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Simple Summary: Hormonal and growth factor alterations, related to an elevated food consumption
and excessive adiposity, affect the regulation of genes involved in cellular processes including
proliferation, differentiation and DNA repair, allowing cells to survive and proliferate despite the
accumulation of mutations which lead to malignant transformation. The growth hormone/insulin
growth factor-1 (GH/IGF-1)/ insulin pathway and its downstream effectors, in fact, are known
to promote aging and/or age-related diseases, including cancer, in many model organisms. The
restriction of nutrients is established to have strong effects on levels of hormones and growth factors,
delaying the incidence of age-related diseases and prolonging lifespan. Here, we summarize the
effects caused by different nutrition intervention strategies on cellular damage, aging and cancer.

Abstract: The restriction of proteins, amino acids or sugars can have profound effects on the levels of
hormones and factors including growth hormone, IGF-1 and insulin. In turn, these can regulate intra-
cellular signaling pathways as well as cellular damage and aging, but also multisystem regeneration.
Both intermittent (IF) and periodic fasting (PF) have been shown to have both acute and long-term
effects on these hormones. Here, we review the effects of nutrients and fasting on hormones and
genes established to affect aging and cancer. We describe the link between dietary interventions and
genetic pathways affecting the levels of these hormones and focus on the mechanisms responsible
for the cancer preventive effects. We propose that IF and PF can reduce tumor incidence both by
delaying aging and preventing DNA damage and immunosenescence and also by killing damaged,
pre-cancerous and cancer cells.
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1. Introduction

Many dietary patterns, including the Western diet, are associated with reduced
lifespan and health span and appear to affect cancer incidence by two major hormonal
axes/pathways: (1) the growth hormone-IGF-1; (2) the insulin signaling [1–7].

Higher protein intake increases the release of growth hormone releasing hormone, and
consequently growth hormone release from the pituitary gland and IGF-1 release primarily
from the liver [8]. High IGF-1 has been associated with elevated incidence of a number of
cancers [8–11]. On the other hand, excessive carbohydrate and/or fat intake can result in
excess adiposity, which is associated with high oxidative stress, inflammation, alterations
in hormones and growth factors’ production, acquisition of insulin resistance and conse-
quently hyperinsulinemia [12–14]. Overweight women are reported to frequently present
insulin resistance and low plasma levels of sex hormone-binding globulin which lead, as a
consequence, to an increase in total and free sex hormone levels [15]. Hyperinsulinemia, in
fact, blocks the production of sex hormone-binding globulin by the liver and, moreover, is
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associated with an increased production of androgens which are reported, together with
estrogens, to stimulate the development and growth of several cancers [16]. Furthermore,
insulin sustains insulin like growth factor 1 (IGF-1) activity, partly through the reduction
of IGF binding protein 1 (IGFBP-1) synthesis, and elevated GH-IGF-1 increases insulin
levels and resistance [5,6,17]. Not surprisingly, both elevated concentrations of insulin and
IGF-1 are associated with multiple cancer types, including breast, endometrium, pancreas
and colon [3,4,7,18]. However, it is not clear whether insulin and IGF-1 may promote
cancer directly by promoting growth and preventing apoptosis, or by accelerating the
aging process, which is a key risk factor for many cancers.

Nutrient sensing pathways regulate metabolism as well as growth and promote
aging, aging-related diseases and genomic instability in several organisms, ranging from
the simplest eukaryotes to mammals [19]. Studies in these model organisms show that
impairment of genes that promote growth can extend lifespan, suggesting that age-related
diseases, including cancer, could be postponed or prevented by switching from a pro-
growth mode to a maintenance mode [20,21]. The GH/IGF-1 pathway and its downstream
effectors including target of rapamycin (TOR), protein kinase A (PKA) and the ribosomal
protein S6 kinase (S6K) are reported to promote aging and age-related diseases, including
cancer, in several model organisms [22].

Thus, the understanding of nutrient-response pathways can provide insights on the
mechanisms linking food intake to age-related diseases.

1.1. Growth Genes, Longevity, and Cancer: From Yeast to Humans
1.1.1. Growth Genes Aging and DNA Damage in Yeast

Yeast has been successfully used as a model system to understand the molecular
basis of some of the most basic and important cellular processes. It is therefore not
surprising that the aging research field included this simple unicellular organism among
the most important organisms for identifying and studying the central pathways regulating
longevity. Its short lifespan, low experimental costs and, more importantly, the availability
of powerful and rigorous genetic methodologies and high throughput technologies, render
it ideal for molecular genetics of aging studies. In addition, even considering the great
evolutionary distance between yeast and mammals, comparative genomics highlighted
that about 30% of the human genes involved in diseases have a yeast orthologue [23].

In 1959 Mortimer and Johnston demonstrated that a single yeast cell can divide a
limited number of times [24]. This discovery was eventually used to screen and identify
genomic mutations capable of affecting the replicative potential of a single yeast cell
(replicative lifespan, RLS) [25].

More recently, the ability of post-diauxic yeast cells to survive and form new colonies
has been successfully used to measure the yeast chronological lifespan (CLS) [19,26]. Thus,
RLS is the yeast counterpart of the Hayflick limit observed in mammalian cell cultures,
whose measurement reveals the doubling ability of cultured cells, while the CLS is more
closely related to the chronological lifespan of higher eukaryotes. It is worthwhile to
note that, even though the two methods could identify different processes, some of the
pathways identified, including the Tor and serine-threonine Sch9 kinase (Tor-S6K) and
the Ras-adenylate cyclase (AC) and PKA pathway (Ras/AC/PKA), have similar effects
on the extension of the two lifespan methods [24,25,27,28]. Studies performed in the yeast
Saccharomyces cerevisiae showed that deletion of the gene coding the small G protein Ras2
increases resistance to multiple stresses and doubles chronological lifespan [29]. Many data
point to the PKA pathway as the Ras-dependent central regulator of longevity in yeast. In
fact, mutations impairing adenylate cyclase (AC), a central effector of PKA pathway, also
increase yeast longevity. In addition, the key stress resistance transcription factors Msn2/4
are inhibited by PKA activity and Msn2/4 impairment abolishes the pro-longevity effect of
Ras2 deletion confirming thus PKA as central regulator of longevity [30].

Genome wide screen of deletion mutants obtained by transposon mutagenesis dis-
covered Sch9-Tor pathway as perhaps the most potent pro-aging pathway in yeast [20].
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SCH9, which was originally isolated as a suppressor of impaired Ras pathway [31], codes
a serine-threonine protein kinase ortholog of mammalian S6K whose deletion increases
resistance to multiple stresses and lifespan. The partial overlap with the PKA pathway
is further confirmed by the phenotype reversion observed in sch9 deletion mutant after
PKA hyperactivation. However, the overlap between these two pathways is not complete
since the contemporary deletions of RAS2 and SCH9 has a greater effect on stress resistance
as well as viability with respect to each single deletion. More comprehensive genome
wide analysis performed using each of the aforementioned aging paradigms identified
other genes whose deletion positively affected longevity. Deletion of genes involved in
protein synthesis, such as protein component of ribosomal subunits, or genes involved in
nuclear export of tRNA identified the transcription factor Gcn4 as another longevity regu-
lator [32]. It must also be noted that these effects are not additive to Tor-Sch9 suggesting
common aging regulatory pathways. Deletion of the tRNA wobbling regulator TRM9 was
also identified as a lifespan regulator but its role was argued to be dependent on lower
translation efficiency [33].

It is interesting to note that both Ras/AC/PKA and Tor/Sch9/S6k pathways are
activated by nutrients and their depletion results in inhibition of these signal transduction
pathways [34]. In yeast, the two macronutrients glucose and amino acids activate Ras
and Tor, respectively. Reduced glucose supplementation in the growth media is capable
of increasing stress resistance, reducing genomic mutation rate and increasing lifespan
in a Ras-dependent manner. On the other hand, the restriction of certain amino acids
is capable of increasing lifespan by reducing Tor-Sch9/S6k signaling. Interestingly only
specific amino acids (methionine, serine, threonine and valine) can activate the Tor-Sch9
pathway and their restriction (each one of them alone or combined) is capable of increasing
lifespan as well as stress resistance and decreasing DNA damage [34].

Moreover, the activation of transcription factors Msn2 and Msn4 in S. cerevisiae de-
ficient in the Ras/cAMP/PKA signaling makes cells more resistant to stress, in part by
inducing the expression of genes encoding for several heat shock proteins, catalase (Ctt1),
and the DNA damage inducible gene DDR2 [20,35]. These results suggest that the ef-
fect of mutations in the Tor-Sch9/S6k and Ras/AC/PKA pathways is partly mediated
by the regulation of antioxidant defenses and the reduction of oxidants. In fact, yeasts
expressing constitutively active RAS2 oncogene present a lower resistance to oxidants and
a decreased lifespan [36].

1.1.2. Growth Genes Aging and DNA Damage in Worms and Flies

The role of nutrient-response pathways was also examined in the worm Caenorabditis elegans
and fruit fly Drosophila melanogaster. Studies of the nematode Caenorabditis elegans showed
that a reduction of the insulin/insulin-like growth factor signaling pathway (IIS) and the
consequent activation of the Forkhead FoxO transcription factor daf-16 which, similarly to
Msn2/4 in yeast, regulates genes involved in the cellular stress response and detoxification
of xenobiotics and free radicals, extends longevity [37–39]. The extension of lifespan in
worms also requires the heat shock factor hsf-1, which regulates the expression of heat
shock proteins [40]. As observed in yeast, inhibition of TOR-S6 kinase signaling can
increase lifespan in worms; in particular, TOR pathway inhibition can activate the process
of autophagy and alter the activity of other TOR targets, such as the hypoxia-inducible
factor 1 (HIF-1) transcription factor, also independently shown to extend lifespan [39,41].

Moreover, in C. elegans mutated in gld-1, a female germline-specific tumor suppressor
gene, germ cells can proliferate uncontrolled and form tumors [42]. Mutations in the
IGF-1-receptor-like daf-2 gene can protect gld-1 mutants against tumor formations, by
reducing germ cell proliferation and inducing cell death through a mechanism which
requires daf-16 and cep-1, the orthologue of the mammalian p53 genes [42]. Furthermore,
in worms, a mutation in the age-1 PI3K gene, downstream of the daf-2 receptor, was
shown to increase mean lifespan by 65% and maximum lifespan at 25 degrees by 110%,
suggesting that daf-2 and age-1 act in the same pathway to reduce thermotolerance and
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antioxidant defenses apparently through a mechanism which involves the stress resistance
transcription factor daf-16 [37,43]. Similarly to ras2, cyr1 and sch9 yeast mutants, which
reduce Sod2 expression and require it to extend lifespan, C. elegans daf-2 is reported to
decrease oxidative stress resistance, in part by down-regulating mitochondrial Mn-SOD
gene expression and several heat shock proteins [44].

Many studies suggest that orthologs of the yeast and worm genes regulate fruit
flies’ longevity as well. Drosophila melanogaster impairment of the insulin receptor, in fact,
controls the germline stem cell division and cysts growth by a cell autonomous mecha-
nism [45]. The fly daf-16 orthologue FOXO, which is involved in lifespan extension, blocks
phosphatidylinositol-3 kinase (PI3K) effect on cell number and the down-regulation of IGF-
1 or insulin-AKT/PKB axis, which is reported to promote cancer growth and metastasis in
fruit flies, can extend lifespan by up to 85% and inhibit uncontrolled cell growth [46–48].
As in S. cerevisiae and C. elegans, in D. melanogaster the inhibition of TOR pathway activity,
genetically or by rapamycin treatment, increases lifespan partly by activating autophagy,
reducing S6K activity and increasing stress resistance [49]. Analogously to yeast and
worms, fruit flies with mutations in the insulin/IGF-1 pathway increase SOD expression
and increased survival [47,50]. Furthermore, mutation in the G-protein-coupled receptor
homolog MTH gene results in a 35% increase in lifespan and resistance to starvation and
superoxide toxicity in Drosophila melanogaster [51].

Thus, in yeast, worms and flies, the activation of nutrient signaling pathways is tightly
linked to oxidative stress, DNA damage and either increased growth or tumors.

1.1.3. Growth Genes, Aging and Cancer in Mice

Studies in simple model organisms were fundamental to identify conserved nutrient-
response pathways that regulate longevity but mouse research on genetics of aging and
cancer had also been proceeding in parallel with the studies in simple organisms and
reached similar conclusions. Mice studies substantially confirmed the observations made
in yeast and other simple aging model systems that certain pro-growth signal transduction
pathways activated by nutrients had central roles in aging and cancer. Mutations or
deletion in GH or IIS genes, as well as S6K1, can also extend lifespan in mice and reduce
age-related diseases including insulin resistance and immune and motor disorders [22,52].
Moreover, a decrease in the PKA signaling pathway in mice extends longevity and reduces
the incidence of age-dependent tumors [53]. Mice with homozygous mutations in Prop-1
or Pit1 genes present a deficit in normal pituitary development, which causes a decrease
in GH, prolactin and thyroid stimulating hormone (TSH) production; as a consequence,
these mice are much smaller than wild-type controls but live ~40% longer [54]. Dwarf
mice with a 90% reduction in IGF-1 level or mice carrying heterozygous mutation in IGF-1
receptor (IGF-1R) also present a ~33% increase in life expectancy compared to control
mice [55,56]. Several reports provided evidence that a decline in insulin or IGF-1 levels
reduces the incidence of spontaneous tumors in mice, thus confirming the central role
of IGF-1 as growth promoter and tumorigenesis driver [9]. Transgenic mice expressing
IGF-1 are reported to present higher incidences of tumors in mammary glands while
transgenic mice overexpressing human GH exhibit hepatic upregulation of GH-signaling
mediators which lead to liver neoplasms [57]. Similarly, transgenic mice expressing a
constitutively active form of IGF-1R showed aberrant development of the mammary glands
and early development of salivary and mammary adenocarcinomas [58]. Conversely,
growth hormone receptor binding protein (GHR/BP) knock out mice displayed a lower
incidence and a delayed occurrence of neoplastic lesions compared to wild-type littermates,
in particular lymphomas and pulmonary carcinomas [59]. Moreover, transgenic animals
expressing the GH antagonist G120 GH had lower IGF-1 levels and exhibited decreased
tumor incidence in the mammary gland relative to control mice after being treated with
the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) [60]. Accordingly, mice bearing
MCF-7 xenografts treated with pegvisomant, which is the clinical version of the G120R GH
antagonist able to completely inhibit both GH and IGF-1 signaling in the mammary gland,
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displayed a 70–80% decreased of circulating IGF-1 and a 30% decrease in tumor size [61].
This effect may be partly due to an increased resistance to oxidative damages and a higher
expression of antioxidant enzymes, which are associated with a decrease in IGF-1 levels [19].
Normal levels of GH and IGF-1 could also promote cancer by increasing spontaneous
genomic instability through a RAS or AKT hyperactivation dependent mechanism. PTEN
inactivation in the mouse prostate causes AKT constitutive activation and is associated with
70% of primary prostate cancers. Moreover, AKT hyperactivation by oncogenic mutations
can alter also p53 expression by causing growth-independent hyper-replication and an
increase in DNA damage [62].

In summary, in mice there is very strong evidence for the link between high growth
hormone and IGF-1 levels, DNA damage and cancer, likely mediated at least in part by
the activation of AKT, TOR-S6K and PKA signaling, analogously to what is observed in
yeast (Figure 1).

1.1.4. Growth Genes and Cancer in Humans

Alterations in GH-IGF-1 axis have also been studied also in humans. Notably, human
cancers are frequently mutated in the IGF-1R (2.48% of all cancers) and in its downstream
signaling proteins Ras (19% of all cancers) and Akt (1.8% of all cancers) [64–67]. In agree-
ment with mouse studies, the modulation of the GH-IGF-1 pathway appears to have a
key role in cancer prevention in humans. High levels of IGF-1 are, in fact, associated
with an increased incidence of several cancers, including colorectal, prostate and breast
cancers, while mutations in the human IGF-1R were found to protect against age-related
disorders [9,68]. Recent evidence reports that centenarians most frequently present het-
erozygous mutations in the IGF-1R gene, associated with low IGF-1 serum levels and a
higher IGF-1R activity compared to controls characterized by high IGF-1 serum levels [69].
The role of GH/IGF-1 axis activity on longevity and aging-related diseases in human is also
supported by long-term studies of an Ecuadorian cohort affected by Laron syndrome (LS)
which is characterized by GHR deficiency and consequently is responsible for a 90% re-
duction of the IGF-1 levels. Guevara-Aguirre et al., monitoring LS patients for more than
20 years, reported that the relation between pro-growth signaling pathways, oxidative
stress, genomic instability and cellular damages shown in several model organisms is
also observed in humans and human cells [6]. The results from the Ecuadorian cohort of
LS patients showed that these individuals are protected from age-related pathologies, in
particular cancer and type 2 diabetes, similarly to the results obtained from GH-deficient
mice, which are characterized by a 49% decrease in neoplasms’ incidence and an increase
in insulin sensitivity compared to control mice [6,59,70–74]. Analysis performed on hu-
man mammary epithelial cells (HMECs) incubated in medium supplemented with 15%
of LS patients’ serum showed that these cells are characterized by reduced levels of RAS,
PKA and TOR, leading to reduced DNA damage and increase apoptosis upon stimulation
with oxidative stress compared to cells incubated with 15% of serum derived from LS
patients’ relatives, not affected by GHR deficiency [6]. These data suggest that reduced
GH-IGF-1/insulin signaling protects from cancer in part by reducing DNA damage and in
part by increasing apoptosis in damaged cells, making the link between decreased activity
of growth signaling pathways and DNA protection or repair mechanisms conserved from
yeast to humans.
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Figure 1. Conserved nutrient signaling pathways in yeast, worms, flies and mammals. A schematic model of the conserved
nutrient-signaling pathways that regulate stress response mechanisms, DNA damage, longevity and cancer in different
model organisms [22]. In Saccharomyces cerevisiae, glucose and amino acids activate Ras/AC/PKA and TOR/Sch9 path-
ways, respectively. Their activation leads to serine-threonine kinase Rim15 inhibition and consequently to a lowering
in Msn2/Msn4 stress resistance transcription factors. These mechanisms promote aging in part by decreasing cell stress
response and repair thus increasing DNA damage [20]. In Caenorhabditis elegans, insulin/IGF-1 receptor like (daf-2) signaling,
through the activation of AKT/PKB pathway, inactivates the Forkhead FoxO transcription factor daf-16, which is involved
in the regulation of genes implicated in the cellular stress response and protection against free radicals. As in yeast, also in
worms, amino acids can activate the TOR/S6K pathway, accelerating the aging process [44]. Analogously to worms, in
Drosophila melanogaster growth factors and amino acids activate AKT/PKB and TOR/S6K pathways, respectively [47].
The activation of TOR/S6K, PI3K/AKT and Ras/AC/PKA pathways, mediated by glucose, amino acids and IGF-1 like
signaling, is also maintained in rodents and other mammals, suggesting that these nutrient-sensing pathways, involved in
longevity and stress-response mechanisms, are conserved, in part, from the simplest model organism to humans [22,63].

1.2. Calorie Restriction (CR) and Cancer

Calorie restriction (CR), a dietary intervention that reduces calorie intake without
inducing malnutrition, is the most studied intervention able to extend lifespan but also
well established to postpone or even prevent age-related diseases, including cancer [75]
(Table 1). Several studies showed that CR increases lifespan in multiple organisms includ-
ing yeast, flies, worms, rodents and monkeys, protecting from disorders and decline in
functions related to aging [22,30,76–81]. Curiously, the first study on calorie restriction
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was conducted in mammals and not in a simple model system. McCay et al. presented
for the first time the effects of CR in retarding aging, by increasing lifespan by ~35%,
reducing the incidence of kidney disorders, chronic pneumonia and tumors [82] in mice.
Similar results were obtained in several studies performed in different rodent models and
the underline mechanisms could be mediated by the decrease in blood glucose, IGF-1
and insulin levels, the increase in glucocorticoids and insulin sensitivity as a result of the
homeostatic response to reduced body fat stores and an increase in gluconeogenesis [77,83].
Long-term CR is reported to reduce IGF-1 serum levels in rodents by ~30–40%, protecting
them against several types of cancers, while treatments with GH or IGF-1 can reverse this
protective effect mediated by CR, confirming the important role of these factors in cancer
pathogenesis [84–87]. The NF-E2-related factor 2 (Nrf2) transcription factor has been shown
to mediate, in part, the CR anticancer effects. Nrf2, in fact, when activated, improves the
activity of several antioxidant and carcinogen-detoxification enzymes, and the anticancer
effects of CR is highly impaired in mice deficient in Nrf2 when exposed to carcinogens [88].
These results further demonstrate the effect of CR in increasing resistance to oxidants and
other toxins.

Table 1. Metabolic, molecular and cellular mechanisms induced by CR to prevent cancer.

Calorie Restriction
(CR)

Metabolic Adaptations Molecular Adaptations Cellular Adaptations

↓ IGF-1
↓ Insulin

↓ Oxidative stress
↓ Inflammation

↑ Cortisol

↓ PI3K/Akt/S6K
↓ mTOR

↓ Ras/MAPK

↑ Nrf2
↑ FOXO
↑ PTEN

↓ Cell proliferation
↓ Oxidative damage

↑ DNA repair
↑ Genome instability

In addition, CR, as well as reduced levels of IGF-1, can decrease genomic instability
via Ras- or phosphatidylinositol-3 kinase (PI3K)/Akt/Tor/S6K-dependent mechanisms,
which contribute to reducing cancer incidence [89,90] in agreement with what was shown
in yeast [20,30].

Studies in different rodent models showed that CR is able to reduce the incidence and
delay the onset of spontaneous or chemically induced cancers, while in rhesus monkeys,
lifelong CR reduces cancer incidence by 50% [91–93]. Many beneficial anticancer effects
have been achieved by reducing caloric intake by 10 to 50% in mammals [22]. However,
more limited restrictions are also capable of affecting longevity in mice. It was demon-
strated that the macronutrients ratio has an important role in longevity and a 30% lifespan
increase was observed when the protein to carbohydrate ratio is decreased [94]. In fact, pro-
tein intake affects the incidence and growth rate of melanoma and breast tumors, probably
by activation of the GHR-IGF-1 signaling described earlier [10].

In addition to continues dietary restrictions, the shortage of food without malnutrition
for a period of life could have long-term consequences. At least two events were associated
with long-term and severe calorie restrictions in human history: Danes faced a 2-year CR
without malnutrition, during the first world war, while Norwegians were forced to CR with-
out malnutrition for 4 years in a row during the Second World War. Even though specific
cause mortality is not reported in the first case and only circulatory disease are monitored
in the second study, in both cases, CR was associated with a strong reduction of mortality
rate, 34% and 30%, respectively, suggesting an effect on cancer incidence as well [95,96].
More recent studies on human spontaneously adhering to CR, report slower metabolism,
decreased oxidative damages, enhanced DNA damage repair processes and the reduction
of diabetes risk factors, cardiovascular diseases and cancer [97]. Moreover, by reducing
body weight, CR improves multiple metabolic and hormonal alterations associated with
excessive adiposity, including a decrease in visceral and hepatic fat and a reduction in cir-
culating insulin levels, which, consequently, is associated with an increase in sex hormone
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binding globulin and free hormones like estrogens and testosterone [13,15,16]. The loss
of weight mediated by CR also reduces several markers of oxidative and DNA damages;
weight loss in obese man is associated with an increase in telomere length in rectal tissue
biopsies, suggesting that CR could contribute to the prevention of telomere shortening [98].

Despite the key role of GH/IGF-1 inhibition in increasing life expectancy and reduc-
ing or delaying age-related disorders, mimicking the effect of CR, the two approaches
may be acting through mechanisms that are only partially overlapping. CR, in fact, can
further extend lifespan in GHR-deficient mice, possibly by reducing side effects such as fat
accumulation and disorders related to obesity [19,99].

Notably, even though the lipid profile is improved and oxidative DNA damage is
significantly decreased in calorie-restricted patients, the levels of important hormones
associated with cancer, such as IGF1, were unchanged or only slightly changed, possibly be-
cause many CR subjects consume high levels of proteins, which regulate IGF-1 levels [100].
Notably, CR provides both a wide range of beneficial effects, as well as detrimental effects
including low weight and loss of lean body mass as well as immunosuppression and po-
tentially increased susceptibility to certain infections [101–104]. Not surprisingly, lifelong
CR either caused no effect or a small effect on lifespan in monkeys in spite of showing
strong effects on age-related disease-dependent mortality, suggesting that the beneficial
effects of CR may be counterbalanced by its detrimental ones.

1.3. Fasting and Fasting Mimicking Diets

Because CR can have both very positive and negative effects and is unlikely to be
adopted by a significant portion of the populations since it unavoidably causes severe
weight loss, intermittent and periodic fasting are emerging as novel interventions which
could maintain many of the beneficial effects of CR while reducing the burden and many
of the side effects. Fasting, the complete elimination of nutrients from the diet, is the most
extreme of the dietary restrictions.

Fasting methods (Table 2). Fasting can be performed for short-term frequent periods,
called intermittent fasting (IF), or less frequent but longer periods, known as prolonged and
periodic fasting (PF) [63,105]. There are multiple examples of IF diets, including: complete
fasting every other day (also called alternate-day fasting ADF); 70% energy restriction
every other day; time-restricted feeding (TRF), during which food intake is restricted to
6–12 h per day; and the 5:2 diet, which is achieved by consuming only 500–700 calories
for two days a week [106–110]. Thus, IF interventions usually include a phase during
which only water is consumed or calorie intake is extremely low, followed by a normal
feeding phase which lasts between 12 and 72 h. PF periods, instead, in most cases refer
to 2–5 days of water-only fasting or 4–7 days of a fasting mimicking diet (FMD), a diet
designed to mimic the metabolic effects induced by fasting [111,112]. Differently from IF,
PF does not need to occur at specific intervals and in most cases can be carried out only
for few times per year [113]. All these types of fasting cause different degrees of metabolic
changes, including the decrease in blood glucose levels, the reduction of glycogen stores,
the decrease in circulating leptin levels and the mobilization of fatty acids accompanied
by the generation of ketone bodies [63,113]. Moreover, fasting or FMD periods can lead to
behavioral changes, including increased awareness, attention, mental acuity, vigilance and
feelings of euphoria, thus lowering depressive symptoms [114,115].



Cancers 2021, 13, 4587 9 of 20

Table 2. Dietary approaches to promote health span.

Type of Fasting Schedule Description

Intermittent Fasting
(IF)

ADF 24 h fast/ 24 h eating period Water only fasting every other day

5:2
2 days fast or very low calorie

consumption (500–700 kcal)/ 5 days
eating period

Alternation of 2 days of very
low-calorie consumption with a 5 days

ad libitum re-feeding period

TRF 12- to 18 h fast/ 6- to 12 h eating period Food intake resctricted to 6–12 h
per day

Periodic Fasting
(PF)

Prolonged fasting 2–5 days of water fast/ 7 days eating
period (or longer)

Water only fasting period followed by
an ad libitum re-feeding period

Prolonged FMD 4- to 7 days FMD/ 10- to 25 days
eating period

30–50% of the normal caloric intake
using a fasting mimicking diet for

4–7 days followed by an ad libitum
re-feeding period

Fasting can extend lifespan and protect from age-related disorders, including DNA
damage or cancer, in different model organisms [63].

Escherichia coli bacteria cultured in a calorie-free broth instead of a nutrient-rich one
present a fourfold increase in lifespan, while yeast Saccharomyces cerevisiae grown in wa-
ter instead of medium supplemented with glucose present a decrease in Tor/S6K and
Ras/AC/PKA nutrient signaling pathways activity and an increased activation of Msn2/4
stress resistance transcription factors [22,30,116]. In the nematode Caenorabditis elegans,
food deprivation conditions reached by feeding worms with little or no bacteria increase
lifespan through mechanisms which involve AMPK, the stress resistance transcription
factor DAF-16 [117,118] and the small GTPase RHEB-1 [119]. In rodents, alterations in
metabolic and growth factors turned out to be different in accordance with the different
forms of fasting applied and also the age at which cycles of fasting were started [120].
IF cycles applied to middle-aged rats increased lifespan by 30–40% compared to rats sub-
jected to a normal dietary regimen [121]. Moreover, in rodents, IF has been shown to
prevent and revert metabolic syndrome aspects, reduce abdominal fat, insulin resistance
and protects against renal and liver injuries [52,122,123].

However, there have been reports showing also IF adverse effects in rodent models.
A preclinical study showed that rats subjected to IF for one month had improved glucose
tolerance, while rats subjected to 8 months of IF achieved impaired glucose tolerance [124].
Moreover, IF has been shown to have adverse effect on glucose metabolism in hypercholes-
terolemic mice, contradictory to the beneficial effects of IF on lipid and glucose metabolism
shown in other rodent and human studies [125–127]. Another preclinical study showed
that IF, introduced at 1.5 or 10 months of age, was not able to reduce body weight in
A/J mice, compared to controls, and did not increase mean and maximum lifespan when
started at 1.5 months. In addition, the same study showed that IF, when started at 10
months of age, decreases mean and maximum lifespan compared to control mice [128].
These results suggest that IF effects on body weight and lifespan are variable and depend
on the genotype and age on initiation.

On the other hand, PF has been shown to improve glucose tolerance and delay age-
associated diseases in mice, in particular by potentiating cellular resistance and affecting
the GH/IGF-1 axis [63,113,129]. In mice, 24–72 h of fasting cause a 30% and 40% decrease
in circulating insulin and glucose, respectively, lower IGF-1 levels by 70% and cause
a major increase in IGFBP-1 [130]. Moreover, PF causes the down-regulation of TOR-
SK6 and eAC-PKA nutrient signaling pathways, and decreases the PI3K-AKT pathway
activity [129,130]. Additionally, in humans, PF can lead to a major decrease in circulating
IGF-1 and a 5- fold increase in IGF binding protein 1(IGFBP1) [131]. These effects are
largely mediated by protein restriction and particularly to the restriction of essential amino
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acids: in fact, in humans, chronic caloric restriction is not associated with reduced IGF-1
levels unless combined with protein restriction [22,97,132].

PF and especially FMDs, because of their periodic use, limited burden on human
subjects, and effects on IGF-1, insulin, glucose, IGFBP-1 and ketone bodies levels, have the
potential for applications in cancer prevention and treatment [10,133–135].

1.4. Fasting Mimicking Diet, Hormones and Cancer Prevention

Several studies indicate that PF is a much more viable strategy than a continuous CR,
for cancer prevention and treatment in humans because: (1) it cause a much more extreme
set of metabolic changes than CR, including IGF-1, insulin, leptin and glucose decreases,
which can be combined with standard of care drugs to promote strong anticancer effects and
cancer-free survival; (2) it stimulates anticancer immune responses; (3) it prevents muscle
loss; (4) it is amenable to combination with standard cancer treatments but also cancer
preventions since it is only conducted for several days periodically and does not require
dietary changes between periodic fasting cycles. Preliminary clinical data report that 48 h
of fasting are necessary to obtain relevant clinical effects in oncology, such as preventing
DNA damages induced by chemotherapy in healthy tissues and improve quality of life to
cancer patients [136–138]. However, most patients undergoing water-only fasting during
cancer treatment had difficulties with sustaining water fasting and reported side effects
such as headache, nausea, light-headedness, anemia and weakness [139]. Thus, water-only
fasting and intermittent fasting which are expected to be repeated every other day or twice
a week, remain a challenging option for the majority of population, especially frail and
older subjects and cancer patients. FMD is a plant-based caloric-restricted alimentary
regimen (typically between 300 and 1100 kcal per day) characterized by low proteins
and sugars and relatively high unsaturated fats. It was developed to mimic many of
the metabolic effects induced by water-only fasting but with reduced nutritional risk
and burden [112,138,140–142].

1.4.1. Mice Studies

Preclinical studies conducted in rodents show that middle-aged mice subjected bi-
monthly to 4 days of FMD present a 40% decrease in blood glucose levels and a ~9-fold
increase in ketone bodies production, suggesting that this regimen is able to mimic the
metabolic switch induced by water fasting [112]. Furthermore, 4 days of FMD lead to
a 10-fold decrease in insulin level, reduce IGF-1 level by 45% while increase IGFBP-1
by ~8-fold, similarly to the effects of water fasting. Notably, many of these parameters
return to normal levels within 7 days of re-feeding [112] but some, including IGF-1 and
leptin, do not, suggesting chronic effects of these periodic interventions [141]. Moreover,
bimonthly FMD cycles lasting 4 days, started in middle-aged mice, can extend lifespan and
positively affect mice health-span by reducing visceral fat deposits, leading consequently to
a reduction in body weight, without affecting lean body mass, and decrease multiple organ
weight, possibly promoting their regeneration upon refeeding. Middle-aged mice subjected
to FMD cycles twice a month for 4 days display a 45% reduction in neoplasia incidence and
a ~50% decrease in inflammation-associated skin lesions occurrence when compared to
mice fed ad libitum with standard diet. Notably, the FMD also postponed neoplasm-related
death by over 3 months and reduced the number of animals with multiple abnormal lesions,
suggesting that the FMD regimen not only prevents neoplasia formation but also delays
their onset [112].

Studies carried out on bone-marrow-derived stem and progenitor cells show that
FMD can also promote immune system regeneration and rejuvenation thus reducing
immune-senescence which could be important for cancer development [112,129].

Fasting/FMD, partly by reducing PKA activity, circulating IGF-1 and glucose levels
and by regulating genes involved in DNA repair (REV1) and cell death (p53), enhances
chemotherapeutic agents’ efficacy against multiple kind of tumors, while inducing the
protection of normal cells from their toxic side effects [111,129,130,143]. Fasting-dependent
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reduction in IGF-1 levels was found to be fundamental to protect primary glia and neurons,
but not glioma and neuroblastoma cells, from chemotherapies and pro-oxidative com-
pounds [130]. In addition, fasting/FMD, by promoting the switch of cancer cell metabolism
from aerobic glycolysis to oxidative phosphorylation (OXPHOS), increases ROS produc-
tion, contributing to making cancer cells more sensitive to chemotherapy, while protecting
normal cells [143]. The FMD-dependent reduction in blood insulin, IGF-1 and leptin, which
consequently leads to the inhibition of the PI3K/AKT, mTOR pathways, can also enhance
the efficacy of estrogen therapies against estrogen receptor positive (ER+) breast cancer [141].
Furthermore, FMD can reduce the expression of Heme-Oxygenase 1 (HO-1), protein which
confers protection against oxidative damages and apoptosis, in in vivo xenografts [144].
Through HO-1 downregulation, FMD reverses chemotherapy-induced immunosuppres-
sion by increasing CD8+ tumor-infiltrating lymphocyte-dependent cytotoxicity and by
reducing tumor-associated Tregs [144].

1.4.2. Human Studies

To investigate the feasibility and impact of FMD in humans, clinical trials were con-
ducted in healthy humans (Figure 2) [112,140]. Participants were subjected to 5 days FMD
per month for 3 months in a row and were asked to resume their normal diet after the
FMD period. Components and nutrients in the human FMD were selected for their ability
to reduce circulating IGF-1 and glucose and to increase IGFBP-1 and the production of
ketone bodies, according with the effects of FMD obtained in preclinical studies in rodents.
The human FMD diet is composed approximately by at least 11–14% of proteins, 42–43%
of carbohydrates and 44–46% of fats and was designed to provide between 34–54% of
the normal caloric intake; thus, fat and complex carbohydrates are the higher sources of
calories in the FMD regimen [112,140].

Subjects undergoing FMD cycles reported a 11.3% decrease in blood glucose levels and
a ~24% reduction in circulating IGF-1, which remained, respectively ~6% and ~15% lower
than baseline levels even after the refeeding period. Moreover, participants subjected to
FMD showed a 3.7-fold increase in serum ketone bodies and a 1.5-fold increase in IGFBP-1,
which returned to baseline levels after resuming the normal diet [112,140]. In addition, FMD
decreased systolic blood pressure and reduced bodyweight, waist circumference, total body
and trunk fat by 3%, while it increased the relative lean body mass, suggesting that it causes
only loss in fat mass [112,140]. Studies conducted in humans report that three FMD cycles
reduce the serum level of C-reactive protein (CRP), a marker of inflammation, in subjects
classified as at-risk for age-related pathologies than in those subjects who had risk factor
values within the normal range, suggesting that FMD also promotes anti-inflammatory
effects [112,140]. In general, FMD cycles were well tolerated and no serious adverse events
(according to Common Terminology Criteria for Adverse Events) were reported.

The FMD-dependent reduction in blood glucose and IGF-1 levels is of interest given
their key role in age-related diseases, including cancer [6,10,22,68,145]. Collectively,
these data indicate that periodic use of cyclic FMD could potentially prevent obesity-
or inflammation-related diseases and also reduce cancer risk in humans, as it was shown
in rodents [112] (Figure 3).

1.5. Alternative Interventions to Reduce Age-Related Diseases Risk Factors

Aging is frequently associated with impaired glucose tolerance and hyperinsulinemia,
due to an increase in insulin secretion as a result of high glucose levels [146]. A decline in
glucose tolerance is often associated with an increased risk of developing atherosclerosis or
non-insulin dependent diabetes mellitus (NIDDM) [147,148].

Endurance exercise training reduces insulin levels both during fasting and feeding
periods. Several studies showed that individuals who practice exercise periodically have
improved glucose tolerance and responsiveness to insulin [149–153]. Seals et al., showed
that regular exercise prevented the decline in glucose tolerance and hyperinsulinemia
development in older people [152]. Moreover, exercise training was reported to normalize
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glucose tolerance by reducing insulin resistance in patients with mild NIDDM or impaired
glucose tolerance (IGT) [154]. Furthermore, consuming a low-calorie and low-protein
vegan diet, composed of unprocessed and uncooked plant-derived foods, for at least two
years, or performing endurance exercise are associated with a decrease in cardiometabolic
risk [155]. In particular, they reduced the plasma concentrations of lipids, lipoproteins,
glucose, insulin, C-reactive protein (CRP) and systolic and diastolic blood pressure [155].
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Figure 2. CONSORT diagram. CONSORT diagram of participants selected for the clinical study described by
Brandhorst et al., and Wei et al. [112,140]. In the clinical study, 100 participants were enrolled; 48 subjects were ran-
domized to a control group and were asked to continue their normal diet for 3 months and then were subjected to 3 FMD
cycles (16 participants withdrew or were excluded throughout the study). Instead, 52 subjects were randomized to the
FMD group; FMD was provided for 5 consecutive days per month, for 3 months (13 subjects withdrew or were excluded
throughout the study). [112,140].

In addition, a meta-analysis study showed that physical activity is associated with
lower risk of 13 different kinds of cancer, while another study showed that exercise can re-
duce the risk of cancer recurrence or progression in certain solid tumors [156,157]. However,
additional studies are required to deepen the understanding of the association between
exercise and cancer prevention.

Metformin is another drug that has been reported to attenuate the progression of aging.
Metformin is mostly used for the treatment of type 2 diabetes since it decreases glucose
production by the liver and increases insulin sensitivity. Several studies showed that
metformin can inhibit several nutrient sensing systems, including the somatotropic axis
GH/IGF-1, the mTOR signaling and AMPK [158–166]. Moreover, it can also lower oxidative
stress via mitochondrial complex 1 inhibition and it is reported to reduce DNA damage by
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decreasing ROS levels and activating DNA damage response mechanisms [167–169]. Thus,
metformin is likely to be effective against aging in part by affecting the same genes and
pathways that mediate the effects of fasting on longevity and disease.
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Figure 3. A periodic diet that mimics fasting promotes longevity and reduces risk factors involved in age-related diseases.
The fasting mimicking diet (FMD) is characterized by low proteins and sugars and relatively high unsaturated fats. This
dietary regimen is able to mimic the metabolic changes induced by water-only fasting while lowering the burden and risk
for side effects [112,140]. Preclinical studies show that periodic cycles of FMD can significantly reduce blood glucose, IGF-1,
leptin and insulin levels in mice, while increasing ketone bodies production and IGFBP-1 levels. These metabolic changes
promote immune system regeneration and rejuvenation while reducing neoplasia incidence by 45%, inflammation associated
skin lesions by 50% and obesity [112]. Analogously to rodents, also in humans, periodic FMD decreases blood glucose,
insulin, IGF-1, and leptin levels while increasing ketone bodies and IGFBP-1, metabolic changes partially maintained
even after the refeeding period [112,140]. These FMD-dependent effects are of particular interest given their key role in
age-related diseases, especially cancer and metabolic disorders. Taken together, these data indicate that periodic cycles of
FMD could prevent obesity and reduce cancer risk in humans, as suggested by results obtained in preclinical trials [112].
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2. Conclusions

Studies in simple organisms and mice, demonstrate the link between nutrients and
particularly protein intake, growth factors, DNA damage and cancer. The effect of growth
factors on DNA damage and cancer is mediated, at least in part, by oxidative stress and
damage, but in part also by the inhibition of apoptosis. The reduced activity of growth
factors and the lowering of oxidation and DNA damage not only decreases cancer but
also extends longevity, since aging is the most important factor promoting cancer. Calorie
restriction is a powerful anti-aging intervention, but it also forces the organism into an
extremely low nourishment state, which may not constitute malnourishment in the short-
term but which may do so long-term. Interventions such as IF and PF are emerging as
alternatives to CR, with some of them being able to minimize side effects and burden while
maximizing efficacy. Studies on PF have also pointed to 2 key processes absent or low in CR
and IF: (a) a pronounced breakdown process both at the intracellular (autophagy etc) and
cellular (apoptosis) levels requiring 2 or more days and associated with a high ketogenic
state, (b) a rebuilding/regeneration process involving stem and progenitor cells in multiple
system and associated with the return from PF to normal feeding (re-feeding). The FMD
developed and studied by our laboratories is emerging as a viable and effective intervention
in the longevity and cancer prevention fields, since it does not require chronic treatment,
it does not cause malnourishment or loss of muscle mass and may be effective when
performed only a few times a year for 5 days. In the future years it will be important to
continue to test different nutritional interventions with the potential to extend the health
span and prevent cancer, with a focus on those that are safe and feasible for long-term use
in humans.
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