy is still unknown. Nevertheless, we could anticipate survival benefits in
both groups if a high reduction in DCE-MRI biomarkers was achieved after treatment.

We found no significant differences between DCE-MRI changes and RECIST response
(ORR). These results could imply that these two evaluation methods represent different
pathophysiological aspects of the tumors in response to targeted therapy. The RECIST
response only reflected changes in tumor size without information on vascularity or tumor
necrosis. In contrast, DCE-MRI biomarkers reflect the global perfusion changes in the
tumors [19,23], and their correlation with tissue markers of tumor hypoxia in participants
with primary liver cancer has been previously reported [24]. Our study suggests that tumor
perfusion reduction precedes tumor size shrinkage in the responders to targeted therapy.
The potential correlation between DCE-MRI biomarkers and other response evaluation
methods (such as modified RECIST) is worthy of further investigation.

We found that the DCE-MRI biomarkers may predict survival outcomes in patients
receiving the 2nd-line targeted therapy, consistent with previous studies for HCC patients
receiving the 1st-line systemic treatment [19,20]. For example, a retrospective study of
92 participants with advanced HCC has found that participants with a high ∆Peak reduc-
tion within one week following systemic treatment had a longer OS (p = 0.023) compared
with participants with a low Peak reduction [20]. Another study has shown that the per-
centage of Ktrans change after treatment with sorafenib and metronomic tegafur/uracil is
an independent predictor of tumor response, PFS, and OS [18]. Thus, in respondent partic-
ipants, tumor perfusion reduction induced by anti-angiogenic agents could be detected
as early as 3 days after treatment, and post-treatment day 14 would be an appropriate
timepoint to predict therapeutic efficacy in these participants.

Several issues may limit the clinical applicability of DCE-MRI for predicting the thera-
peutic efficacy of anti-angiogenic therapy in HCC. First, contrast enhancement patterns are
usually heterogeneous in tumors, and the investigators’ selection of the ROI may introduce
bias into the measurements [25]. An independent imaging review may be needed to vali-
date the results demonstrated in the lenvatinib trial [26]. More objective or computer-aided
methods of target lesion selection should be developed to improve the reproducibility
of measurements. Second, the biological mechanism accounting for the changes in each
imaging biomarker after anti-angiogenic therapy remains elusive. Preclinical models may
help reveal the pharmacodynamic correlation of these imaging biomarkers in the tumor
microenvironment, explore the optimal time points of imaging evaluation, and compare
the predictive values for treatment efficacy [27,28].

Our study has several limitations. First, our sample size was small due to the phase
II clinical trial study design. Additional studies with larger groups of participants are
necessary in order to validate our findings. Second, we did not include other DCE-MRI
parameters because only Peak and Ktrans have been previously reported to correlate with
OS [18,20,29]. Third, although lenalidomide and axitinib are both classified as a targeted
therapy, they have different molecular pathways and treatment efficacies in advanced HCC.
We included treatment groups as univariable and multivariable variables to eliminate bias
due to treatments, but we did not discover significant survival differences between the
two groups.

In conclusion, we found that an early reduction in tumor perfusion detected by DCE-
MRI biomarkers, especially on day 14, may predict survival outcomes in participants with
HCC receiving 2nd-line targeted therapy after sorafenib failure. For the further clinical
development of anti-angiogenic therapies, optimal participant selection with predictive
biomarkers, such as DCE-MRI, is essential in order to improve treatment outcomes.
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