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Simple Summary: Breast cancer (BC) is the most frequent malignancy diagnosed in 2020 worldwide.
Despite significant advances in BC therapy, its pathogenesis is still not fully understood, and effective
therapy is one of the most important challenges in current oncology. The article presents the
state of the knowledge on vorinostat (SAHA) in the therapy of various histological subtypes of
BC, individually or in polytherapy with other active compounds, in in vitro, in vivo and clinical
trials settings.

Abstract: Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone
deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006.
HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells
including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior,
morphological features, and response to therapy. Although significant progress in the treatment of
BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug
resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the
effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and
clinical trials data of SAHA, applied individually or in combination with other anticancer agents,
considering different histological subtypes of BC.

Keywords: breast cancer; vorinostat (SAHA); suberoylanilide hydroxamic acid; histone deacetylase
inhibitor (HDI); histone acetylation; histone deacetylases (HDACs); epigenetics; targeted therapy

1. Introduction

Recent studies indicate that non-communicable diseases (NCDs) are responsible for
more than 75% of premature deaths. Statistics show that out of every 10 NCD deaths, four
are due to cardiovascular disease, and three are due to cancer [1]. In 2020, 19.3 million
new cancer cases were diagnosed, and 10 million deaths were noted worldwide. Cancer
incidence and, ultimately, mortality is expeditiously increasing. It may be partly explained
by the aging and increase in the number of a population as well as socio-economic devel-
opment. According to the World Health Organization (WHO), the number of female breast
cancer (BC) cases has overtaken lung cancer. BC is the most commonly diagnosed among
all cancer types (11.7% of all cancer cases) now, with a mortality rate of 6%. BC accounts
for 1 in 4 cases of cancer and 1 in 6 cases is fatal, which exhibits a great need for an effective
diagnosis system and anticancer therapy [2].

About 20% of all BC cases have family origins, presenting etiological independence
to the specific set of genes, which predisposes BC [3]. The most common non-genetic risk
factors have a hormonal background, including gender, reproduction status, breastfeeding,
and menopause. Predominantly, non-genetic BC is diagnosed among menopausal women
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with high expression of estrogen receptor (ER) [4]. BC subtypes differ due to histological
and molecular profiles, behaviors, and response to treatment. The direction of therapy is
chosen based on tumor morphology, its grade and size, the presence of metastases to the
lymph nodes, as well as gene expression of BC critical markers: ER, progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2) [5].

The BC is a heterogeneous disease at the molecular and clinical levels. The main
classification of BC includes two groups based on the hormone receptors and other proteins
involved in cancer development and progression (Table 1).

Table 1. Molecular subtypes of breast cancer (BC—breast cancer, ER—estrogen receptor, PR—progesterone receptor, HER2—
human epidermal growth factor receptor, Ki67—proliferation index marker, TNBC—triple negative breast cancer) [6–9].

Subtype of BC Immunohistochemistry
Status Grade Prevalence Outcome Treatment

Luminal A ER+, PR+, HER2−, Ki67− 1/2 23.7% good endocrine therapy alone or
with chemotherapy

Luminal B
ER+, PR+, HER2−, Ki67+

2/3
38.8% middle endocrine therapy and chemotherapy

without/with anti-HER2 therapyER+, PR+, HER2+, Ki67+ 14% poor

HER2-overexpressed ER−, PR−, HER2+ 2/3 11.2% poor chemotherapy and
anti-HER2 therapy

TNBC ER−, PR−, HER2−,
basal marker+ 3 12.3% poor chemotherapy

Normal-like ER+, PR+, HER2−, Ki67− 1/2/3 7.8% middle endocrine therapy alone or
with chemotherapy

BC comprises five molecular-based intrinsic subtypes: luminal A, luminal B, HER2-
enriched, triple-negative breast cancer (TNBC), and normal-like subtype. ER-positive
(ER+) BC subtypes include a set of genes correlated with luminal cells, including luminal
cytokeratins (e.g., cytokeratin 8 and 18) [10]. ER+ cancers are divided into two main
subclasses: luminal A and luminal B. These subtypes can differ due to HER2 expression
and cell proliferation index. Luminal A cancers express lower histological grade and
slowly grow, indicating the best prognosis for patients, with a meaningfully lower relapse
rate than other subtypes [11]. Normal-like BC is similar to luminal A, expressing the
same set of clinical markers; however, the prognosis is slightly worse than the luminal A
subtype. Luminal B cancers express a lower level of ER-related genes and a higher level
of proliferation-related and growth factor receptor signaling genes. Additionally, luminal
B tumors may be accompanied by HER2 gene amplification and/or its overexpression.
They tend to grow faster and are more aggressive than luminal A cancers [12]. The next
subtype of BC is HER2-enriched/overexpressed BC, which expresses neither ER nor PR,
but is HER2-positive. HER2-enriched BC is defined by high expression of growth factor
receptor signaling genes as well as cell cycle-related genes, and low expression of estrogen-
related and basal-related genes [13]. This BC subtype grows faster and indicates worse
patients’ prognosis compared to both luminal subtypes [5]. Unlike luminal and HER2-
enriched tumors, TNBC subtype accounts for 12.5% of all BC cases, does not express any
molecular receptors (ER, PR, HER2). This subtype is highly aggressive and indicates poor
patients’ prognosis. The relapse rate in TNBC patients is higher compared to other subtypes.
Due to the lack of critical molecular targets, the treatment of TNBC is very limited and
chemotherapy remains the first choice of therapy [14–16].
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Currently, in patients with diagnosed BC different treatment strategies are imple-
mented, including surgery, chemotherapy, radiotherapy as well as targeted, combined,
and hormonal therapy [17,18]. For women with early-stage of BC, the standard treatment
is breast-conserving surgery combined with radiotherapy or mastectomy. Additionally,
adjuvant systemic therapy is applied for nonmetastatic BC patients [19]. The type of sys-
temic therapy is associated with the BC subtype. The endocrine treatment is dedicated
to patients with hormone receptor-positive (HR+) tumors. In some cases, endocrine ther-
apy is supported by chemotherapy, whereas patients with triple-negative tumors receive
chemotherapy alone [20]. Although the BC therapies are constantly developed and new
personalized therapies are being proposed continuously [21,22], there is still a need to find
out better optimizations for the currently implemented treatment regimens to overcome
serious side effects, and ultimately improve patients’ outcomes. A better understanding
of the molecular landscape of BC allows for the better possibility of implementation of
sufficient treatment, including targeted or immunotherapy as well as a combined therapy.

2. Epigenetic Basis of Cancer

Molecularly, cancer is defined by uncontrolled cells division, which is following by
genetic alterations [23] and epigenetic modifications [24]. The activation of oncogenes and
deactivation of tumor suppressor genes results in inhibition or inactivation of apoptotic
signaling pathways, thus increasing cell proliferation [23,25]. Epigenetic modifications,
including histone and non-histone modifications, DNA methylation and microRNAs reg-
ulation, significantly affect cell cycle progression and apoptosis without modifying the
gene sequence. However, the silencing of cancer-related genes by epigenetic modifications
is believed to be a critical mechanism in tumor formation. Unlike genetic modifications,
epigenetic changes are reversible. Epigenetic maintenance provides eukaryotic genome
stability through affecting key biological signaling pathways [26]. Many studies currently
focus on signaling pathways associated with reversible acetylation of histone and non-
histone proteins, as it could be considered a critical tumor marker in many cancer types [27].
Abnormal reversible histone acetylation is also closely related to BC, initiating molecu-
lar signaling pathways involved in tumor progression [28,29]. Reversible acetylation is
maintained by two groups of enzymes: histone acetyltransferases (HATs) and histone
deacetylases (HDACs) (Figure 1A,B) [30]. In addition to chromatin remodeling, HDACs
affect non-histone proteins at specific sites, including tumor suppressors [31–33] and onco-
proteins [34,35] involved in tumor signaling pathways, ultimately affecting cell fate [36].
HDACs deacetylate many groups of non-histone proteins including: transcription fac-
tors [37–39], cell adhesion proteins [40,41], cellular proteins [42], DNA repair proteins [43],
cell signaling proteins [44,45], and viral proteins [46] (Figure 1C). However, HDACs role in
tumorigenesis is controversial: either promoting cancer cell survival or causing cell death
among different types of cancers [47–50].

The 18 members of the HDAC family are divided into four groups due to their
sequence similarity to yeast counterparts as well as catalytic dependence. The first group
consists of four members, including HDAC1/2/3 and 8. The second group is divided into
two subgroups: IIa, including HDAC4/5/7/9; and IIb, including HDAC6/10, while the
fourth group consists of only one member: HDAC11 [51]. All HDACs mentioned above
require a zinc ion to their catalytic activity. The third group of HDACs called sirtuins
consists of 7 members: SIRT1-SIRT7, and unlikely to rest of HDACs members they require
nicotinamide adenine dinucleotide (NAD) to their catalytic activity [52]. HDACs family
members are highly expressed in BC [53–55]; therefore, their modulators are in demand.



Cancers 2021, 13, 4700 4 of 29
Cancers 2021, 13, x 4 of 32 
 

 

 

Figure 1. (A) Histone deacetylase inhibitors (HDIs) block HDACs expression leading to upregulation of acetylation histone 

and non-histone protein what resulted in clinical implications. (B) Reversible posttranslational lysine residues acetylation 

of histones is maintained by HATs and HDACs. Removal of acetyl group by HDACs leads to condensation of chromatin 

and its inactivation. (C) The multiple roles of HDAC enzymes in cells. Regulation of non-histone proteins (transcription 

factors, adhesion proteins, cellular proteins, DNA-repair proteins, cell signaling and viral proteins) according to their 

acetylation state, which indicates that HDACs can influence a multitude of physiological pathways in different cells. 

The 18 members of the HDAC family are divided into four groups due to their 

sequence similarity to yeast counterparts as well as catalytic dependence. The first group 

consists of four members, including HDAC1/2/3 and 8. The second group is divided into 

two subgroups: IIa, including HDAC4/5/7/9; and IIb, including HDAC6/10, while the 

fourth group consists of only one member: HDAC11 [51]. All HDACs mentioned above 

require a zinc ion to their catalytic activity. The third group of HDACs called sirtuins 

consists of 7 members: SIRT1-SIRT7, and unlikely to rest of HDACs members they require 

nicotinamide adenine dinucleotide (NAD) to their catalytic activity [52]. HDACs family 

members are highly expressed in BC [53–55]; therefore, their modulators are in demand. 

3. Histone Deacetylase Inhibitors (HDIs) 

HDACs play as transcription repressors by promoting chromatin condensation 

through histone deacetylation. Histone deacetylase inhibitors (HDIs) selectively modulate 

gene transcription through the changes in the structure of proteins involved in 

transcriptional machinery [56–58]. Besides altering gene transcription, HDACs affect non-

histone targets, including transcriptional factors [31,32,59–61], hormonal receptors [62–64] 

as well as signaling mediators [65,66]. These targets could also be modulated by HDIs. 

Although the modulation of HDACs expression is a promising tool in anticancer 

treatment, only a few HDIs have already been approved by the United States Food and 

Drug Administration (FDA) for cancer treatment [67], and further research is needed. The 

first HDI approved by FDA was vorinostat (SAHA), for the treatment of cutaneous T cell 

lymphoma (CTCL) in 2006 [68,69]. Three years later, in 2009, FDA has approved 

Figure 1. (A) Histone deacetylase inhibitors (HDIs) block HDACs expression leading to upregulation of acetylation histone
and non-histone protein what resulted in clinical implications. (B) Reversible posttranslational lysine residues acetylation of
histones is maintained by HATs and HDACs. Removal of acetyl group by HDACs leads to condensation of chromatin and
its inactivation. (C) The multiple roles of HDAC enzymes in cells. Regulation of non-histone proteins (transcription factors,
adhesion proteins, cellular proteins, DNA-repair proteins, cell signaling and viral proteins) according to their acetylation
state, which indicates that HDACs can influence a multitude of physiological pathways in different cells.

3. Histone Deacetylase Inhibitors (HDIs)

HDACs play as transcription repressors by promoting chromatin condensation through
histone deacetylation. Histone deacetylase inhibitors (HDIs) selectively modulate gene
transcription through the changes in the structure of proteins involved in transcriptional
machinery [56–58]. Besides altering gene transcription, HDACs affect non-histone targets,
including transcriptional factors [31,32,59–61], hormonal receptors [62–64] as well as sig-
naling mediators [65,66]. These targets could also be modulated by HDIs. Although the
modulation of HDACs expression is a promising tool in anticancer treatment, only a few
HDIs have already been approved by the United States Food and Drug Administration
(FDA) for cancer treatment [67], and further research is needed. The first HDI approved by
FDA was vorinostat (SAHA), for the treatment of cutaneous T cell lymphoma (CTCL) in
2006 [68,69]. Three years later, in 2009, FDA has approved romidepsin, classified as a cyclic
peptide, for the treatment of CTCL or/and, in 2011, peripheral T-cell lymphoma (PTCL)
in patients who have received at least one prior systemic therapy [70,71]. The next drug
approved by FDA was belinostat, which belongs to hydroxamic acid-type compounds, for
the treatment PTCL in patients with refractory and with relapsed after prior treatment in
2014 [72]. The last approved drug was panobinostat, classified as a hydroxamic acid, for
multiple melanoma treatment in 2015 [73]. To increase the effectiveness of HDIs therapy
and to extend the scope of application to solid tumors, HDIs combinations with commonly
used chemotherapeutic agents as well as immunotherapy are currently being tested in
clinical trials, with promising results [74–76]. Since HDIs have proven insufficient to treat
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solid tumors alone, preclinical studies are ongoing to find appropriate drug combinations
to make them suitable for use. Some HDIs have been successfully tested in combination
in preclinical studies for many types of solid tumors, including larynx cancer [77], lung
cancer [78,79], breast cancer [80], glioblastoma [81], and prostate cancer [82]. No sirtuin
inhibitors have been approved by FDA so far. Preclinical studies indicate that some sirtuin
inhibitors show promising in vitro results used alone against solid tumors [83–87]; how-
ever, the data obtained from combined-treatment research are controversial, concluding
different types of pharmacological interactions between tested drugs [88–91].

4. SAHA and Breast Cancer

Suberoylanilide hydroxamic acid (vorinostat, SAHA; C14H20N2O3) is the first genera-
tion HDAC pan-inhibitor belonging to the hydroxamic acids group of HDIs approved by
FDA [68,92,93]. The HDAC catalytic activity inhibition by SAHA is based on its binding to
the zinc ion located in the enzyme catalytic domain [58,94]. It has been demonstrated that
SAHA shows the anti-proliferative acitivity of human cancer cell lines [95–97], including
BC [98–100].

4.1. SAHA Modulates Receptor Status

The presence or absence of the expression of ER, PR or HER2 receptors is critical in
selecting therapy for BC patients and determines the effectiveness or failure of the applied
treatment [101,102]. It has been reported that SAHA regulates essential receptors that are
not normally expressed in TNBC. ERα and PR, but not HER2 receptor was re-expressed in
TNBC cell lines after SAHA treatment which consequently led to the inhibition of TNBC
cells growth and their sensitization to tamoxifen [103], the drug used in the treatment of
ER-positive BCs (Table 2) [104,105]. On the other hand, high ERα level contributes to tumor
progression and limits the effectiveness of ER-positive BCs treatment [106]. ERα expression
is often associated with the resistance to hormonal therapy. Therefore, several studies
indicated that depletion of ERα from BC cells could serve as a novel therapy, especially
for the hormone-refractory BC [107]. It has been demonstrated that SAHA can deplete
ERα at the transcriptional as well as posttranslational levels through inhibition of ERα
gene expression, and stimulation of the ubiquitin-proteasome pathway degradation of
ERα in MCF7 ER+ cells, respectively. SAHA-induced ERα degradation was inactivated
by the heat shock protein-90 (hsp90) and enhanced by ubiquitin ligase CHIP (C-terminal
Hsc70 interacting protein). Moreover, SAHA-induced ERα depletion was correlated with
reduction of transcriptional activity of ERα, inhibition of cancer cell proliferation, and
induction of apoptosis in MCF-7 cells (Table 2) [107].

Table 2. Mechanism of action of vorinostat (SAHA) in in vitro and in vivo breast cancer (BC) pre-clinical setting (BC—breast
cancer, EMT—epithelial mesenchymal-transition, ER—estrogen receptor, FOXA1—forkhead box A1, LC3-II—microtubule-
associated protein 1A/1B light chain 3-II, mutp53—mutated p53, TAMR—tamoxifen resistant, TNBC—triple-negative
breast cancer).

Cellular Process Subtype of BC Cell Line Mechanism of Action References

Apoptosis
Luminal MCF7, T47D

-increase in the number of apoptotic cells [108]
TNBC MDA-MB-231

Autophagy
Luminal TAMR/MCF7 -increase in expression of autophagic cell death

markers (LC-II and beclin-1) [109]

TNBC MDA-MB-231 -induction of autophagy [99]

Cell cycle

Luminal MCF7, T47D -accumulation and reduction of cells in G1 and G2
phases, respectively [108]

TNBC MDA-MB-231

Luminal TAMR/MCF7 -cell cycle arrest in G2/M phases [109]
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Table 2. Cont.

Cellular Process Subtype of BC Cell Line Mechanism of Action References

Proliferation
Lumianal T47D, MCF7

-inhibition of proliferation [110]
TNBC MDA-MB-231,

MDA-MB-468

Tumor growth Luminal TAMR/MCF7 cells
xenografts -tumor growth reduction [109]

Migration

Luminal MCF7
-inhibition of migration stimulated by leptin [111]

TNBC MDA-MB-231,
MDA-MB-468

Luminal T47D, MCF7
-inhibition of migration [110]

TNBC MDA-MB-231,
MDA-MB-468

EMT

TNBC MDA-MB-231, BT549

-increase in E-cadherin expression,
-decrease in N-cadherin, vimentin and

fibronectin expression,
-inhibition of EMT through downregulation of

FOXA1 expression at both mRNA and
protein levels

[112]

Luminal T47D, MCF7 -increase in E-cadherin expression
[110]

TNBC MDA-MB-468 -increase in N-cadherin expression

ER receptor
status

Luminal MCF7

-depletion of ERα,
-inhibition of ERα mRNA,

-ubiquitin-proteasome pathway degradation of
ERα (inhibition of cell proliferation, induction

of apoptosis)

[107]

TNBC BT549 -re-expression of ERα (inhibition of cell growth
and sensitization to tamoxifen) [103]

4.2. SAHA Induces Cell Death and Cell Cycle Arrest

Proapoptotic activity of SAHA was investigated in luminal (MCF7 and T47D) and
TBNC (MDA-MB-231) cell lines. A dose-dependent increase in the number of apoptotic
cells was observed after SAHA treatment in all analyzed BC cell lines. The strongest effect
was noticed in T47D ER+ cells. Moreover, FACS analysis of PI-stained cells indicated
that incubation of BC cells with SAHA at relatively high concentrations (IC50) for 48 h
led to an accumulation of cells in the G1 phase of the cell cycle corresponding with the
cell reduction in the G2 phase. Similar to apoptosis, cell cycle arrest in G1 phase was
more pronounced in T47D cells compared to MCF-7 and MDA-MB-231 cell lines [108].
SAHA activity was also investigated in tamoxifen-resistant MCF-7 (TAMR/MCF-7) cells.
After SAHA treatment, the expression of HDAC1–4 and 7 was meaningfully reduced,
whereas expression of acetylated histone 3 and histone 4 (H3Ac and H4Ac, respectively)
was enhanced in TAMR/MCF7 cells. In TAMR/MCF7 cells induction of cell cycle arrest in
G2/M phase in a dose-dependent manner was noticed, while on the contrary no effect was
observed in MCF7 native cells. Moreover, the percentage of apoptotic cells was relatively
low after SAHA treatment. However, expression of lipid phosphatidylethanolamine-
conjugated form of light chain 3 II (LC3-II) and beclin-1 (autophagic cell death markers)
was significantly increased in TAMR/MCF-7 cells treated with SAHA. Additionally, the
in vivo study indicates that SAHA had a significant impact on tumor growth reduction,
whereby no visible side effects were observed in mice bearing the TAMR/MCF-7 cell
xenografts [109]. Autophagy is an important process in the degradation of the mutated
form of p53 (mutp53). It has been demonstrated that SAHA significantly induced mutp53
degradation in DLD1 (mutp53-S241F) and MDA-MB-231 (mutp53-R280K) BC cell lines
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in context-dependent fashion. Degradation of mutp53 was correlated with induction of
autophagy in MDA-MB-231 cells, while in DLD1 cells despite promoting a decrease in
mutp53 level, SAHA did not increase in autophagy level (Table 2) [99].

4.3. SAHA Affects Migration and Epithelial-Mesenchymal Transition (EMT)

Histone acetylation plays an important regulatory role in the migration process. Cell
migration stimulated by leptin, a peptide hormone secreted from adipocytes, being an
independent risk factor in BC, was meaningfully inhibited after SAHA treatment in MCF7
luminal and MDA-MB-231 TNBC cells. SAHA significantly enhanced the acetylation level
of H3K14 and H3K27 in MCF-7 cells, while leptin repressed these modifications [112].
Recent studies have shown that SAHA strongly affected epithelial-mesenchymal transition
(EMT) in TNBC (MDA-MB-231 and BT-549) cell lines. SAHA meaningfully increased
expression of E-cadherin (epithelial marker) and decreased expression of N-cadherin, vi-
mentin, and fibronectin (mesenchymal markers of EMT), simultaneously. SAHA does not
affect the nuclear translocation and expression of Twist, Snail, Slug, and ZEB EMT-related
transcription factors; however, it affected forkhead box protein A1 (FOXA1) expression, a
leading cancer progression factor, in MCF7 and T47D BC cells. SAHA decreased FOXA1
expression at both protein and mRNA levels, leading to downregulation of FOXA1 nuclear
translocation, and ultimately caused a significantly decreased in EMT in TNBC cells. The
suggested mechanism of EMT promoted by SAHA depends on the HDAC8/FOXA1 sig-
naling pathway in TNBC cells [110]. Another research group obtained slightly divergent
results. Although SAHA inhibited migration and proliferation of all analyzed BC cells
in a time- and dose-dependent fashion, MDA-MB-468 cells with a more mesenchymal
phenotype were found to overexpress mesenchymal markers (e.g., N-cadherin), whereas
epithelial phenotype BC cells (T47D, MCF7) responded to SAHA treatment by an in-
crease of epithelial markers (e.g., E-cadherin) expression. Therefore, induction of EMT or
MET by SAHA is not a universal mechanism but cells- and context-dependent, and thus
EMT should not be considered as the only measurement for tumor aggressiveness in BC
(Table 2) [111].

5. “SAHA et al.” and Breast Cancer

Although SAHA is successfully used in CTLC therapy, the clinical trial results obtained
in the monotherapy of solid tumors are not satisfactory enough [113]. Therefore, attempts
are made to test the effects of SAHA in polytherapy [108,114]. There are many in vitro and
in vivo studies showing the efficacy of combining SAHA with other active compounds
that are currently available in the treatment of different types of cancer [92,108,114,115].

5.1. SAHA and Cisplatin (CDDP)

SAHA in combination with standard chemotherapeutic agent CDDP, which is mainly
used in the therapy of TNBC patients [116–119], induced cell cycle progression and apop-
tosis as well as inhibited proliferation of T47D, MCF7, and MDA-MB-231 BC cells. Combi-
nation of CDDP and SAHA at a fixed-ratio of 1:1 determined by isobolography method
exerted additive pharmacological interaction in MCF7 and MDA-MB-231 cells, and ad-
ditive with a tendency towards synergism in T47D BC cells. Moreover, combination of
CDDP and SAHA resulted in cell cycle arrest and an increase in percentage of apoptotic
cells in all analyzed BC cell lines in comparison with a single treatment. All these findings
suggest that SAHA could be combined with CDDP to optimize treatment regimens in
different types of BC [108]. The influence of the Notch1 activity on the pharmacological
interaction between CDDP and SAHA was also determined in MCF7 luminal [92] and
TNBC cells [115]. MCF7 and MDA-MB-231 BC cells were genetically modified in order to
express a differential level of Notch1 activity. It has been demonstrated that the cytotoxic
effect of SAHA was higher in MCF7 cells with decreased Notch1 activity and lower in
cells with increased Notch1 activity than native BC cells. In MDA-MB-231 BC cells SAHA
individually or in combination with CDDP decreased expression of Notch1 gene, which
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overexpression is observed in patients suffering from BC. The isobolographic analysis of
pharmacological interactions between SAHA and CDDP at a fixed ratio of 1:1 exerted
additive interaction in MCF7 transfected cells. The combination of CDDP with SAHA in
MDA-MB-231 TNBC cells with increased activity of Notch1 yielded an additive interaction,
whereas additivity with a tendency towards antagonism was observed for the combination
of CDDP with SAHA in MDA-MB-231 TNBC cells with decreased activity of Notch1. All
these studies suggest that SAHA might be considered as a potential therapeutic agent in
combination with CDDP against Notch1-altered luminal as well as some types of TNBC
with altered Notch1 activity (Table 3) [92,115].

Table 3. Mechanism of action of vorinostat (SAHA) and other anticancer drugs in combination in in vitro and in vivo
breast cancer (BC) pre-clinical settings (BC- breast cancer, BZ- bortezomib, CAM- clarithromycin, CDDP- cisplatin, DNA-
deoxyribonucleic acid, EGCG- epigallocatechin-3-gallate, ER- endoplasmic reticulum, HER2-human epidermal growth
factor receptor 2, MK-0457- tozasertib, NaB- sodium butyrate, PAX- paclitxel, TNBC- triple negative breast cancer, TRAIL-
tumor necrosis factor related apoptosis inducing ligand).

Drug-Drug
Combination BC-Subtype In Vitro/In

Vivo Model Mechanism of Action Type of Pharmacological
Interaction References

SAHA and
cisplatin
(CDDP)

Luminal MCF7, T47D
cells

-cell cycyle progression,
-induction of apoptosis,

-inhibition of proliferation

-additive (MCF7),
-additive with a tendency
towards synergism (T47D)

[108]

TNBC MDA-MB-231
cells

-cell cycyle progression,
-induction of apoptosis,

-inhibition of proliferation,
-decrease in Notch1 expression

additive [108]

Luminal

MCF7 cells
with increased
and decreased
Notch1 activity

-inhibition of proliferation additive [92]

TNBC

MDA-MB-231
cells with

increased and
decreased

Notch1 activity

-inhibition of proliferation

-additive (MDA-MB-231
with increased

Notch1 activity),
-additive with a tendency

towards antagonism
(MDA-MB-231 with

decreased Notch1 activity)

[115]

SAHA and
taxol

Luminal
MCF7,

MCF7/ADR,
T47D cells

-induction of apoptosis,
-cell-cycle arrest in G2/M phases,

-cell growth inhibition
synergistic [120]

TNBC
MDA-MB-231,
MDA-MB-453,

BT474 cells

HER2-
overexpressed SKBR3 cells

TNBC
BALB/c mice
bearing a BC
xenografts

-tumor growth inhibition
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Table 3. Cont.

Drug-Drug
Combination BC-Subtype In Vitro/In

Vivo Model Mechanism of Action Type of Pharmacological
Interaction References

SAHA and
paclitaxel

(PAX)

Luminal

MCF7, T47D,
YCC-B1,
YCC-B3,

YCC-B5 cells

-upregulation of MAPK13,
ATP2C1, ANKDR57, MT1G,

RGCR, C12orf49, EXOC6 RAB4A,
TM9SF3, IFNGR1 gene expression,
-downregulation of DMD, HCG9,
KIFC3, SYNGR3, NDRG4, NT5E,

EOMES, SMC4, LANCL1, SCHIP1,
2EST gene expression

synergistic

[121]
HER2-

overexpressed,
TNBC

SKBR3,
MDA-MB-231,
YCC-B2 cells

antagonistic

SAHA and
trastuzumab

HER2-
overexpressed SKBR3 cells

-enhancement of
trastuzumab-dependent

cytotoxicity and phagocytosis
synergistic [122]

SAHA and
olaparib TNBC

MDA-MB-157,
MDA-MB-231,
MDA-MB-436

cells

-inhibition of proliferation,
-DNA-demage induced cell

cycle arrest,
-induction of apoptosis

synergistic [123]

SAHA and
tozasertib
(MK-0457)

TNBC

MDA-MB-231,
MDA-MB-468,
MDA-MB-474

cells

-induction of apoptosis,
-cell cycle arrest in G2/M phases,

-induction of multipolar
mitotic spindles,

-induction of DNA
endoreduplication

synergistic [124]

TNBC
mice bearing
MDA-MB-231

xenografts
-tumor growth inhibition

SAHA and
epigallocatechin-

3-gallate
(EGCG)

TNBC MDA-MB-157,
MDA-MB-231

-inhibition of migration,
-induction of apoptosis,

-increase in caspase-7 and cIAP2
gene expression

synergistic [125]

SAHA and
sodium

butyrate (NaB)
TNBC MDA-MB-231,

BT-549

-inhibition of cell proliferation,
-cell cycle arrest in G0/G1 phases,

-promotion of apoptosis
synergistic [126]

SAHA and clar-
ithromycin

(CAM) + borte-
zomib (BZ)

TNBC MDA-MB-231

-enhancement of
ER-stress-mediated cell death,

-induction of apoptosis,
-increase in CHOP and GADD153

gene expression

synergistic [127]

SAHA
and tumor

necrosis factor
related

apoptosis
inducing

ligand (TRAIL)

TNBC

BALB/c nude
mice implanted

with
MDA-MB-468

TRAIL-
resistant

cells

-inhibition of tumor growth,
metastasis and angiogenesis synergistic [128]

SAHA and
soluble CD137

receptor
TNBC MDA-MB-231 -increase in cytotoxicity synergistic [129]

5.2. SAHA and Taxanes

The role of taxanes in monochemotherapy or in combination with other active agents
has suggested their potential therapeutic impact on the treatment of patients with early
BC. Recent studies in the adjuvant setting have shown that taxanes, used individually
or in combinations, possess the capability to induce significant improvement in terms of
survival of BC patients [130,131].
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An immortalized human breast epithelial cell line and a panel of 8 human BC cell lines
were used to examine the effect of taxol, SAHA, and their combination on inhibition of
cancer cells proliferation by MTT assay. The influence of SAHA with and without taxol on
apoptosis, cell cycle arrest, and protein expressions were also determined. The inhibitory
effect of SAHA/taxol treatment on tumor growth was characterized in BALB/c nude mice
bearing a BC xenograft in vivo. Synergistic dose-dependent growth inhibition was noticed
in all analyzed BC cell lines treated with the SAHA/taxol combination. The synergetic effect
of SAHA and taxol was confirmed in the xenograft cancer model in vivo. The apoptosis
assay and cell cycle analysis showed that these synergistic effects resulted from enhanced
apoptosis and G2/M arrest. All these findings have shown that SAHA increases the anti-
tumor effect of taxol in BC both in vitro and in vivo, therefore the combination of SAHA
with taxol may have therapeutic potential in the therapy of BC patients (Table 3) [120].

SAHA in combination with paclitaxel (PAX), which is commonly used in cancer
chemotherapy [132], synergistically induced cell growth inhibition in taxane-resistant
BC cells. Combined treatment with SAHA and PAX had a synergistic cytotoxic effect
against taxane-resistant BC cells. Oligonucleotide microarray analysis identified 28 genes
(ANKRD57, ATP2C1, C12orf49, DMD, EOMES, 8 ESTs, EXOC6, HCG9, IFNGR1, KIFC3,
LANCL1, MAPK13, MT1G, NDRG4, NT5E, RAB4A, RGL4, SCHIP1, SMC4, SYNGR3,
TM9SF3) whose expression was correlated with the combined treatment with PAX and
SAHA. Twelve of these genes were down-regulated in BC cell lines that were PAX-resistant.
A combination of PAX and SAHA could be an efficacious form of therapy for the treatment
of BC patients, and genes involved in the synergistic response to PAX and SAHA could
serve as biomarkers to predict therapeutic response in BC patients (Table 3) [121].

5.3. SAHA and Trastuzumab

Trastuzumab is the monoclonal antibody (mAb) used as a standard in the treatment of
patients harboring HER2-overexpressing BC [133–135]. Antibody-dependent cell-mediated
cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are two
major mechanisms of action of trastuzumab. It has been revealed that SAHA enhanced
trastuzumab-independent cytotoxicity and trastuzumab-mediated ADCP. Moreover, SAHA
downregulated the expression of the anti-apoptotic protein myeloid leukemia cell differen-
tiation 1 (MCL1) and anti-phagocytic CD47 as well as induced an immunogenic cell death,
characterized by the exposure of calreticulin (CALR) in SKBR3 BC cells. All these findings
suggest that the immunomodulatory activity of SAHA supports a rationale combined
treatment approach with trastuzumab for BC patients’ treatment (Table 3) [122].

5.4. SAHA and Olaparib

SAHA in combination with olaparib, a poly (ADP-ribose) polymerase (PARP) in-
hibitor [136,137], synergistically inhibits proliferation of a panel of 8 TNBC cell lines
in vitro and in vivo in nude mice harboring TNBC xenografts. In PTEN-deficient TNBC
cell lines the SAHA/olaparib synergism was weaker, while the stronger synergism was
observed in BRCA1-mutated TNBC cells. Generally, TNBC cells remain resistant to PARP
inhibitors in monotherapy. Treatment with SAHA can sensitize TNBC cells to olaparib in
BRCA mutated as well as BRCA wild-type (wt) TNBC cells, irrespectively of their initial
sensitivities to olaparib alone. It has been demonstrated that treatment of MDA-MB-157
and MDA-MB-231 with SAHA decreased the IC50 value for olaparib to a similar level
as occurred in MDA-MB-436 BRCA1 mutated olaparib-sensitive BC cell line. In BRCA1
wt cells, the effect of the combined treatment relied on DNA damage-induced cell cycle
arrest followed by induction of apoptosis. A drastic decrease in the expression of proteins
involved in homologous recombination (HR), leading to a large imbalance of the ratio P-
H2AX/RAD51, was observed in the HCC-1937 BRCA1-mutated cell line. All these results
can provide a preclinical rationale to combine SAHA with olaparib to reduce HR efficiency
in TNBC cells and sensitize these aggressive tumors to PARP inhibition (Table 3) [123].
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5.5. SAHA and Idasanutlin (RG7388)

Idasanutlin (RG7388) is an oncogene-derived protein, being a potent mouse double
minute 2 (MDM2) antagonist [138], tested in the clinical trials for the treatment of various
types of carcinomas [139,140]. The latest findings revealed that SAHA in combination with
RG7388 induces cell death through cell cycle arrest and cytotoxic mechanisms in MCF7
BC cells. However, the exact mechanism is still unknown. It has been demonstrated, that
RG7388 treatment causes cell death by elevating p21WAF1/CIP1 through inhibition of
MDM2 in LNCaP prostate cancer cells, but not in MCF-7 cells. Therefore, further studies
are needed to understand the mechanism of action of combinational treatment with RG7388
and SAHA (Table 3) [140,141].

5.6. SAHA and Tozasertib (MK-0457)

MK-0457 (VX-680) is a small-molecule aurora kinase (AK) inhibitor [142,143] with
preclinical anticancer activity [144]. MK-0457 has been assessed in phase II clinical tri-
als in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia
(Ph + ALL) with the T315I mutation or treatment-refractory chronic myelogenous leukemia
(CML) [145]. It has been demonstrated that SAHA increases inhibition of aurora kinases
(AKs) activity, induced by MK-0457 inhibitor in MDA-MB-231 cells. AKs are overexpressed
in human malignancies, and they are considered as a potential oncotarget in tumorigen-
esis [146]. AKs regulate multiple components of mitotic cell division in eukaryotic cells.
In BC cells aurora A is frequently overexpressed or amplified leading to genomic instabil-
ity, aberrant chromosome segregation, and activation of oncogenic pathways. Therefore,
the effect of co-treatment of SAHA and MK-0457 in MDA-MB-468, MDA-MB-231 TNBC
and BT-474 BC cells exhibited aurora A amplification were investigated. Treatment with
MK-0457 depleted p-AKs (phosphorylated-AKs) level and their activity as well as induced
cell cycle arrest in G2/M phases, multipolar mitotic spindles, DNA endoreduplication,
and apoptosis of the BC cells. A similar effect was observed with the MLN8237 aurora A-
specific inhibitor treatment. Treatment with SAHA induced hsp90 acetylation and inhibited
its chaperone association with AKs, leading to depletion of AKs and survivin. Exposure of
the siRNA to AK A also induced apoptosis, which was augmented by co-treatment with
MK-0457 and SAHA. Interestingly, co-treatment with SAHA enhanced MK-0457-mediated
inhibition of the aurora A and aurora B activities, leading to synergistic in vitro activity
against human BC cells. Moreover, treatment with MK-0457 and SAHA in combination
caused greater inhibition of tumor growth as well as superior survival of mice bearing
MDA-MB-231 xenografts. All these findings suggest that combined treatment with MK-
0457 and SAHA could be a novel promising therapeutic strategy for the treatment of aurora
A-amplified and/or TNBC (Table 3) [124].

5.7. SAHA and Epigallocatechin-3-Gallate (EGCG)

SAHA individually or in combination with epigallocatechin-3-gallate (EGCG), a DNA
methyltransferase (DNMT) inhibitor isolated from green tea [147,148], was administered
to TNBC cells in vitro. SAHA and EGCG reduced the metastatic potential of TNBC by
inhibiting migration of TNBC cells across a fibronectin matrix and inducing the apoptotic
pathway. Drugs in combination increased the expression of pro-apoptotic caspase 7 and
decreased the expression of cellular inhibitor of apoptosis 2 (cIAP2). cIAP2 degradates
caspases by linking them to ubiquitin molecules. The expression of cIAP2 is upregulated
in TNBC and plays a role in the EMT (Table 3) [125].

5.8. SAHA and Sodium Butyrate (NaB)

The combination of SAHA with another HDI, sodium butyrate (NaB) [149,150] has a
strong synergistic effect on inhibition of cell proliferation, cell cycle arrest in G0/G1 phase,
and promotion of apoptosis in TNBC cells. Moreover, both inhibitors downregulated
phosphorylation of mutant p53, as well as its protein and mRNA expression level, wherein
a similar inhibition effect was not observed for wild-type p53 in TNBC cells. It was
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demonstrated that SAHA reduces the binding of Yin Yang 1 (YY1) transcription factor with
human p53 promoter in the -96 to -102 position. Further, SAHA inhibits the association of
YY1 and HDAC8, increases acetylation of residues 170–200 in YY1, and as a consequence
decreases its transcription activities, and finally suppresses YY1 induced p53 transcription.
Summarizing, HDAC8/YY1/mtp53 signals act as an important target for TNBC; therefore,
SAHA can be considered as a drug candidate for the treatment of TNBC (Table 3) [126].

5.9. SAHA and Clarithromycin (CAM) + Bortezomib (BZ)

SAHA in combination with clarithromycin (CAM), the 6-O-methyl ether of ery-
thromycin A being a macrolide antibiotic used in the treatment of respiratory tract, skin and
soft-tissue infections [151,152], and bortezomib (BZ) an antineoplastic agent that is used in
the treatment of refractory multiple myeloma and certain lymphomas [153,154], enhances
ER stress-mediated cell death through concomitant targeting of aggresome formation and
intracellular proteolytic pathways in MDA-MB-231 BC cells. Combined treatment of CAM,
BZ and SAHA enhanced the apoptosis-inducing effect compared with treatment using each
drug alone or a combination of two. Moreover, expression levels of ER-stress-related genes,
including CHOP and GADD153, the pro-apoptotic transcription factors, were induced after
simultaneous treatment of three active agents. CHOP protein undergoes phosphorylation
by the p38 MAP kinase family, which enhances its transcriptional ability for different
pro-apoptotic genes, including BAX, BIM, DR5 or TRB3 (Table 3) [127].

5.10. SAHA and Tumor Necrosis FACTOR Related Apoptosis Inducing Ligand (TRAIL)

The in vivo research showed that SAHA is able to sensitize tumor necrosis factor
related apoptosis inducing ligand (TRAIL)-resistant BC cells. BALB/c nude mice were
orthotopically implanted with MDA-MB-468 TRAIL-resistant cells, and then treated with
TRAIL, SAHA or SAHA followed by TRAIL 4 times for 3 weeks. It has been demonstrated
that SAHA decreased MDA-MB-468 xenografts growth via inhibition proliferation, an-
giogenesis and metastasis markers as well as through cell cycle arrest and induction of
apoptosis. Additionally, SAHA downregulated expression of nuclear factor-kappa B (NF-
κβ), which is a transcription factor contributing to the malignant phenotype, and different
proteins related to NF-κβ (Bcl-xL, Bcl-2, cyclin D1, vascular endothelial growth factor
(VEGF), hypoxia-inducible factor-1-alpha (HIF1α), interleukin-6 (IL-6), interleukin-8 (IL-8),
matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9)). In turn,
proapoptotic proteins such as Bax, Bim, Noxa, p21/Cip1 and PUMA, as well as DR4, DR5,
tissue inhibitor of metalloproteinase-1 (TIMP1) and tissue inhibitor of metalloproteinase-2
(TIMP) were upregulated in BC cells after SAHA treatment. Interestingly, the sequential
treatment of nude mice with SAHA followed by TRAIL was much more effective in inhibit-
ing tumor growth, angiogenesis and metastasis, as well as inducing apoptosis than SAHA
alone. Moreover, mice from the control group had increased numbers of von Willebrand
factor-positive blood vessels and CD31(+) as well as increased circulating vascular endothe-
lial growth factor receptor 2-positive endothelial cells compared with SAHA-treated or
SAHA plus TRAIL-treated mice. Summarizing, sequential treatment with SAHA followed
by TRAIL targets multiple pathways in tumor progression, angiogenesis and metastasis,
and can represent a novel therapeutic approach in the BC treatment (Table 3) [128].

5.11. SAHA and Soluble CD137 Receptor

SAHA upregulates CD137 protein expression, which belongs to the tumor necrosis fac-
tor (TNF) superfamily, in MDA-MB-231 BC cells. Moreover, SAHA reinforced destruction
of BC cells caused by soluble CD137 receptor itself. Upregulation of the CD137 recep-
tor/ligand system correlates with a synergistic cytotoxic effect of combined treatment with
SAHA and soluble CD137 receptor in MDA-MB-231 cells. All these findings suggest that
the combination of SAHA with TNF-related receptor could be a new therapeutic approach
for the treatment of BC patients (Table 3) [129].
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6. SAHA in Clinical Trials

The potential of SAHA individually or in combination with other anticancer drugs is
under evaluation in numerous clinical trials (Table 4) [155–174].

Table 4. Vorinostat (SAHA) in clinical trials (N/A—not analyzed).

Clinical Trial Clinical Trial
Number Drug and Therapy Type of BC/Condition Phase Status References

Olaparib in combination with
vorinostat in patients with
relapsed/refractory and/or

metastatic breast cancer

NCT03742245 olaparib + vorinostat breast cancer,
metastatic breast cancer I recruiting [155]

Carboplatin and
nab-paclitaxel with or without
vorinostat in treating women

with newly diagnosed
operable BC

NCT00616967

carboplatin + paclitaxel
(albumin-stabilized

nanoparticle formulation)
+ vorinostat or placebo

BC II
active,
not re-

cruiting
[156]

Pembrolizumab and
tamoxifen with or without

vorinostat for the treatment of
estrogen receptor positive

breast cancer

NCT04190056
Pembrolizumab

+ tamoxifen
+ vorinostat

anatomic stage IV
breast cancer AJCC v8,

prognostic stage IV breast
cancer AJCC v8

II
active,
not re-

cruiting
[157]

Trial for locally advanced
breast cancer using vorinostat

plus chemotherapy
NCT00574587

vorinostat
+ paclitaxel + trastuzumab

+ doxorubicin +
cyclophosphamide

and surgery

breast cancer I, II completed [158]

HDAC inhibitor vorinostat
(SAHA) with capecitabine

(Xeloda) using a new weekly
dose regimen for advanced

breast cancer

NCT00719875 vorinostat advanced breast cancer I completed [159]

Ixabepilone and vorinostat in
treating patients with

metastatic breast cancer
NCT01084057 vorinostat + ixabepilone

male breast cancer,
recurrent breast cancer,
stage IV breast cancer

I completed [160]

Phase I–II study of vorinostat,
paclitaxel, and bevacizumab
in metastatic breast cancer

NCT00368875
vorinostat

+ paclitaxel +
bevacizumab

male breast cancer,
stage IIIB breast cancer,
stage IIIC breast cancer,
stage IV breast cancer

I, II completed [161]

Vorinostat in treating patients
with stage IV breast cancer
receiving hormone therapy

NCT01720602
vorinostat + anastrozole
+ letrozole + exemestane

and radiation

male breast cancer,
recurrent breast cancer,
stage IV breast cancer

N/A completed [162]

Vorinostat in treating patients
with stage IV breast cancer

receiving aromatase
inhibitor therapy

NCT01153672

vorinostat
and radiation +

anastrozole
+ letrozole + exemestane

male breast cancer,
recurrent breast cancer,
stage IV breast cancer

N/A completed [163]

Vorinostat in treating women
who are undergoing surgery

for newly diagnosed
stage I–III breast cancer

NCT00262834 vorinostat
and conventional surgery

breast cancer,
stage I breast cancer,
stage II breast cancer,
stage III breast cancer

II completed [164]

Vorinostat and trastuzumab in
treating patients with

metastatic or locally recurrent
breast cancer

NCT00258349 vorinostat
+ trastuzumab

breast cancer, male breast,
cancer recurrent breast

cancer, stage IIIB
breast cancer,

stage IIIC breast cancer,
stage IV breast cancer

I, II completed [165]

Vorinostat in treating women
with ductal carcinoma in situ

of the breast
NCT00788112

vorinostat and
neoadjuvant therapy and

therapeutic
conventional surgery

breast cancer I completed [166]
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Table 4. Cont.

Clinical Trial Clinical Trial
Number Drug and Therapy Type of BC/Condition Phase Status References

Phase II trial of SAHA &
tamoxifen for patients with

breast cancer
NCT00365599 vorinostat + tamoxifen breast cancer II completed [167]

GCC 0845:vorinostat and
lapatinib in advanced solid

tumors and advanced breast
cancer to evaluate response

and biomarkers

NCT01118975 vorinostat + lapatinib breast cancer,
neoplasm, metastasis I, II terminated [168]

A study of vorinostat and
tamoxifen in newly diagnosed

breast cancer
NCT01194427 vorinostat + tamoxifen

stage I breast cancer,
stage II breast cancer,
stage III breast cancer,
invasive breast cancer

II terminated [169]

Suberoylanilide hydroxamic
acid in treating patients with

progressive stage IV
breast cancer

NCT00132002 vorinostat
male breast cancer,

recurrent breast cancer,
stage IV breast cancer

II terminated [170]

Reversing therapy resistance
with epigenetic-immune

modification
NCT02395627

tamoxifen
+ vorinostat

+ pembrolizumab
breast neoplasms II terminated [171]

A clinical trial of oral
suberoylanilide hydroxamic
acid (SAHA) in patients with
relapsed or refractory breast,
colorectal and non-small cell

lung cancer (0683-011)

NCT00126451 MK0683 + vorinostat breast cancer II terminated [172]

Vorinostat before surgery in
treating patients with

triple-negative breast cancer
NCT01695057

vorinostat
and therapeutic

conventional surgery

stage II breast cancer,
stage IIIA breast cancer,

triple-negative
breast cancer

N/A withdrawn [173]

Clinical trial of SAHA in
patients with breast cancer NCT00416130 vorinostat breast cancer I, II unknown [174]

In relapsed or refractory breast, colorectal, or non-small cell lung cancer (NSCLC)
SAHA was administered in an early phase II clinical trial. A cohort of 16 patients was
enrolled in this study including 3 with BC, 3 with lung cancer and 10 with NSCLC. The
dosing regimen of oral SAHA was 400, 300, or 200 mg twice daily for 14 consecutive days
followed by a 7-day rest. Due to the heavy toxicities events reported and as no patients
were observed to have a partial response (PR) or complete response (CR) according to the
RECIST (Response Evaluation Criteria In Solid Tumors) the study was terminated early.
Yet it was found that neither the total daily dose: 600 or 800 mg of oral SAHA for 14 days
with a 7-day rest was tolerable [113].

A lower dose of SAHA in monotherapy was administered in a phase II trial in patients
with metastatic breast cancer (MBC). Among 14 women with measurable MBC 6 patients
(43%) were ER/PR negative and 10 (71%) were HER-2 negative at diagnosis. The patients
received SAHA at a dose of 200 mg orally twice daily, for the first 14 days of each 21 day
cycle. The drug was well tolerated, yet the observed responses were not adequate for
RECIST single-agent activity response criteria as stable disease (SD) was observed in 4 (29%)
patients with a median progression-free survival of 8.5 months (range 4–14 months). The
median progression-free survival was 2.6 months while the median overall survival was
24 months for the 14 patients and overall survival at 12 months was 71%. Nonetheless,
the study showed that SAHA in monotherapy induces tolerable toxicities together with
modest clinical benefit in terms of stable disease, giving a basis for future studies including
SAHA in combination with other agents [175].

Additionally, the effect of short-term SAHA administration in women with primary
BC prior to definitive breast surgery or other primary treatment was studied; however,
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the aim of the study was an evaluation of several biomarkers associated with cancer.
The group of 25 patients received the treatment (300 mg of SAHA given twice a day for
3 out of 7 days), while 29 patients had not and followed standard pre-surgery procedures
(untreated control). Several weak toxicities were reported due to the treatment. Pre- and
post-SAHA treatment biopsy samples were evaluated for candidate biomarkers that may
predict response to the drug. Though, the number of evaluable for prespecified marker
analysis samples was lower than expected the data showed statistically significant greater
reductions in the mRNA expression of the proliferation-associated genes: Ki-67, STK15
and cyclin B1, and non-statistically significant greater reduction of MYBL2 and survivin
genes, in the samples from SAHA-treated women as compared to control samples. The
additional analysis of expression of Ki-67 or cleaved caspase-3 by immunohistochemistry
did not confirm such a trend. Also, methylation of candidate genes changes were not
observed [176].

The ability to metabolize SAHA in order to predict its clinical outcomes in Asian
women with BC was tested. A key enzyme involved in SAHA metabolism is UDP-
glucuronosyltransferase 2B17 (UGT2B17), a gene of which deletion variant is common in the
Asian population. The in vitro studies have shown UGT2B17 reduced enzymatic activity
in UGT2B17 null genotype (UGT2B17*2). For SAHA monotherapy women with advanced
anthracycline and taxane pretreated BC were enrolled and genotyped for UGT2B17*2. In
the I–II phase study, the cohort of twenty-six patients was receiving 400 mg of SAHA daily
continuously in 21-day cycles (range 1–10). The trial was completed with no CR, one PR
and six SD lasting for 12 weeks or more, and 19 progressive disease (PD). The UGT2B17*2
homozygotes (representing 62% of patients) glucuronidated SAHA less efficiently by ap-
proximately 30% compared with those with at least one wild-type allele, and trended
toward having higher SAHA efficacy and toxicity. Consistently, more clinical benefit and
longer progression-free survival (PFS) with SAHA treatment were reported for UGT2B17*2
null genotype [176]. These findings suggest that differences in SAHA pharmacodynamics
may be linked with genotype differences.

Promising results from certain clinical trials that employed SAHA in combination
with other chemotherapeutic drugs were reported. The phase I trial was performed to
analyze a combination of SAHA and DOX in solid tumors mostly melanoma, BC, lung
cancer, sarcoma, colon cancer and several others. Among 32 enrolled patients, five patients
with BC (16%) were treated. SAHA administered at 400, 600, 800, or 1000 mg daily on
days 1–3, followed by DOX (20 mg/m2) on day 3 for 3 of 4 weeks. The authors founded
that SAHA administration for 3 days before DOX therapy for 3 of 4 weeks, increases
the maximum tolerated dose of SAHA to 800 mg per day (400 mg twice daily for five
doses) in patients with advanced solid tumor malignancies. Finally, antitumor activity in
24 evaluable patients included two PR (8%; breast and prostate cancer) and SD for more
than 8 months in two patients (melanoma). Correlative studies have shown histone H3
and H4 hyperacetylation changes in peripheral blood mononuclear cells (PBMCs) and
tumor cells at a comparable level. Histone hyperacetylation seemed to correlate with
HDAC2 expression at a baseline. Also, SAHA effects on downstream targets associated
with chromatin decondensation, such as depletion of heterochromatin protein 1 (HP-1) and
DNA topoisomerase IIα expression, were observed in 66% of PBMCs samples [177].

Similarly, SAHA can be safely combined with PAX and bevacizumab in metastatic
BC as shown in the phase I–II study [178]. To overcome the potential cumulative toxicity
associated with continuous or more protracted drug schedules the intermittent SAHA ad-
ministration was performed. The treatment of cohort of fifty-four patients with measurable
disease and no prior chemotherapy for MBC was SAHA (200 or 300 mg twice daily) on days
1–3, 8–10, and 15–17, plus PAX (90 mg/m2) on days 2, 9, 16 and bevacizumab (10 mg/kg)
on days 2 and 16 every 28 days. PAX was administered before bevacizumab and prior
to PAX standard medications including dexamethasone were provided. As a result, 49%
of treated and eligible patients exhibited an objective response and 30% of patients had
stable disease for ≥24 weeks. The observed responses were similar between patients with
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ER-positive and ER-negative BC (50% vs. 44%). Moreover, the evaluation of paired tumor
and blood samples before and after the third SAHA dose prior to administration of other
antineoplastic therapy revealed the increased acetylation of alpha tubulin and the K69
(lysine 69) residue of hsp90, induction of the stress protein hsp70, induction of p27 and
p21 expression, and downregulation of cyclin-dependent kinase (CDK) 4, confirming the
effects of SAHA reported in preclinical studies [179,180].

The combination of SAHA with albumin-bound PAX and other cytotoxic agent carbo-
platin was also under evaluation in women with HER2-negative BC [181]. In the II phase
clinical trial the patient cohort (62 women) received 12 weeks of preoperative cytostatics
carboplatin (AUC 2 weekly) and nab-PAX (100 mg/m2 weekly) with SAHA (400 mg oral
daily, days 1–3 of every 7 day period) or placebo. After 15 days since the first treatment
with SAHA/placebo and prior to receiving carboplatin and nab-PAX, the patient-derivative
samples were tested to assess the DNA methylation status for BC [182,183]. The calculated
cumulative methylation index (CMI) was established for ten selected genes including
HIST1H3C, AKR1B1, GPX7, HOXB4, TMEFF2, RASGRF2, COL6A2, ARHGEF7, TM6SF1,
and RASSF1A, which were unmethylated or methylated at low levels in normal breast
tissue, but frequently highly methylated in BC tumors of all stages. The obtained results
showed that a high DNA methylation level may predict poor patients’ response. However,
the usage of DNA methylation status as a predictive marker for BC outcome and response
to systemic therapy needs further larger prospective studies [184].

Due to preclinical studies, HDIs can reverse the ER modulators such as tamoxifen and
aromatase inhibitor (AI) resistance in hormone receptor-positive BC [185,186]. The clinical
study evaluating the combination of SAHA with tamoxifen was carried out. The 43 pre-
and post-menopausal women with ER- or PR-positive MBC without ovarian suppression
in conjunction with AI treatment were enrolled. The additional patients’ requirements
were (1) progression in any number of AI for metastatic disease or (2) recurrence of
disease during adjuvant AI or (3) completed tamoxifen therapy for at least 1 year by pre-
menopausal women. SAHA was given at a dose of 400 mg once daily for 21 of 28 days and
tamoxifen at a dose of 20 mg daily without interruption, what allowed to the distinction
between SAHA toxicities alone and toxicities associated with both of the drugs. Due to the
toxicities observed in around 30% of patients SAHA dose was reduced to 300 mg, obtaining
satisfactory drug mixture tolerance. The obtained results were quite promising as the
confirmed objective responses by RECIST criteria were seen in 19% of patients and stable
disease for more than 24 weeks in 21% of patients and the median time to progression was
10.3 months. Additionally, changes in histone H4 acetylation were measured in PBMCs
in pre- and post-treatment (day 8) samples and showed statistically more pronounced
histone H4 acetylation in patients with a response or stable disease. Also, higher baseline
expression of HDAC2 in PBMCs was associated with a more a pronounced increase
in histone H4 acetylation. These results confirmed the use of HDAC2 expression as a
predictive marker and histone hyperacetylation marks as pharmacodynamic markers
for the efficacy of the SAHA and tamoxifen combination [187]. Similarly, to potentially
overcome AI resistance in patients whose tumors may have endocrine sensitivity SAHA
was administered sequentially or simultaneously with AI [188]. The 8 women of the
sequential cohort were given SAHA, 400 mg orally daily for 2 weeks, followed by an AI
daily for 6 weeks, while 15 patients enrolled in the simultaneous cohort was given the
same dose of SAHA daily concomitantly with the AI for 5 consecutive days in 3 weeks,
with the fourth week off, in two 28-days cycles. The endocrine sensitivity was monitored
by 18F-fluoroestradiol positron emission tomography (PET) measuring ER status and 18F-
fluorodeoxyglucose (FDG) PET scans showing tumor glycolytic activity. The scans were
performed at baseline, week 2, and week 8. Also, conventional imaging (CT, bone scanning)
was performed at baseline and week 8, and patients were followed for PFS. The positive
outcome was reported for 8 patients who had SD at week 8, and in 6 of these 8 patients
had SD for more than 6 months. Two patients had benefits reaching 16 and 21 months until
progression. In this study SAHA exposure did not increase the 18F-fluoroestradiol uptake,
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suggesting that SAHA treatment does not change the binding affinity for estradiol. Yet, the
higher baseline 18F-fluoroestradiol uptake was associated with longer PFS [189,190].

Due to the poor prognosis for another hormone receptor-HER2 positive BC the new
therapies targeting HER-2 are under evaluation, e.g., treatment with the monoclonal anti-
body trastuzumab (herceptin) directed against the extracellular domain IV of HER2 [191].
One of the mechanisms of trastuzumab activity is the inhibition of the MAPK and PI3K/Akt
pathways, which leads to an increase in cell cycle arrest, and the suppression of cell growth
and proliferation [192]. Although the reported benefits of the trastuzumab therapy in HER-
2 overexpressing BCs [193,194], the trastuzumab resistance occurs quite often [195,196].
As SAHA attenuates the levels of pAKT and c-RAF-1, its combination with trastuzumab
was tested in phase I/II study to overcome trastuzumab resistance in patients with HER2
overexpressing BCs [197]. SAHA was administered at 200 mg twice daily on days 1–14
combined with 6 mg/kg trastuzumab on day 1 every 21 days. The 16 patients mostly
with confirmed HER2+ BC and reported progressive disease after prior treatment with
trastuzumab was treated with SAHA, without any satisfactory response. Therefore, the
study was terminated due to the insufficient statistical evidence that the addition of SAHA
reverses trastuzumab resistance in these patients. Nonetheless, in clinical trials utilizing
combination of SAHA with other components trastuzumab was used additionally for
HER2/neu positive disease. For example, in a phase I–II study SAHA was administered
with PAX (and trastuzumab) followed by doxorubicin-cyclophosphamide (AC) in patients
with operable or locally advanced BC who were candidates for neoadjuvant chemotherapy.
The 55 patients enrolled for the II phase of the trial were divided into three groups: (A)
HER2+ (26 patients), (B) ER/PR/HER2- (16), (C) ER+ and/or PR+ and HER2- (13). The
treatment with PAX and trastuzumab weekly (12 consecutive week) plus SAHA (300 mg
PO twice a day on days 1—3 of each PAXf/trastuzumab dose), followed sequentially by
dose-dense doxorubicin-cyclophosphamide for 4 cycles, was found to be well-tolerated
and produced breast and nodal pCR in 24%, 54% and 0% patients of the A, B and C stra-
tum, respectively. The in vivo data from untreated and post-SAHA treated tumor biopsy
samples showed that SAHA increased acetylation of hsp90 and alpha tubulin, and reduced
expression of HDAC6 and hsp90, leading to depletion of hsp90 client proteins that promote
cell survival. These results strongly support further evaluation of SAHA with cytotoxic and
HER2/neu-directed therapies in BC. The expression analysis of several biomarkers (such
as HDAC6, p21, p27, and Ki67) did not reveal their association with pathologic response to
therapy [197].

Regarding growing evidence that HDIs and proteasome inhibitors may act syner-
gistically in malignancies the combination of SAHA and bortezomib in patients with
advanced solid tumors including breast tumors, was conducted. The cohort of 29 patients
was enrolled: 13 men and 16 women suffering from several cancer types such as sarcoma,
pancreatic, colorectal, gastrointestinal stromal tumor (GIST), and breast (2 patients). The
majority of patients were pretreated, having received 2 or more prior chemotherapy regi-
mens. The MTD (maximum tolarated dose) was established at SAHA 300 mg twice a day
on days 1–4 and 8–11 and bortezomib 1.3 mg/m2 IV on days 1, 4, 8 and 11 of a 21 day
cycle. Multiple patients with treatment-refractory cancer achieved stable disease with
this dosing regimen, especially in heavily pre-treated sarcoma, colorectal carcinoma, and
GIST. The trial included only two patients with breast tumors, yet overall obtained data
are promising [198].

7. Chimeric HDAC-Based Inhibitors

An emerging class of HDAC-based inhibitors with improved affinity and efficacy
in the treatment of relapsing and drug-resistant cancers has gained attention recently.
Molecules called chimeric HDAC-based inhibitors are combined of two pharmacophores,
one comes from HDAC inhibitor, the second from another anticancer drug, connected
via an inert linker which undergoes enzymatic cleavage in vivo. In order to increase the
potency of anticancer agents, the hydroxamic acid chelating group in SAHA was com-



Cancers 2021, 13, 4700 18 of 29

bined with the active groups of different compounds such as receptor and non-receptor
tyrosine kinase inhibitors, topoisomerase inhibitors, DNA damaging agents, nuclear re-
ceptors targeting agents, androgen/estrogen receptors inhibitors, vitamin D receptors
agonist and others. Both parent compounds act on different targets and therefore the
chimeric inhibitors are able to simultaneously regulate multiple pathways. Importantly,
the chimeric drugs mostly do not cause drug resistance or additive toxicity often observed
in the combination therapy [199,200]. One of the developed anticancer hybridized HDAC
inhibitor is CUDC-101 composed of hydroxamic acid linked with the quinazoline core of
erlotinib acting as a receptor (EGFR and HER2) tyrosine kinase inhibitor [201]. CUDC-101
exhibited potent antiproliferative and proapoptotic activity in lapatinib-sensitive (HER2
positive) and resistant (HER2 negative) BC models. Mechanistic studies have shown that
CUDC-101 simultaneously inhibited HDAC, EGFR, and HER2 expression but also indi-
rectly attenuated signaling mediated by HER3, MET (mesenchymal-epithelial transition),
AXL, and AKT [202,203]. Due to its great potential to overcome cancer resistance and
tumor metastasis CUDC-101 given intravenously was evaluated in phase I clinical trial
in patients with advanced solid tumors (including 6 patients with BC) with promising
results [204].

8. SAHA and Drug Carriers

Combined chemotherapy and nanomaterials (NMs)-drug delivery system are two
areas that have shown significant promise in the therapy of cancer patients. Conjugation
of nanoparticles with anti-tumor drugs allows to control the drug release and reduce the
toxicity of active agents. Erlotinib is the inhibitor of epidermal growth factor receptor
(EGFR), which is highly over-expressed in many types of solid tumors, e.g., breast, ovarian,
lung, colorectal, or head and neck cancers. Increased activity of EGFR leads to drug
resistance and consequently poor prognosis. Erlotinib is highly selective for the tyrosine
kinase, resulting in inhibition of proliferation, induction of apoptosis, and cell cycle arrest
in cancer cells. SAHA and erlotinib (ERL) loaded titanium oxide IV (TiO2) nanoparticles
(NPs) were used for the treatment of MDA-MB-231 TNBC and MCF-7 luminal BC cells and
human cancerous amniotic cells (WISH). Cell viability has been significantly decreased and
the number of apoptotic cells has been increased when both types of BC cells were treated
with ERL, SAHA, or dual drug-loaded TiO2 NPs compared with bare TiO2 NPs treatment
and control cells. Moreover, ERL and SAHA-loaded TiO2 NPs treatments arrested BC cells
at the G2/M phase. It has been demonstrated that partner and localizer of BRCA2 (PLAB2)
gene expression was upregulated in ERL and SAHA-loaded TiO2 NPs compared with
control cells. Summarizing TiO2 NPs can be used as a nanocarrier for chemotherapy drugs
like ERL or SAHA [100].

PEG-hydrophobic-based drug conjugates (pro-drugs) are promising nanocarriers that
have the function of delivery as well as intrinsic anti-tumor activity. The effect of SAHA on
reactivation of the ERα expression and synergism with TAM, a selective estrogen-receptor
modulator, were investigated. Moreover, SAHA prodrug-based dual-functional nanocarrier
was developed for co-delivery of SAHA and TAM for effective combined therapy of BC.
Both, SAHA and SAHA-containing polymeric nanocarrier (POEG-co-PVDSAHA) were
induced the re-expression of ERα in TNBC cells, which may help in sensitization of
TNBCs to TAM. Interestingly, POEG-co-PVDSAHA self-assembled to form small-sized
micellar carriers, effective in formulation and co-delivery of TAM. TAM-loaded POEG-
co-PVDSAHA micelles demonstrated enhanced synergistic cytotoxic effect against TNBC
cells compared with free TAM, free SAHA, and TAM loaded into POEG-co-PVMA, a
pharmacologically inert control carrier. It has been demonstrated that delivery of TAM via
POEG-co-PVDSAHA micelles leads to significant improvement of anti-tumor efficacy in
4T1.2 tumor model compared with TAM-loaded POEG-co-PVMA micelles and combination
of free SAHA and TAM. SAHA prodrug-based dual-functional nanocarrier co-delivery
system may provide a simple and effective strategy to re-sensitize TNBC cells to TAM-based
hormone therapy [205].
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PAX was bound to SAHA to form co-prodrugs based on the synergistic anticancer
effects of these active agents. The PAX-SAHA co-prodrugs were conjugated by succinic
acid and glycine to form the co-molecule which has shown better activity in cytotoxicity,
cell cycle arrest, and tumor-suppression. Therefore, PAX-SAHA-glycine was prepared
then to nanomicelles with mPEG2000-PLA1750 as the carrier using the thin film method.
PAX-SAHA co-prodrug spherical nanomicelles with a particle size of 20–100 nm. It has
been demonstrated in in vitro drug release test that PAX-SAHA-glycine nanomicelles
had a sustained release effect, which can reduce the resistance of PAX. Cytotoxicity of
combinations was evaluated by SRB assay in MCF-7, HCT-116, and drug-resistant MCF-
7/ADR BC cells. The results showed that PAX-SAHA-glycine nanomicelles had better
cytotoxicity than PAX, especially against the MCF-7/ADR BC cells. All the studies suggest
that PAX-SAHA co-prodrug nanomicelles are a promising form of treatment in patients
harboring PAX resistance BC [206].

9. Discussion

BC is one of the leading causes of cancer-related morbidity and mortality among
women worldwide [207]. The idea of treating BC patients with new active agents capa-
ble to re-establish expression of tumor suppressor genes, which are silenced by epigenetic
mechanisms is being tested [67]. HDIs seem to be a promising group of anticancer drugs,
particularly in combination with other anticancer agents [84,208] or radiotherapy [209,210].
So far, 4 HDIs have been approved by the US FDA for the treatment of certain types of
hematological malignancy [67]. Even though the effect against hematological cancers is
rewarding, HDIs monotherapy turned out not to be compelling enough for solid tumors.
Therefore, many other HDIs are being tested in clinical trials for the therapy of both hema-
tological and solid malignancies in combination with other active agents [58]. However,
some of them seem to give sufficient patient outcomes, so there is a high need to investigate
their mechanism of action alone and in combination. SAHA (Zolinza®) can be used as a
good example of effective HDI, as it was the first HDIs approved by the US FDA in 2006 for
the treatment of CTCL in patients who have progressive, persistent or recurrent disease or
following two systemic therapies [69]. SAHA is a moderately orally bioavailable inhibitor
of HDACs classes I and II [211]. Preliminary evidence of anticancer activity of SAHA, in
monotherapy or in combination with other systemic therapies, has been observed across
a range of malignancies. Numerous pre-clinical studies of SAHA in combination with
other anticancer agents (e.g., CDDP, taxol, trastuzumab, olaparib) or HDI (NaB) have
demonstrated synergistic or additive pharmacological interactions in different subtypes
of BC cells, which is the promising basis for clinical trials. Combined chemotherapy or
radiochemotherapy are frequently used in preference to single-agent therapy to maximize
treatment efficacy, but can be limited with increased toxicity. SAHA, as an HDI, has a
different mechanism of action compared to many other anticancer drugs, therefore, it can
improve clinical efficacy in combination with other systemic agents without overlapping
toxicities. Moreover, increasingly sophisticated drug delivery methods such as nanocarriers
can reduce drug administration dosage, ultimately reducing the toxicity of targeted therapy,
what is critical for SAHA implementation. Results of clinical trials from phases I and II
support the rationale for combining SAHA with other chemotherapeutic agents in order
to increase the therapeutic index of anticancer regimens. Moreover, analysis of combined
safety data demonstrates that SAHA has acceptable safety and tolerability profiles either in
monotherapy or in combination in patients with a variety of types of BCs [211]. On the
other hand, although SAHA has been market as an oral pill, its bioavailability is relatively
low. The apparent half-life of oral SAHA ranged from 91 to 127 minutes [212]. A lot of
clinical trials failed simply because of this factor and therapeutic biomarkers were never
check. Moreover, the limited aqueous solubility of SAHA may also affect its oral bioavail-
ability. Therefore, it is of interest to develop new formulations of SAHA for both oral and
parenteral use [213].
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10. Conclusions

SAHA, an inhibitor of class I and II of HDACs, is an effective anticancer agent which,
individually and/or in combination with other conventional chemotherapeutics, exhibit
anti-neoplastic properties through inhibition of proliferation, migration and invasion,
induction of differentiation and apoptosis as well as cell-cycle arrest, in many types of BC
cells, both in in vitro and in vivo settings (Figure 2) [214].
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Interestingly, data from clinical trials show that SAHA can be well tolerated and
demonstrates limited toxicity, which is rapidly reversible upon discontinuation of the
drug [215]. An additional advantage of SAHA is its ability to cross the blood–brain barrier
preventing the formation of brain metastases [115,216]. SAHA, alone or in combination
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