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Simple Summary: For multiple myeloma (MM) patients with measurable disease, there is no
recommendation to monitor serum free light chains during therapy. However, this could provide
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important information in terms of prognosis. We investigated the prognostic impact of serum free
light chain ratio (FLCr) normalization in 590 patients with secretory MM during first-line treatment
within the German-Speaking Myeloma Multicenter Group MM5 trial. We are able to show that there
is an increasing percentage of patients who achieve FLCr normalization during therapy. Importantly,
we demonstrate that FLCr normalization at any time before the start of maintenance is significantly
associated with prolonged progression-free and overall survival in multivariable time-dependent
Cox regression analyses. This suggests that FLCr normalization during therapy is an important and
simple way to assess prognostic factor in MM and supports the serial measurement of serum free
light chains during therapy, even in patients with secretory MM.

Abstract: We investigated the prognostic impact of time-dependent serum free light chain ratio (FLCr)
normalization in 590 patients with secretory multiple myeloma (MM) during first-line treatment
within the German-Speaking Myeloma Multicenter Group MM5 trial. Serum free light chains (sFLC)
were assessed by the Freelite test at baseline, after induction, mobilization, autologous blood stem cell
transplantation, consolidation and every three months during maintenance or follow up within two
years after the start of maintenance. The proportion of patients with a normal or normalized FLCr
increased from 3.6% at baseline to 23.2% after induction and 64.7% after consolidation. The achieve-
ment of FLCr normalization at any one time before the start of maintenance was associated with
significantly prolonged progression-free survival (PFS) (p < 0.01, hazard ratio (HR) = 0.61, 95% confi-
dence interval (95% CI) = 0.47–0.79) and overall survival (OS) (p = 0.02, HR = 0.67, 95% CI = 0.48–0.93)
in multivariable time-dependent Cox regression analyses. Furthermore, reaching immune recon-
stitution, defined as the normalization of uninvolved immunoglobulins, before maintenance was
associated with superior PFS (p = 0.04, HR = 0.77, 95% CI = 0.60–0.99) and OS (p = 0.01, HR = 0.59,
95% CI = 0.41–0.86). We conclude that FLCr normalization during therapy is an important favorable
prognostic factor in MM. Therefore, we recommend serial measurements of sFLC during therapy
until achieving FLCr normalization, even in patients with secretory MM.

Keywords: multiple myeloma; prognostic factors; serum free light chain ratio normalization; immune
reconstitution; time-dependent analysis

1. Introduction

Multiple myeloma (MM) is a cancer of the bone marrow, characterized by a clonal
proliferation of plasma cells producing monoclonal protein. The monoclonal protein can be
either a complete immunoglobulin consisting of two heavy and two light chains or, in the
case of light chain MM, light chains only. However, in patients with lgG, lgA, lgM, lgD or
lgE MM, more light chains are also produced than heavy chains, leading to a measurable
increase in light chains in the serum and also in the urine after the renal reabsorption
capacity is exceeded [1].

An abnormal serum free light chain ratio (kappa/lambda, FLCr) can be found in
approximately 95–98% of patients with newly diagnosed MM [2,3]. The prognostic impact
of the FLCr at diagnosis was demonstrated in several clinical trials [2–5]. Therefore,
according to the recommendations of the International Myeloma Working Group (IMWG),
serum free light chains (sFLC) should be assessed at baseline in MM [6]. Further indications
for measuring sFLC in MM are the screening for MM, the monitoring of a part of the patients
with previously called asecretory MM (involved sFLC ≥ 100 mg/L provided an abnormal
FLCr) and the determination of the stringent complete response (sCR) [6–8]. For MM
patients with measurable disease by a serum monoclonal protein ≥10 g/L or a light chain
excretion in the 24 h urine ≥200 mg per day, there is no recommendation for monitoring of
sFLC during therapy yet [9].

Nonetheless, sequential measuring sFLC in these patients might be beneficial. Lopez-
Anglada and colleagues were able to demonstrate in an analysis on patients treated in three
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phase-three trials of the PETHEMA/GEM that achieving a normalization of the FLCr after
treatment is associated with prolonged progression-free survival (PFS) and overall survival
(OS) and that the persistence of an involved sFLC ≥100 mg/L after the end of treatment
has a negative prognostic impact [10]. Another analysis showed that in MM patients
achieving no complete response (CR) during first-line therapy, an FLCr normalization at
the time point of best response also has an independent beneficial effect on PFS and OS [11].
Furthermore, Dejoie and colleagues recently published a proposal for a modification of
the IMWG response criteria, replacing 24 h urine measurements with sFLC in the response
assessment of patients with secretory MM [12].

Besides an abnormal FLCr, immunoparesis is a hallmark of MM since the expansion of
clonal plasma cells leads to a displacement of normal plasma cells and therefore decreased
production of polyclonal immunoglobulins. Accordingly, immunoparesis accounts for
an adverse prognosis in newly diagnosed, as well as relapsed, MM [13–15]. In turn,
achieving a reconstitution of polyclonal immunoglobulins during the course of therapy is
associated with prolonged PFS and OS. The recovery of polyclonal immunoglobulins one
year after autologous blood stem cell transplantation (ASCT) is associated with a favorable
prognosis [16].

The aim of our study is to investigate FLCr normalization during the course of therapy
within the German-Speaking Myeloma Multicenter Group (GMMG) MM5 trial [17] and
its impact on PFS and OS. In addition, we evaluate the importance of achieving immune
reconstitution during therapy.

2. Materials and Methods
2.1. MM5 Trial

Newly diagnosed transplant-eligible MM patients with measurable disease were in-
cluded in the prospective multicenter phase-three trial MM5 (EudraCT No. 2010-019173-16)
and randomized to one of four different treatment arms. Eligibility criteria, design and
primary endpoints of the trial have been published [17,18]. After randomization, patients
received induction therapy with three cycles of bortezomib, doxorubicin and dexametha-
sone (PAd, arms A1 and B1) or bortezomib, cyclophosphamide and dexamethasone (VCD,
arms A2 and B2). Then stem cell mobilization and subsequent melphalan high-dose ther-
apy and ASCT were performed according to local protocols. Afterwards, lenalidomide
consolidation and maintenance were conducted. Patients received lenalidomide mainte-
nance for two years in arms A1 and A2 or until the achievement of CR in arms B1 and B2
(Figure S1; Material S1). The MM5 trial was approved by the local ethics committees of all
participating centers (leading ethics committee University of Heidelberg AFmu-119/2010).
All patients gave written informed consent.

2.2. Assessment of sFLC and Immunoglobulins

The Freelite test (The Binding Site Group Ltd., Birmingham, Great Britain) was used to
prospectively quantify sFLC centrally at inclusion, after induction, stem cell mobilization,
ASCT, consolidation and every three months during maintenance or follow up within two
years after the start of maintenance [19]. The immunoglobulins IgG, IgA and IgM were
prospectively assessed at the same time points. For the definition of FLCr normalization,
the established reference range by Katzmann et al. for the kappa/lambda ratio of 0.26–1.65
was used [20]. In the case of renal insufficiency (creatinine >2 mg/dL and/or glomerular
filtration rate <40 mL/min), the adapted range 0.37–3.1 for FLCr was applied [21]. Immuno-
paresis was defined by the suppression of at least one uninvolved immunoglobulin [22].
For the achievement of immune reconstitution, the normalization of all uninvolved im-
munoglobulins was required. The following reference ranges were used: IgG 7.0–16.0 g/L,
IgA 0.7–4.0 g/L and IgM 0.4–2.3 g/L.
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2.3. Statistical Methods

The achievement of FLCr normalization was determined for patients on study at
baseline, after induction, stem cell mobilization, ASCT, consolidation and every three
months during maintenance or follow up until the end of the study. Thus, the values
of FLCr normalization are yes, no and missing. In the second step, we consolidated
the received information and determined if FLCr normalization was achieved at any
time until the start of maintenance at the latest, irrespective of whether the achievement
was lost in between. Thereby, the date of first achievement was used to model the time
from randomization to the first achievement of FLCr normalization. The achievement of
immune reconstitution was analogously determined. In addition, the achievement of CR
after consolidation was assessed.

A multivariable Cox regression model with time-dependent covariates was applied
to analyze the impact of FLCr normalization and immune reconstitution until the start
of maintenance at the latest on PFS and OS. FLCr normalization, immune reconstitution
and CR after consolidation were modeled as time-dependent covariates. The set of fixed
covariates consisted of age, the International Staging System (ISS), cytogenetic risk and
treatment arm. The Simon–Makuch estimators were derived to present the estimated
risk of progression or death under the state of achieved FLCr normalization or immune
reconstitution [23]. The Simon–Makuch plots show the impact of time-dependent variables
on PFS and OS, taking the time-dependent change of the variables into account. Here, the
survival times until a potential achievement of FLCr normalization/immune reconstitution
and after a potential achievement are separately shown in two curves. Therefore, it is
possible that one patient can be found in two curves. Patients who never achieve FLCr
normalization are shown in the curve “before FLCr normalization” as well as patients
who start with an abnormal FLCr and achieve a normalization during therapy. Then the
patients who achieve a normalization can be found in the curve “after FLCr normalization”
as well as patients who already started with a normal FLCr.

Furthermore, the prognostic impact of FLCr normalization at end of induction and
consolidation, respectively, and immune reconstitution after consolidation were assessed
by an equivalent multivariable Cox regression model.

To evaluate a previously described prognostic effect of FLCr at diagnosis, the impact
of an FLCr of 1/32-32 vs. <1/32 or >32 at baseline on PFS and OS was examined in a
univariate Cox regression analysis, according to Snozek et al. [2]. The curves for PFS and OS
and the corresponding 95% confidence interval (CI) were derived using the Kaplan–Meier
method [24].

Values of p <0.05 were considered statistically significant. The analyses were con-
ducted using R version 3.6.2 (https://www.R-project.org, accessed on 17 September 2021).

3. Results
3.1. Patient Cohort

The expanded population of the MM5 trial consisted of 604 patients [25]. Three of
them were excluded due to a violation of the inclusion criteria. Among 601 patients of
the ITT population, a number of 590 patients were evaluable for multivariable time-to-
event analysis and made up the corresponding analysis population. For 11 patients, FLCr
normalization or immune reconstitution could not be determined due to missing values of
sFLC, immunoglobulins, creatinine, glomerular filtration rate or missing an assessment
date of sFLC or immunoglobulins.

The baseline characteristics of the analysis population (n = 590) can be found in Table 1.
After the end of consolidation, 126 of 456 patients on study at the start of the second cycle
of consolidation achieved a CR and 320 a non-CR. Ten patients on study had no response
assessment after consolidation.

An FLCr between 1/32 and 32 vs. <1/32 or >32 at baseline was associated with
prolonged PFS (p = 0.01, hazard ratio (HR) = 0.74, 95% CI = 0.59–0.94) and OS (p = 0.01,
HR = 0.62, 95% CI = 0.44–0.88) in univariate Cox regression analyses (Figure 1).

https://www.R-project.org
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Table 1. Baseline characteristics of the analysis population.

Variable n (n = 590) %

Sex (n = 590)
Female 242 41.0
Male 348 59.0

Age (n = 590)
Median (range) 59 (32–70) years

Myeloma subtype (n = 590)
IgG 364 61.7
IgA 121 20.5

Bence-Jones 105 17.8
Light chain isotype (n = 590)

Kappa 402 68.1
Lambda 188 31.9

Calcium (n = 590)
>2.65 mmol/L 79 13.4
≤2.65 mmol/L 511 86.6

Renal insufficiency * (n = 590)
Yes 66 11.2
No 524 88.8

Hemoglobin (n = 590)
<10 g/dL 304 51.5
≥10 g/dL 286 48.5

Bone disease ** (n = 590)
Yes 534 90.5
No 56 9.5

ISS (n = 590)
I 226 38.3
II 204 34.6
III 160 27.1

Adverse cytogenetics *** (n = 527)
Yes 267 50.7
No 260 49.3

LDH (n = 588)
<308 U/L 551 93.7
≥308 U/L 37 6.3

Abnormal FLCr (n = 584)
Yes 563 96.4
No 21 3.6

Immunoparesis (n = 588)
Yes 535 91.0
No 53 9.0

Abbreviations: ISS, International Staging System; LDH, lactat dehydrogenase; FLCr, free light chain ratio.
* Creatinine > 2 mg/dL and/or glomerular filtration rate < 40 mL/min. ** One or more osteolytic lesions.
*** Deletion 17p13, translocation t(4;14) or gain 1q21 more than three copies.
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Figure 1. Kaplan–Meier Estimator of the impact of the FLCr at baseline on PFS (A) and OS (B).

3.2. FLCr Normalization during Therapy in the MM5 Trial and Its Impact on PFS and OS

The percentage of patients with a normal FLCr increased from 3.6% (21/590) at base-
line to 23.2% (131/564) after induction, 48.5% (249/513) after ASCT and 64.7% (295/456)
after consolidation therapy (Figure 2). During maintenance therapy, the percentage slowly
decreased from 61.7% (263/426) after three months to 55.4% (209/377) after 12 months to
48.1% (140/291) after 24 months.

Among 590 evaluable patients for multivariable regression analyses, 401 patients
achieved a FLCr normalization at any time point before the start of maintenance. A
normalization of the FLCr until the start of maintenance at the latest significantly prolonged
PFS (p < 0.01, HR = 0.61, 95% CI = 0.47–0.79) and OS (p = 0.02, HR = 0.67, 95% CI = 0.48–0.93)
in the multivariable time-dependent Cox regression analyses (Table 2). This impact was
not associated with a deep response (CR vs. non-CR) after consolidation. Furthermore, ISS
II and III compared to ISS I and the presence of high-risk cytogenetics were significantly
associated with an inferior PFS and OS. Lenalidomide maintenance until the achievement
of CR (study arms B1 and B2) compared to a fixed duration of two years (study arms A1
and A2) was linked to a shorter OS (Table 2). Figure 3A,B present the Simon–Makuch
estimators on the risk of progression and death depending on the achievement of FLCr
normalization.
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Table 2. Impact of achieved FLCr normalization until the start of maintenance at the latest on PFS
and OS. The results of the time-dependent multivariate Cox regression analysis.

Variable
PFS OS

HR (95% CI) p-Value HR (95% CI) p-Value

Age (per year) 1.00 (0.98–1.01) 0.89 1.02 (1.00–1.04) 0.06
ISS (II vs. I) 1.46 (1.13–1.90) <0.01 1.77 (1.16–2.71) 0.01
ISS (III vs. I) 1.82 (1.37–2.43) <0.01 2.91 (1.90–4.45) <0.01

Adverse cytogenetics (yes vs. no) 2.12 (1.68–2.68) <0.01 2.96 (2.07–4.23) <0.01
Treatment arm (B vs. A) 1.04 (0.82–1.31) 0.75 1.56 (1.12–2.17) 0.01

Response after CONS
(CR vs. non-CR) 1.04 (0.76–1.40) 0.82 0.71 (0.44–1.15) 0.16

FLCr normalization (yes vs. no) 0.61 (0.47–0.79) <0.01 0.67 (0.48–0.93) 0.02
Abbreviations: CR, complete remission; HR, hazard ratio; OS, overall survival; PFS, progression-free survival;
95% CI, 95% confidence interval.

Next, we assessed the impact of a FLCr normalization at the predefined time points
“after induction” and “after consolidation” on PFS and OS. Achieving a FLCr normalization
after induction showed no influence on PFS (p = 0.11, HR = 0.81, 95% CI = 0.62–1.05) and OS
(p = 0.16, HR = 0.75, 95% CI = 0.50–1.12) in multivariable analyses (Table S1). Similar results
were seen at the time point after consolidation (PFS: p = 0.12, HR = 0.82, 95% CI = 0.64–1.05,
OS: p = 0.34, HR = 0.85, 95% CI = 0.60–1.19) (Table S2).
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3.3. Achievement of Immune Reconstitution during Therapy in the MM5 Trial and Its Impact on
PFS and OS

At baseline, 9.0% (53/590) of the patients had normal immunoglobulins, and the
amount further decreased to 2.0% (11/564) after induction due to therapy. Immune
reconstitution was noted in 15.4% (79/513) of patients after ASCT and in 32.2% (147/456)
after consolidation therapy (Figure 4).

In total, 227 of 590 patients evaluable for multivariable analyses achieved an immune
reconstitution at any time point before the start of maintenance. The achievement of
immune reconstitution until the start of maintenance at the latest significantly prolonged
PFS (p = 0.04, HR = 0.77, 95% CI = 0.60–0.99) and OS (p = 0.01, HR = 0.59, 95% CI = 0.41–0.86)
in the multivariable time-dependent Cox regression analyses (Table 3). Figure 3C,D show
the Simon–Makuch estimators regarding the risk of progression and death depending on
immune reconstitution until maintenance.
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Table 3. The impact of achieved immune reconstitution until the start of maintenance at the latest on
PFS and OS. The results of the time-dependent multivariate Cox regression analysis.

Variable
PFS OS

HR (95% CI) p-Value HR (95% CI) p-Value

Age (per year) 1.00 (0.98–1.01) 0.73 1.02 (1.00–1.04) 0.05
ISS (II vs. I) 1.43 (1.10–1.85) 0.01 1.72 (1.13–2.63) 0.01
ISS (III vs. I) 1.88 (1.41–2.50) <0.01 2.97 (1.94–4.53) <0.01

Adverse cytogenetics (yes vs. no) 2.09 (1.66–2.63) <0.01 2.97 (2.09–4.24) <0.01
Treatment arm (B vs. A) 1.04 (0.83–1.30) 0.75 1.55 (1.11–2.16) 0.01

Response after CONS
(CR vs. non-CR) 0.98 (0.73–1.30) 0.87 0.65 (0.41–1.04) 0.07

Immune reconstitution (yes vs. no) 0.77 (0.60–0.99) 0.04 0.59 (0.41–0.86) 0.01

The achievement of immune reconstitution after consolidation was associated with a
significantly prolonged OS (p < 0.01, HR = 0.54, 95% CI = 0.36–0.83) (Table S3). The effect
on PFS was not significant (p = 0.15, HR = 0.83, 95% CI = 0.64–1.07) (Table S3).

4. Discussion

Serial measurements of sFLC during therapy in patients with secretory MM have
not been recommended by the IMWG so far [6]. However, these measurements might
provide important information in terms of prognosis. The sFLC represent tumor burden
and have a shorter half-life (T1/2) than immunoglobulins (T1/2 sFLC 2–6 h, T1/2 IgG
20–25 d), allowing an earlier evaluation of the response to therapy [26–28]. Furthermore,
due to intraclonal heterogeneity in MM, two to ten percent of the patients develop a sFLC
escape at relapse [29–31]. Finally, the measurement of light chain excretion in 24-hour urine
samples for a response assessment in MM remains controversial because of its dependence
on renal function and correct urine collection in the clinical routine [12].
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In the present study, we analyzed the prognostic impact of a time-dependent FLCr
normalization during the course of therapy in newly diagnosed patients with secretory MM
treated within the GMMG MM5 trial. To our knowledge, this is the first study assessing the
impact of time-dependent FLCr normalization during therapy in a large cohort of patients
with secretory MM.

As expected, our analysis demonstrates that during the course of first-line therapy,
there is an increasing percentage of patients achieving FLCr normalization with a maximum
after consolidation. Tacchetti et al. showed similar rates of patients achieving a normal FLCr
after first-line treatment with a bortezomib-based regime [32]. In contrast, in a Japanese
study, only 41% of the patients reached FLCr normalization after a novel agent-containing
treatment. However, this may be explained by the small number of patients receiving
ASCT (<20%) and that there were only a few available novel agents in the time period
2004–2012 [33].

Furthermore, we show, for the first time, that achieving a time-dependent FLCr
normalization at any time point before the start of maintenance has a strong beneficial
effect on PFS and OS, independent of age, ISS, cytogenetics, treatment arm and even a
deep response after consolidation. In contrast, a FLCr normalization at the defined time
points after induction and after consolidation alone has no prognostic significance. A
possible explanation for this might be that the prognostic effect of FLCr normalization
is time-dependent and cannot be attributed to a defined time point during therapy. In
addition, by defining certain time points, the event of reaching FLCr normalization at one
time point might be too low to reach statistical significance. In contrast, Lopez-Anglada
et al. demonstrated that a normal FLCr after induction or after ASCT is associated with
a prolonged PFS and OS [10]. The differences might be explained by the number of
patients and different variables in the multivariate models. Based on our analyses, we
propose serial measurements of sFLC during MM therapy, at least until the achievement of
FLCr normalization but preferably also after FLCr normalization to detect a relapse with
sFLC escape.

Other studies assessing time-dependent FLCr normalization in secretory MM are not
available in the current literature, but there are studies similarly demonstrating a significant
effect of a FLCr normalization after therapy on PFS and OS [10,33,34]. Furthermore,
Alhaj Moustafa et al. were able to demonstrate a positive prognostic impact of FLCr
normalization independent of the response in patients with secretory MM who do not
achieve CR in the first-line treatment [11]. The advantage of our study compared to
previously published studies is the time-dependent evaluation of sFLC based on serial
sFLC measurements.

Interestingly, Abdallah et al. were able to demonstrate that in MM patients who
achieve CR and an absence of clonal bone marrow plasma cells in the multiparametric
flow cytometry, a pathologic FLCr due to a suppression of the involved, the uninvolved
or both sFLC is accompanied with the same outcome compared to a normal FLCr [35]. In
contrast, a pathologic FLCr due to an increase in the involved sFLC is associated with a
worse outcome. Unfortunately, in our analysis, the reason for an abnormal FLCr was not
investigated. However, due to the fact that a pathologic FLCr not related to an increase in
the involved sFLC would be classified as “FLCr normalization”, a further strengthening of
our results would be expected.

In our analysis, the positive prognostic effect of time-dependent FLCr normaliza-
tion occurred irrespective of whether the achievement of FLCr normalization was lost in
between. This is in contrast to the worse prognostic impact of a loss of CR or minimal
residual disease (MRD). However, this might be explained by the often therapy-induced
abnormal FLCr. This is supported by the work of Abdallah et al., who demonstrated that
in more than half of the patients with an abnormal FLCr, this is caused by a suppression of
sFLC [35].

Surprisingly, the response after consolidation (CR vs. non-CR) did not show a sig-
nificant effect on PFS and OS in our time-dependent multivariable Cox regression model.
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This is in contrast to previous studies demonstrating an association between CR and a
superior outcome [36,37]. An explanation for this could be that the achievement of a
time-dependent FLCr normalization is a better predictor for survival than a response at
a single time point. However, it has to be noticed that the rate of CR after consolidation
in the MM5 trial is underestimated because bone marrow punctures were not obligatory.
Besides the 28.3% of the patients reaching CR after consolidation, there was a further 28.5%
reaching near CR (nCR). An impact of the underestimation of CR and a low CR rate after
consolidation (126/590) cannot be excluded. Furthermore, it can be assumed that due to
missing maintenance therapy in patients with CR after consolidation in arms B, the positive
prognostic impact of CR was weakened.

A relation between sFLC and the IMWG response can be explained by the disease
itself. A progression of the disease goes along with an increase in the monoclonal protein
but also the involved sFLC, affecting FLCr. Furthermore, the percentage of patients with
a normal FLCr increases with the improving response category [11]. However, indepen-
dent of the response, the positive prognostic impact of FLCr normalization during MM
therapy remains.

Because of the effective novel agent-based therapies, there is a need for more precise
techniques to detect a residual disease that could be missed by the determination of conven-
tional remission alone. In this context, the determination of MRD by multiparametric flow
cytometry or next-generation sequencing is of increasing importance [9], and the results on
MRD within the MM5 trial will be presented separately.

After an effective tumor load reduction and the completion of intensive treatment, the
recovery of bone marrow and immune system functions leads to a physiological production
of polyclonal sFLC and immunoglobulins by plasma cells. In the current analysis, immune
reconstitution occurred later than FLCr normalization. This is likely due to the intensive
treatment and the strict need for the normalization of all uninvolved immunoglobulins to
fulfil this criterion. Immune reconstitution is therefore achieved by a smaller percentage
of patients with a maximum of 32.2% after consolidation. González-Calle et al. showed
similar rates six months after ASCT, further increasing to 52% one year after ASCT [16].
A possible explanation could be the difference in maintenance strategies: Compared to
lenalidomide maintenance therapy for two years (arms A1 and A2) or until the achievement
of CR (arms B1 and B2) in the MM5 trial, in the Spanish study, only 57% of the patients
received maintenance therapy, which consisted of 80% of the cases of Interferon-α [16].
Furthermore, Jimenez-Zepeda et al. were able to demonstrate that patients receiving a
lenalidomide-based consolidation therapy have a lower rate of immune reconstitution one
year after ASCT [38].

We demonstrate that a time-dependent immune reconstitution before the start of
maintenance is significantly associated with prolonged PFS and OS. Furthermore, there
is a strong effect of immune reconstitution after consolidation on OS, representing the
process of physiological B-cell reconstitution after ASCT. This prognostic effect of immune
reconstitution can be mainly explained by the fact that immune reconstitution is a marker
of the treatment response. During the course of the disease, progressive disease is much
more frequent than non-relapse mortality [39]. The most common cause of death due to
progressive disease is an infection caused by immunoparesis [40].

Similarly, González-Calle et al. were able to demonstrate a positive prognostic impact
by achieving immune reconstitution. However, this impact was seen in the landmark
analysis one year after ASCT and not in the landmark analyses conducted at earlier time
points [16]. These results are in line with two other studies and can be explained by
completed B-cell reconstitution one year after ASCT [38,41,42]. It has to be noted that,
currently, there are only a few retrospective studies on the prognostic effect of immune
reconstitution after ASCT and that further studies are needed to clarify the optimal time
point of assessment.
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5. Conclusions

To conclude, two-thirds of the patients with newly diagnosed secretory MM treated
within the MM5 trial achieved normalization of the FLCr after consolidation therapy. A
time-dependent FLCr normalization at any time point prior to the start of maintenance
therapy significantly prolonged PFS and OS independent of age, ISS, cytogenetics, treat-
ment arm and the response after consolidation. Furthermore, a time-dependent immune
reconstitution during therapy predicted superior PFS and OS. These results suggest that
FLCr normalization and immune reconstitution during therapy constitute important and
simple to assess prognostic factors for patients with MM. Therefore, we recommend the
serial assessment of sFLC and immunoglobulins during MM therapy.
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