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Simple Summary: Skin cancers (SC) are a frequent type of malignancy in white populations and
include malignant melanoma and non-melanoma skin cancer. Due to their increasing incidence rate
worldwide, aggressive behavior, and usually late diagnosis, they represent an important challenge
for health care systems. Therefore, identifying new biomarkers suitable for diagnosis, as well as
for prognosis and targeted therapy is mandatory. Nicotinamide N-methyltransferase (NNMT) is
an enzyme that plays a key role in the progression of several malignancies. There is increasing
evidence that NNMT is also involved in the malignant behavior of SC. Therefore, this review aims
to summarize the current state of the art regarding NNMT role in SC and to support future studies
focused on exploring the diagnostic and prognostic potential of NNMT in skin malignancies, as well
as its suitability for targeted therapy.

Abstract: Skin cancers (SC) collectively represent the most common type of malignancy in white
populations. SC includes two main forms: malignant melanoma and non-melanoma skin cancer
(NMSC). NMSC includes different subtypes, namely, basal cell carcinoma (BCC), squamous cell
carcinoma (SCC), Merkel cell carcinoma (MCC), and keratoacanthoma (KA), together with the two
pre-neoplastic conditions Bowen disease (BD) and actinic keratosis (AK). Both malignant melanoma
and NMSC are showing an increasing incidence rate worldwide, thus representing an important
challenge for health care systems, also because, with some exceptions, SC are generally character-
ized by an aggressive behavior and are often diagnosed late. Thus, identifying new biomarkers
suitable for diagnosis, as well as for prognosis and targeted therapy is mandatory. Nicotinamide
N-methyltransferase (NNMT) is an enzyme that is emerging as a crucial player in the progression of
several malignancies, while its substrate, nicotinamide, is known to exert chemopreventive effects.
Since there is increasing evidence regarding the involvement of this enzyme in the malignant behav-
ior of SC, the current review aims to summarize the state of the art as concerns NNMT role in SC and
to support future studies focused on exploring the diagnostic and prognostic potential of NNMT in
skin malignancies and its suitability for targeted therapy.

Keywords: skin cancer; melanoma; non-melanoma skin cancer; nicotinamide
N-methyltransferase; biomarker
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1. Introduction

Skin cancers (SC) are the neoplasms with the highest incidence in white populations,
and their incidence has gradually intensified in the last decade [1,2]. The term “skin cancer”
identifies two main forms, namely, malignant melanoma and non-melanoma skin cancer
(NMSC). NMSCs include several subtypes, such as basal cell carcinoma (BCC), squamous
cell carcinoma (SCC), Merkel cell carcinoma (MCC), and the two pre-neoplastic conditions
Bowen disease (BD) and actinic keratosis (AK) [1,3].

Among all SC, malignant melanoma, that arises from altered pigment cells i.e., the
melanocytes, is considered to be the most aggressive type [4]. In fact, while malignant
melanoma represents only 1% of all SC, it is responsible for the majority of SC-related
deaths [5]. Although the predominant part of malignant melanomas involves the skin, in
particular, 25% of cutaneous melanomas affects the head and neck, the neoplasm may also
arise in mucosal surfaces, the meninges, and the uveal tract [6]. Due to its aggressiveness,
it is extremely important to diagnose malignant melanoma when it is in early stages, since
the 5-year survival rate is 99% if the disease is diagnosed when still localized, while it drops
to 27% if the disease is already metastatic at the time of diagnosis [5,7]. Several risk factors
have been associated with malignant melanoma development such as a family history of
SC, male sex, fair skin, amount of moles, and age, while the main environmental risk factor
is ultraviolet (UV) exposure [7–13]. Indeed, cutaneous melanoma develops primarily in
Caucasian people as the consequence of chronic sun exposure [14,15].

A diagnosis of malignant melanoma is facilitated by the ABCDEF criteria, which
include lesion Asymmetry, Border irregularity, Color variegation, Diameter > 6 mm, Evo-
lution of a nevus, and a nevus characteristic of Looking Funny, describing a malignant
nevus that does not match in appearance with the other nevi variants displayed by a
patient [16]. Upon diagnosis, the stage of malignant melanoma is identified considering
the rules created by the American Joint Committee on Cancer (AJCC) to manage patient
treatment and prognosis. Following these rules, melanomas are classified into five distinct
stages, from 0 (melanoma in situ) to IV (metastatic melanoma), distinguished by a wors-
ening prognosis [17]. A variation of the classical TNM system is used by AJCC criteria to
characterize melanoma (from early-stage to late-stage) by analyzing the tumor thickness
with or without ulceration, nodal involvement, and presence of metastasis [17]. Once diag-
nosed, surgical resection represents the best opportunity for the definitive cure of a primary
melanoma. Other therapeutical options include radiotherapy, chemotherapy, immunother-
apy, and targeted therapies [7,18–23]. However, while surgery can achieve 99% of success
if the diagnosed melanoma is in situ, melanomas at advanced stages are problematic to be
treated [24]. This occurs due to the presence of metastases (lymph nodes, lungs, brain, liver,
and bone are the most frequent metastatic sites), to an intrinsic resistance towards most of
the therapies available nowadays, and to the high genomic heterogeneity that characterizes
melanocytic tumors [25]. In this regard, the identification of novel biomarkers that could
be used as prognostic or predictive markers and as objectives of targeted therapies is of
utmost importance. Although, in the last years, several biomarkers have been proposed
(e.g., microphthalmia-associated transcription factor, cyclooxygenase-2, chondroitin sulfate
proteoglycan 4, human melanoma black-45), none of them has become of routine use
in the clinical practice, with the exception of BRAF and MEK that are targets of specific
inhibitors used with success in the clinical practice, but to only a small subset of patients
responds [26].

BCCs arise from basal keratinocytes and account for approximately 75–80% of NMSCs
but they are characterized by a more benign behavior, having a very limited metastatic
potential [27]. However, it is the most common malignancy in humans, and several
histological subtypes have been described, each of them characterized by different clinical
features, outcomes, and prognosis [28,29]. The nodular subtype is the most common
type, distinguished by the presence of large nodules of tumor cells within the dermis, and
represents a low-risk type.
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On the contrary, infiltrating BCC is a more aggressive variant, consisting of narrow
tumor cords and nests of atypical basaloid cells with an infiltrative growth pattern. Since
it displays a high risk of recurrence, this variant requires a more careful approach with
an accurate evaluation of its surgical margins [3]. Regardless of the subtype, due to the
fact that aging is one the main risk factors, and given that the global population age is
increasing, an increase in its related morbidity and local recurrence rates is expected [30].

SCC develops from stratum spinosum keratinocytes and is classified as well, moder-
ately and poorly differentiated. Analogously to BCC, the increase in the average population
age and in the exposure to UV light is resulting in an increase in SCC diagnosis [31,32].
SCC occurs often in the head and neck region, where it emerges as an erythematous scaling
nodule and plaque, eventually ulcerated. SCC can be classified in several subtypes that
differ for their histological appearance and prognosis. The most common subtype displays
atypical keratinocytes invading the dermis [33,34]. Depth of invasion (tumor thickness
>2 mm), tumor size (diameter >2 cm), acantholysis, perineural and vascular involvement
are considered negative prognostic factors. Furthermore, an association between the site of
the primary tumor and prognosis was demonstrated, since head and neck SCCs are more
prone to metastasize compared to tumors that arises on the extremities or trunk [35,36]. In-
deed, despite the fact that surgical excision is curative for most of SCCs, a subset of patients
will undergo relapse and eventually will develop metastasis. Hence, the identification of
biomarkers with a prognostic value that could support SCC treatment and promote an
adjuvant targeted therapy is a primary goal.

Keratoacanthoma (KA) is a malignancy displaying a bi-phasic growth pattern char-
acterized by a fast growing phase generally followed by involution. As most of the other
SCs, UV exposure is a risk factor, since KA mostly occurs on sun-damaged skin [37]. There
is not a consensus among authors on whether KA is a variant of SCC or a separate entity;
however, a certain differential diagnosis between these two malignancies is of primary
need, since KA, unlike SCC, is characterized by a good prognosis due to its inclination to
spontaneous involution [37,38].

As concerns BD, it is believed to be an in situ SCC, whereas AK can be considered a pre-
cancerous lesion which may develop in SCC. Although both diseases exhibit a close associ-
ation with SCC, they are characterized by different histopathological characteristics [39].

MCC is usually present as erythematous nodule characterized by rapid growth. In
the past, MCC was considered to derive from skin Merkel cells, and this explains its name.
However, nowadays it is believed that MCC arises from skin precursors of epithelial,
lymphoid, or fibroblastic type. Although it represents <1% of all NMSCs, it displays a very
aggressive behavior reflected by the presence of clinical or pathological node disease in up
to 48% of the patients at diagnosis, while 10% of them already display a metastatic stage at
diagnosis [40]. The combination of surgery and radiotherapy is considered the first line of
treatment; nonetheless, since recurrence rates are high, about 40% of patients will undergo
recurrence within 2 years of diagnosis [41].

Since early and accurate diagnosis and prognosis have a crucial impact on the outcome
of these diseases, clinical practice is constantly looking for new genetic and molecular
markers that could facilitate an early diagnosis or an accurate setting of the prognosis for
both cancerous and non-cancerous diseases, in order to reduce morbidity and improve
patients’ survival [30,42–46]. This is particularly relevant for SC, since the number of new
cases is expected greatly increase in the next future due to increasing UV exposure and
population age [1,47,48].

2. Nicotinamide (NAM) in SC

NAM is a form of vitamin B3 largely utilized for the management of several chronic
dermatoses, which includes rosacea, acne, blistering immune disorders, atopic dermatitis,
and cutaneous neoplasms [49]. NAM is the precursor of nicotinamide adenine dinucleotide
(NAD+), a co-enzyme of redox reactions crucial for the production of adenosine triphos-
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phate (ATP). For this reason, it is a master influencer of cellular metabolism, regulating
multiple pathways involved in both cellular survival and apoptosis [50].

UV exposure induces damage of cellular DNA, triggering strand breaks, crosslinks,
and base modifications that are repaired by various repair systems, which in turn consume
ATP [51,52]. Therefore, UV exposure leads to ATP consumption, which in turn induces
a kind of cellular energy crisis, and, since repair systems need high levels of ATP to
work properly, the consequence is an accumulation of molecular aberrations and genome
instability [53]. Therefore, it was reported that NAM exerts UV protective effects due
its involvement in cellular energy pathways, as a precursor of NAD+ [54]. In detail, UV
irradiation causes the block of glycolysis by activating poly-ADP-ribose-polymerase 1
(PARP-1), and this event ultimately inhibits NAD+ production [55,56]. Furthermore, NAM
inhibits skin carcinogenesis regulating the proteins p53 and sirtuins. Indeed, when DNA
damage is too extensive, p53 is activated by NAD+ and triggers cell cycle arrest and
apoptosis. Since NAM is able to restore the intracellular levels of NAD+, it was reported
that NAM can modulate the p53 pathway [57]. Moreover, NAM was proposed to be a
negative regulator of SIRT1, a NAD+-dependent histone deacetylase able to inhibit p53,
thus preventing apoptosis [58,59].

NAM was demonstrated to play a key role in preventing skin carcinogenesis by
counteracting UV-induced immunosuppression. Indeed, UVB-induced DNA damage
stimulates cutaneous antigen-presenting cells (APC) to produce interleukin (IL)-10, which
downregulates the immune response [60]. According to this hypothesis, the topic use
of NAM in UV-irradiated mice could counteract the cutaneous carcinogenesis process.
NAM supplementation through the diet was able to decrease SC incidence in UV-exposed
mice with a dose-dependent effect [61]. Another study demonstrated that a group of
people taking oral nicotinamide had a minor diminution of delayed-type hypersensitivity
when exposed to UV light for three consecutive days compared to the placebo group. The
protective effect of NAM was ascribable to its activity of counteracting immunosuppression
by restoring the sufficient energy levels demanded by cells for repairing DNA damage and
preventing PARP overactivation [62].

In order to evaluate the chemopreventive effect of NAM in high-risk patients, the
Phase III double-blind ONTRAC Study was designed [63]. In this study, patients were
selected for having had two or more NMSC in the last 5 years. In the period of treatment,
which lasted 12 months, the mean incidence of NMSC observed in the nicotinamide-treated
group was 1.8, while that in the placebo group was 2.4. In particular, the mean number
of BCCs was 1.3 in the nicotinamide-treated group and 1.9 in the placebo group, with a
smaller rate of 20% after adjustment for medical center of treatment and 5-year BCC history.
The mean number of SCCs was 0.5 in the nicotinamide-treated group and 0.7 in the placebo
group, with a smaller rate of 30% after adjustment for center and 5-year SCC history [63].

As regards malignant melanoma, studies performed in vitro demonstrated that NAM
is able to improve the repair rate of the nucleotide excision system and can increase the
percentage of melanocytes undergoing DNA repair after UV exposure [64]. Subsequent
in vitro studies on melanoma cell lines demonstrated that NAM supplementation, equal to
the orally administered doses utilized in the ONTRAC study, did not boost cell viability,
proliferation, or invasiveness. Nonetheless, NAM was able to induce an immune response
directed to the existing melanomas in vivo [65]. Taken together, these findings led to the
hypothesis that oral NAM does not worsen melanoma pathogenesis but, on the contrary,
might be useful in melanoma chemoprevention.

3. Nicotinamide N-Methyltransferase

Nicotinamide N-methyltransferase (NNMT) is an enzyme that catalyzes the N-methylation
of nicotinamide, using S-adenosyl-L-methionine (SAM) as a methyl donor, thus yielding
N1-methylnicotinamide (MNA) as a product and releasing S-adenosyl-L-homocysteine
(SAH) [66]. Since it can also methylate other pyridines and other structural analogs, it plays
a pivotal role not only in nicotinamide homeostasis but also in the biotransformation and
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detoxification of several xenobiotic compounds [67,68]. Furthermore, it was demonstrated
that NNMT takes part also in several crucial metabolic pathways.

Nicotinamide is the precursor of nicotinamide adenine dinucleotide (NAD+), a co-
enzyme of redox reactions required for ATP production. Therefore, the amount of nicoti-
namide inside the cell available for energy metabolism can be regulated by NNMT activity
(Figure 1), and therefore, the catalytic activity of the enzyme can affect and modulate
multiple pathways of cellular survival and apoptosis [50]. In addition, by influencing the
SAM/SAH ratio inside the cell, it can indirectly impact gene expression [69]. In the last
two decades, NNMT has been the focus of a number of studies that demonstrated the
involvement of this enzyme in the progression of numerous malignancies including oral
squamous cell carcinoma (OSCC), papillary thyroid cancer, lung cancer, gastric cancer,
pancreatic cancer, colorectal cancer, clear cell renal cell carcinoma (ccRCC), breast cancer,
bladder urothelial carcinoma (BUC), and ovarian clear cell carcinoma [70–85].
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Figure 1. Nicotinamide (NAM) metabolism. NAM can be methylated by nicotinamide N-
methyltransferase (NNMT) utilizing S-adenosyl-L-methionine (SAM) as a methyl donor, which in
turn is converted to S-adenosyl-L-homocysteine (SAH). NNMT activity can affect NAD+ biosynthesis
and thus ATP production, since it can regulate the amount of NAM converted into NAD+. Further-
more, by modulating the intracellular SAM/SAH ratio, it can indirectly impact gene expression.

The analysis of NNMT expression levels in ccRCC demonstrated that the amount of
upregulated enzyme is inversely correlated with tumor size, suggesting that the enzyme
could play a role in cancer progression [86]. Similar results were obtained in OSCC, for
which NNMT upregulation was negatively correlated with the parameters pT, lymph
node metastasis, pathological and histological grading; this evidence led to hypothesize its
potential involvement in tumor growth and differentiation [87,88].

NNMT expression levels were also found to be notably upregulated in exfoliated
cells isolated from the urine of BUC patients compared to that of controls, and an inverse
correlation between enzyme expression and histological grade was demonstrated, an
observation that suggested the remarkable diagnostic accuracy of a urine test based on
the detection of NNMT levels [83]. Consistently with these findings, an increased level of
NNMT was detected in saliva samples of OSCC patients compared to controls, a finding
that suggested the use of NNMT as a salivary biomarker for the early and non-invasive
diagnosis of oral cancer [89]. Taken together, these studies demonstrate that the NNMT
enzyme has a remarkable potential as a diagnostic and prognostic biomarker in a wide
spectrum of malignancies.

4. Involvement of NNMT in SC

Given the increasing evidence that NNMT relevantly contributes to cancer progression,
several studies have been performed in order to explore its potential involvement also in
SC. A summary of the results of all studies is reported in Table 1.
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Table 1. Summary of studies exploring the role of NNMT in SC.

Type of Skin
Cancer

Diagnostic
Potential

Prognostic
Potential

Therapeutical
Target Reference

Cutaneous
malignant
melanoma

Yes Yes (inverse
correlation) N.A. [89]

Cutaneous
malignant
melanoma

Yes Yes (inverse
correlation) N.A. [90]

Oral malignant
melanoma No Yes (positive

correlation) N.A. [90]

Human
malignant

melanoma cell
lines

N.A. N.A. Yes [91]

Basal cell
carcinoma Yes Yes (inverse

correlation) N.A. [92]

Squamous cell
carcinoma No Yes (inverse

correlation) N.A. [92]

Keratoacanthoma Yes Yes (inverse
correlation) N.A. [93]

Human skin
squamous

carcinoma cell
lines SCC12/13

N.A. Yes N.A. [94]

Ganzetti et al. were the first authors to investigate the role of NNMT in malignant
melanoma. In this retrospective study, a total of 34 primary melanomas and 34 melanocytic
non-congenital non-atypical compound and dermal nevi, used as the control group, were
analyzed by immunohistochemistry. In this work, a significantly higher NNMT expression
level was found in cutaneous malignant melanoma samples compared to benign nevi [90].
An analysis of NNMT expression in melanoma samples from the Pan-Cancer Analysis of
Whole Genomes (PCAWG) (https://www.ebi.ac.uk/gxa/home) (accessed on 14 September
2021) confirmed these findings, showing that the enzyme displayed an expression level of
26 transcript per million (TPM), while in other types of cancers, characterized by a marked
overexpression of NNMT, such as bladder, lung, and breast cancer, an expression level of
21, 161, and 71 TPM, respectively, was detected. These results demonstrate that NNMT
overexpression in melanoma is remarkable. Furthermore, Ganzetti et al. demonstrated that
the NNMT levels measured in the melanoma samples resulted to be inversely correlated to
Breslow thickness, Clark level, the presence and number of mitoses, and ulceration, thus
suggesting that the enzyme has a good potential to be used as a prognostic biomarker [90].
A subsequent immunohistochemical study regarding NNMT expression levels in cutaneous
melanoma confirmed these findings [91]. In the same study, the authors also analyzed
the enzyme expression level in samples of patients with oral malignant melanoma, an
exceptionally rare and aggressive variant of the neoplasm of the head and neck region,
which notoriously displays a poor prognosis. The immunohistochemical analysis revealed
that NNMT expression was significantly higher in cutaneous malignant melanoma sam-
ples, but oral malignant melanoma samples exhibited more strongly stained cells, thus
suggesting a potential involvement of NNMT in oral malignant melanoma. Furthermore,
the findings presented in this work indicated that NNMT levels, measured in both oral
malignant melanoma and cutaneous melanoma samples, showed a potential association
with the presence of ulcers, which was contrasting in the two neoplasms, since the staining
intensity was higher in ulcerated oral malignant melanoma samples, while the ulcerated
cases of cutaneous melanoma displayed a reduction of NNMT levels. Finally, statistical
analysis revealed an inverse correlation between the percentage of NNMT-positive cells in
the tumor samples and the disease-free survival time in oral malignant melanoma patients,
indicating that NNMT could be an efficient prognostic factor for this malignancy [91].

https://www.ebi.ac.uk/gxa/home
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In another study, the functional role of NNMT was investigated through shRNA-
mediated silencing of the enzyme in the melanoma cell lines A375 and WM-115 [92].
Following NNMT knockdown, cell proliferation, migration, and chemosensitivity were
evaluated. The data obtained revealed that enzyme silencing triggered a significant re-
duction of cell proliferation and migration in A375 melanoma cells. Furthermore, enzyme
downregulation sensitized melanoma cells to the chemotherapeutic dacarbazine. In addi-
tion, similar effects on cell proliferation and chemosensitivity were obtained in WM-115
melanoma cells, upon enzyme silencing. These findings led to the hypothesis that NNMT
might be involved in promoting mechanisms of chemoresistance. A subsequent study
explored the role of NNMT also in NMSC. A total of 79 specimens (40 BCC and 39 SCC
cases) were subjected to immunohistochemical analysis to evaluate the enzyme expression
levels, with the healthy tissue margins used as a control [94]. In the BCC cohort, NNMT
expression was significantly higher in tumor specimens than in normal tissue margins.
Interestingly, immunopositivity was higher in nodular BCC compared to the infiltrative
BCC subtype. This expression pattern was also exhibited by BCCs displaying both nodular
and infiltrative features within a single tumor. Therefore, the obtained data suggest an
inverse correlation between NNMT expression and tumor aggressiveness [94].

Regarding SCC, the study analyzed both tumor samples from the head and neck
region and lesions affecting the rest of the body. Unexpectedly, the findings reported in this
study showed a significant lower NNMT expression in cancer cells compared to healthy
margin tissues. Interestingly, the fraction of immuno-positive cells was markedly higher
in SCC specimens excised from extremities and trunk compared to specimens from the
head and neck, thus reinforcing the hypothesis of an inverse correlation between enzyme
expression and tumor aggressiveness [94]. Altogether, these findings suggest that NNMT
may be a potential prognostic biomarker for these neoplasms.

A subsequent study analyzed differences in protein expression between the human
skin squamous carcinoma cell lines SCC12 and SCC13, with the aim to identify which
genes determine the high invasive potential displayed by the SCC12 cell line compared
with the poorly invasive SCC13 cell line [93].

Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI–TOF-MS), the authors identified NNMT as an upregulated protein in the SCC12
cell line. Therefore, shRNA silencing of the enzyme was performed in order to evaluate
the impact of NNMT knockdown on cell proliferation, migration, and invasion. NNMT
downregulation strongly inhibited the proliferation and density-dependent growth of
SCC cells, as well as their migration and invasion. Furthermore, the impact of NNMT
knockdown on epithelial–mesenchymal transition (EMT)-associated gene expression was
investigated through the RT2 Profiler PCR Array. The results showed that NNMT silencing
was able to downregulate 10 of the 84 EMT-related genes analyzed, namely the genes
coding for MMP9, SPP1, and versican core protein (VCAN), which play a role in the
modulation of extracellular matrix (ECM) structure and function. Furthermore, the mRNA
expression level of Slug, a key effector of EMT, was also repressed by NNMT silencing.
In the light of the above-mentioned findings, NNMT was proposed as a novel prognostic
biomarker and therapeutic target for patients with SCC [93].

Another study evaluated the differential expression of NNMT in cutaneous KA and
SCC on 48 samples through immunohistochemistry [95]. The reported results demon-
strated a significantly higher NNMT expression level in KA compared to SCC. In detail, the
percentage of NNMT-positive cells was significantly lower in head and neck SCC compared
to SCC samples from the rest of the body. It is noteworthy that, according to previous stud-
ies, tumors with a less favorable prognosis displayed reduced NNMT levels [86,87,90,94].
Since KA and well-differentiated SCC are difficult to be distinguished from a histopatho-
logical perspective, the observed differences in NNMT expression may be exploited to
perform a prompt differential diagnosis between these two pathological conditions. Indeed,
while KA is characterized by an excellent prognosis due to its natural tendency to involute,
SCC is characterized by a very aggressive behavior. Therefore, these findings reinforce
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the idea that NNMT may be a novel biomarker suitable for both the early diagnosis and
prognosis of these neoplasms, and for designing targeted therapeutic strategies.

5. Conclusions and Future Perspectives

Even though the contribution of NNMT to the cancer progression was demonstrated
in a large number of malignancies, the effective role of this enzyme in cancer cells still
needs to be fully elucidated.

The above-mentioned studies demonstrated that NAM exerts a positive role in coun-
teracting carcinogenesis. On the other hand, the enzyme NNMT, the master regulator
of intracellular NAM, seems to be involved in tumor progression. Notably, given the
chemopreventive role of NAM, it is conceivable that NNMT may exert a primary role in
the first step of carcinogenesis, irreversibly methylating NAM, thus generating MNA. Since
overexpression of NNMT was reported in most SC, the enzyme activity may determine
a drop in the intracellular levels of NAM, resulting in UV sensitization of cells and im-
pairing the mechanisms involved in cycle cell arrest and DNA repair, as discussed above.
All these events may be responsible for neoplastic cell transformation over time. In this
regards, further studies are required in order to elucidate whether NNMT overexpression
is responsible for the neoplastic transformation of cells or whether it is a consequence of
the altered gene expression pattern of the neoplastic cell.

Nevertheless, it clearly appears that NNMT might be an excellent candidate as a
diagnostic and prognostic marker in skin cancers. The studies performed to date are
promising, but further analyses are required in order to widen the cohort of patients taken
into consideration, thus confirming the suitability of the enzyme as a biomarker in the
clinical practice.

A large number of studies were focused on exploring the impact of NNMT down-
regulation in several cancer models, leading to the discovery that the suppression of this
enzyme prevents cancer cell proliferation, invasion, and metastasis, as well as chemoresis-
tance [50,92]. Moreover, it was suggested that the enzyme may contribute to the radioresis-
tance of cancer cells [96,97]. In the light of the above-mentioned considerations, NNMT
can also be considered a promising molecule for targeted therapy.

One of the encouraging frontiers that has recently drawn much attention is the develop-
ment of specific inhibitors of the enzyme, which are providing encouraging results [98–103].
It remains to be seen whether the strong preclinical evidence of small-molecule inhibitors
against NNMT could still be translated in clinical practice for patients’ treatment. Therefore,
appropriate studies should be performed in this direction.
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