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Simple Summary: Breast cancer (BC) is a heterogeneous tumor type and has become the leading
cause of cancer worldwide, with 685,000 deaths forecast in 2020. The clinical management of BC
patients remains challenging, and there exists an urgent need for improved diagnostic, prognostic,
and therapeutic strategies. Multi-omics platforms represent a promising tool for discovering novel
biomarkers and identifying new therapeutic targets. In addition, the ongoing development of multi-
omics approaches may foster the identification of more robust and accurate algorithms for data
analysis. This review aims to summarize the results of recent multi-omics-based studies focused on
the characterization of the metabolic phenotype of BC.

Abstract: Breast cancer (BC) is characterized by high disease heterogeneity and represents the
most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene
expression alterations participate in disease development and progression, with BC cells known
to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging
cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis,
and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer
opportunities to advance our understanding of the molecular changes underlying metabolic rewiring
in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics,
epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have
provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may
guide therapeutic development and improve patient outcomes. This review summarizes the findings
of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC
and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.

Keywords: metabolism; breast cancer; multi-omics; biomarkers; early diagnosis; subtyping;
prognosis; treatment

1. Introduction

Breast cancer (BC) is the most frequently diagnosed tumor and the leading cause of
cancer deaths in women worldwide [1]. The year 2020 saw an estimated 2.3 million new
cases of BC (11.7% of all cancer cases), with 685,000 deaths worldwide [1]; however, ad-
vances in population screening and early treatment (among other factors) have supported
a steady decrease in BC mortality [2,3]. Unfortunately, figures from the American Cancer

Cancers 2021, 13, 4544. https://doi.org/10.3390/cancers13184544 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-5604-9223
https://orcid.org/0000-0003-1800-6198
https://orcid.org/0000-0003-0340-7458
https://orcid.org/0000-0002-3532-8781
https://doi.org/10.3390/cancers13184544
https://doi.org/10.3390/cancers13184544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13184544
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13184544?type=check_update&version=1


Cancers 2021, 13, 4544 2 of 22

Society place the five-year survival rate after diagnosis of metastatic BC at 27%, a low value
considering the 99% five-year survival rate for localized disease [4]. Therefore, early BC
detection represents a crucial step in reducing disease mortality [5]. BC screening currently
relies on mammography, a non-invasive strategy primarily performed in women between
50 to 69 years of age that has prompted a reduction in BC mortality [6]. Nevertheless, this
approach suffers from several limitations, including false-positive reporting and overdiag-
nosis [6–10]. Ultrasound, magnetic resonance imaging, and computed tomography can
overcome such problems thanks to their high sensitivity; however, the elevated costs asso-
ciated with these tools make this approach less accessible. Thus, we still lack alternative
methods for the accurate, non-invasive, and low-cost diagnosis of early-stage BC.

BC is a highly heterogeneous disease from a molecular perspective and is primarily
characterized by the overexpression of the HER2 growth factor, estrogen receptor (ER),
and progesterone receptor (PR) and mutations in the BRCA1/2 genes, with the latter
associated with a higher risk of developing BC [11]. Former classifications of BC tumors
employed tumor size, histological grade, immunohistochemistry of ER/PR status, and
the amplification of HER2. The addition of gene expression profiling to these molecular
features has resulted in the classification currently used by the European Society for Medical
Oncology as a clinical guideline for BC diagnosis, follow-up, and treatment [12,13]. This
system classifies BC tumors into four major intrinsic molecular subgroups: luminal A
(ER+ and/or PR+, HER2-, low Ki67), luminal B (ER+ and/or PR+, HER2+ or HER2- with
high Ki67), basal-like (ER/PR-, HER2-), and HER2-enriched (ER/PR-, HER2+). Luminal A
tumors (the low-grade group) are the most common BC subtype, comprising over 60–70%
of all cases. Meanwhile, basal-like tumors, with an ~80% overlap with highly proliferative
triple-negative breast cancer (TNBC) [14], exhibit aggressive behavior and suffer from
poor prognosis [15]. Although ER+ tumors present lower recurrence rates within the
first five years, over 50% of tumor recurrences occur after this time and cause most BC-
related deaths [16,17]. Each BC subtype has a characteristic biological profile, prognosis,
and treatment strategy [18–22], and several scoring systems aid prognosis and treatment
decision-making processes. Unfortunately, systems based on different molecular features
related to tumor biology, including histological type, grade, lymphovascular invasion,
and marker status, do not accurately reflect BC subtype heterogeneity or specific patient
subtypes [23]. Thus, enormous efforts have been devoted to classifying heterogeneous BC
subtypes into molecular subtypes that guide treatment decisions [24–28].

Current BC treatment strategies are applied according to BC subtype and prognosis.
BC subtypes expressing hormone receptors (Luminal A, Luminal B, and HER2+) associate
with good/intermediate prognosis, and their clinical management includes endocrine
therapy alone or in combination with chemotherapy if there exists the risk of recurrence.
Non-metastatic BC treatment also includes surgical resection and postoperative radiation
therapy. Nevertheless, we lack effective therapeutic options for TNBC, the most aggressive
BC subtype [29–31], and we urgently require the development of novel treatment strategies
specifically targeting TNBC tumors.

Importantly, a range of studies employing multi-omics-based approaches, including
genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have noted the
existence of characteristic metabolic profiles for BC subtypes. Metabolomics-based studies
performed in BC preclinical models [32,33] and patient tissues [34,35] have identified alter-
ations to metabolites associated with glutamine, glutathione, and choline (Cho) metabolism.
Similar studies have been carried out in biofluids such as urine [36,37], blood [38,39], and
saliva [40], while other studies focusing on the metabolic characterization of normal breast
epithelial and BC cell lines have revealed specific metabolomic differences between TNBC,
Luminal B, and HER2+ subtypes [41].

Alterations to metabolic pathways associated with BC tumors and disease progression
have been broadly explored at the genomic level [42–44]. Transcriptomic-based approaches
have characterized specific metabolic changes in different BC subtypes [41] and evaluated
the impact of various treatments on metabolic processes [45]. Furthermore, proteomics
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studies have revealed alterations in metabolism-associated protein expression in BC pa-
tients and correlations to overall and recurrence-free survival [46].

The combination of omic approaches has recently emerged as a promising strategy for
generating information on the interrelationship between genetic aberrations, epigenetic
alterations, changes in gene transcription and signaling pathways, and metabolic alterations
that may contribute to the progression of a specific condition (Figure 1).
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Figure 1. Schematic representation of the most commonly used omic platforms for multi-omics studies.

Interestingly, a range of studies has applied multi-omics approaches to the study of
BC metabolism and has provided a more accurate understanding of the disease and its
sub-classification [47–49]. These studies enabled the identification of characteristic disease
biomarkers [50] or metabolic pathways related to specific subgroups of BC patients [51].
This review summarizes the results obtained in recently published multi-omics-based
studies focused on analyzing those metabolic changes related to BC progression.

2. BC Diagnosis

Potential metabolic biomarkers for the detection and stratification of BC patients have
been described in genomic [42], epigenomic [52,53], transcriptomic [54], proteomic [55], and
metabolomic [34–41,56–58] studies. However, multi-omics-based analyses have been car-
ried out in a reduced number of studies, which probably reflects limited sample availability
and/or technical difficulties associated with generating complete multi-omics datasets.
Thirteen studies published between 2010 and 2021 have integrated two different omics
datasets to identify disease-associated metabolic alterations that could improve the diagno-
sis and subclassification of BC patients [48,57,59–69]. Tissue samples represented the most
frequently used sample type, with only three studies collecting biofluids (primarily blood).
Most cases evaluated a combination of transcriptomics and metabolomics, while one study
included lipidomics, a recently emerged discipline in the omics field [70].

2.1. BC Metabolic Markers

The identification of novel biomarkers useful for early detection remains a critical
clinical challenge in BC. A range of studies has compared the metabolic profiles of BC pa-
tients and healthy individuals using multi-omics approaches to identify potential metabolic
markers with clinical utility in early BC diagnosis (Table 1). Integration of transcriptomics
and metabolomics datasets represent the primary strategy followed in these studies, with
tissue samples the preferable choice for analysis. Overall, the characterization of metabolic
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differences between BC and healthy tissues has revealed alterations in metabolites and/or
enzymes involved in glycolysis, amino acid, lipid, and nucleotide metabolism.

Table 1. Multi-omics studies focused on the identification of BC metabolic biomarkers.

Study Sample Omics Data Major Findings *

Iqbal et al. [59] Tissue M+T
↑ glucose-6-phosphate, 3-phosphoglycerate, and

fructose-6-phosphate
↑ CBX2 and ↓ CBX7

Hilvo et al. [60] Tissue L+T ↑ ACACA, FASN, INSIG1, and SREBP1
↑ phospholipids, sphingomyelins, and ceramides

Luo et al. [61] Plasma + Tissue M+T ↓ guanine and hypoxanthine
↓ PNP and HPRT1

Huang et al. [57] Plasma + Serum + Tissue M+T
↑ hypotaurine, glutamate and

↓ oxoglutarate
↑ GAD1, CSAD and ↓ GPT, GPT2, GLUD1

Dowling et al. [62] Serum M+P
↑ glutamate, 12-hydroxyeicosatetraenoic acid,

andβ-hydroxybutyrate
↑ coagulation factor V and matrix metalloproteinase 1

ACACA: acetyl-CoA carboxylase alpha, BC: breast cancer, CBX2: chromobox 2, CBX7: chromobox 7, CSAD: cysteine sulfinic acid decarboxy-
lase, GAD1: glutamate decarboxylase 1, GLUD1: glutamate dehydrogenase, GPT: glutamic-pyruvic transaminase, GPT2: glutamic-pyruvic
transaminase 2, FASN: fatty acid synthase, HPRT1: hypoxanthine phosphoribosyltransferase, INSIG1: insulin-induced gene 1, L: lipidomics,
M: metabolomics, P: proteomics, PNP: purine nucleoside phosphorylase, SREBP1: sterol regulatory element-binding transcription factor 1,
T: transcriptomics. * Direction of variation, considering the healthy group as a reference.

A multi-omics study conducted by Iqbal et al. described the role of chromobox
(CBX) proteins in BC metabolic reprogramming [59]. The authors identified a signifi-
cant correlation between glycolytic activity and changes in CBX2 and CBX7 isoforms
levels. Glycolytic metabolites, including glucose-6-phosphate, 3-phosphoglycerate, and
fructose-6-phosphate, exhibited upregulated expression in high CBX2 and low CBX7 tu-
mor samples. A study focused on the characterization of specific dysregulations in lipid
metabolism conducted by Hilvo et al. reported increased levels of phospholipids, sphin-
gomyelins, and ceramides, and the overexpression of four enzymes involved in de novo
lipid metabolism (acetyl-CoA carboxylase alpha (ACACA), fatty acid synthase (FASN),
insulin-induced gene 1 (INSIG1), and sterol regulatory element-binding transcription factor
1 (SREBP1)) in BC compared to healthy tissues [60]. Enhanced phospholipid metabolism in
BC tissues has been previously observed, reflected by high phosphatidylcholine (PtdCho),
phosphatidylethanolamine, or phosphocholine (PCho) levels [71–73]. In addition, reports
suggest that certain of the above-mentioned lipid metabolism enzymes play a significant
role in BC progression. For instance, acetyl-CoA carboxylase alpha (ACACA) overexpres-
sion associates with increased cancer risk [74] and can be detected in early-stage BC [75],
while fatty acid synthase (FASN) promoted BC metastasis [76,77] and was proposed as a
potential therapeutic target for BC treatment [78].

Additional multi-omics studies have focused on analyzing metabolic alterations in
plasma samples from BC patients and correlating them with transcriptomic changes in
BC tumors. Luo and coworkers identified significant changes in purine metabolism when
combining data from transcriptomics and metabolomics analyses of BC [61]. Enrichment-
pathway analysis demonstrated the lower expression of genes related to purine nucleotides
degradation. Notably, the authors also reported the downregulation of purine nucleoside
phosphorylase (PNP) and hypoxanthine phosphoribosyltransferase (HPRT1) expression,
two enzymes involved in the purine salvage pathway, as alterations in this pathway.
Furthermore, the authors noted lower guanine and hypoxanthine levels in BC tissues.
Although studies have suggested that de novo nucleotide synthesis can promote BC metas-
tasis [79], recent studies have reported the downregulation of genes involved in salvage
synthesis concurrent with the upregulated expression of nucleotide de novo synthesis
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genes in metastatic BC cells [79]. Related studies suggested the overexpression of ecto-5’-
nucleotidase (CD73, which catalyzes the dephosphorylation of adenosine monophosphates
into adenosine) in BC cells and an associated modulation of tumor growth and metasta-
sis [80,81]; meanwhile, the observed increased activity of adenosine deaminase (ADA) in
BC tumors [82–84] may represent a diagnostic tool for BC [83,84]. Additionally, enzymes
involved in purine metabolism have also been proposed as potential drug targets for BC,
and these include the ribonucleotide reductase regulatory subunit M2 (RRM2), natriuretic
peptide receptor 1 (NPR1,) and phosphodiesterases (PDE) enzymes [54,85].

Multi-omics approaches have also been explored in the development of novel biomarker
combinations that discriminate healthy tissue from BC at different stages [62]. In a multi-
omics study aiming to discover crucial metabolic pathway signatures for more accurate
BC diagnosis, Huang et al. reported an eight pathway-based classification model that
provided highly accurate predictions in all-stage and early-stage BC patients [57]. Taurine
and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway were
identified as critical to the early diagnosis of BC, with consistent changes occurring in
plasma and serum metabolomics analyses and the transcriptomics-based analyses of BC
tumors and adjacent normal tissue. The study also reported significant correlations be-
tween alterations to metabolite concentrations and gene expression levels when combining
both omics approaches. For instance, increased asparagine, cysteine, and hypotaurine con-
centrations in early-stage BC correlated with the overexpression of the relevant synthetic
enzymes, while lower levels of oxoglutarate associated with a significant decrease in the
expression of the enzymes involved in its generation. Recent metabolomics studies have
also reported altered taurine levels in plasma and serum samples of BC patients [86] and
altered asparagine and cysteine levels in blood [87,88] and urine [36] of BC patients.

Dowling et al. evaluated protein and metabolite levels in BC serum samples using high-
throughput antibody-based screening and mass spectrometry platforms, respectively [62]. A
combined analysis demonstrated that the addition of glutamate, 12-hydroxyeicosatetraenoic
acid, β-hydroxybutyrate, coagulation factor V, and matrix metalloproteinase-1 to cancer
antigen 15-3 (CA15-3) values, a widely used serum marker in BC, permitted accurate
discrimination when comparing non-malignant breast disease and BC at different stages.
This combination resulted in noticeably improved prediction values compared with a clas-
sification based only on CA15-3 alone, confirming the potential of multi-omics approaches
to provide clinically relevant information.

2.2. BC Metabolic Subtyping

Multi-omics approaches have also shown great potential for redefining cancer sub-
types [89,90]. Recent studies have focused on exploiting the information derived from
multi-omics strategies to improve tumor subtyping (Table 2). Most of these studies, which
relied on tissue sample analysis and the integration of transcriptomics and metabolomics
data, focused on the characterization of ER- vs. ER+ BC tumors and basal- vs. luminal-like
BC tumors, while a few cases explored unsupervised BC subtyping. Overall, metabolic
alterations in glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate path-
way (PPP), and lipid, nucleotide, and amino acid metabolism distinguished different BC
tumor subtypes.



Cancers 2021, 13, 4544 6 of 22

Table 2. Multi-omics studies focused on BC tumor metabolic subtyping.

Study Sample Omics Data Group Comparison Major Findings *

Moestue et al. [63] Tissue M+T Basal- vs. luminal-like
↑ GPC/PCho and glycine

↓ CHKA/B
↑ PLA2G4A, PLB1, CHDH and SARDH

Grinde et al. [64] Tissue M+T Basal- vs. luminal-like ↓ PCho/GPC

Putluri et al. [65] Cell lines + Tissue M+T Basal- vs. luminal-like
↓ phenylalanine, tryptophan, tyrosine,

BCAA, lauric acid and oleic acid
↑ guanine, adenine, thymine, uracil, xanthine, and guanosine

Mahendralingam et al. [66] Tissue P+T Basal- vs. luminal-like ↑ glycolysis (PFKM, ALDOC, GAPDH, and PKM) and ↓ OXPHOS

Tang et al. [67] Tissue G+M+T ER+ vs. ER- ↓ carnitine derivates and short- and medium-chain fatty acids
↑ long-chain fatty acids and monoacylglycerols

Barupal et al. [68] Tissue M+P+T ER+ vs. ER- ↑ R5P, adenine, guanosine, guanine, xanthine, and hypoxanthine and β-alanine
↑ G6PD, PGD, TKT, PGM1, RPIA, DERA

Hilvo et al. [60] Tissue L+T ER+ vs. ER- ↑ palmitate and myristic acid

Haukaas et al. [48] Tissue M+T+P Primary BC subtyping

MC1: ↑ GPC, PCho ↓ acetate and glutamine
↑ CHKA ↓ ALDH and GLS

MC2: ↑ glucose
MC3: ↑ lactate and alanine

Gong et al. [69] Tissue M+T TNBC subtyping

MPS1: ↑myristic, palmitoleic, oleic, and arachidonic acid
↑ ACACA, HMGCR, FASN, SCD
MPS2: ↑ glucose 1-phosphate,

dihydroxyacetone phosphate, lactate
and adenosine 3′ 5′ -diphosphate and ↓ glucose

↑ PFKP, ENO2, TYMS, CTPS1,
SLC2A1, SLC16A1

ACACA: acetyl-CoA carboxylase alpha, ALDH: aldehyde dehydrogenase, ALDOC: aldolase, fructose-bisphosphate C, BC: breast cancer, BCAA: branched-chain amino acid, CHDH: choline dehydro-
genase, CHKA: choline kinase alpha, CHKB: choline kinase beta, CTPS1: CPT synthase 1, DERA: deoxyribose-phosphate aldolase, ENO2: enolase 2, ER: estrogen receptor, FASN: fatty acid synthase,
G: genomics, GAPDH: glyceraldehyde-3-phosphate dehydrogenase, GLS: glutaminase, GPC: glycerophosphocholine, G6PD: glucose-6-phosphate dehydrogenase, HMGCR: HMG-CoA reductase, L: lipidomics,
M: metabolomics, OXPHOS: oxidative phosphorylation, P: proteomics, PCho: phosphocholine, PKFM: phosphofructokinase (muscle), PFKP: phosphofructokinase (platelet), PGD: phosphogluconate dehydroge-
nase, PGM1: phosphoglucomutase 1, PKM: pyruvate kinase M1/2, PLA2G4A: phospholipase A2 group IVA, PLB1: phospholipase B1, PPP: pentose phosphate pathway, RPIA: ribose 5-phosphate isomerase
1, R5P: ribose-5-phosphate, SARDH: sarcosine dehydrogenase, SCD: stearoyl-CoA desaturase, SLC2A1: solute carrier family 2 member 1, SLC16A1: solute carrier family 16 member 2, T: transcriptomics,
TCA: tricarboxylic acid, TKT: transketolase, TNBC: triple negative breast cancer, TYMS: thymidylate synthetase. * Direction of variation, considering luminal or ER+ BC group as a reference.
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The results of different multi-omics studies reveal common alterations to lipid, nu-
cleotide, and amino acid metabolism when comparing basal- and luminal-like BC subtypes,
and Moestue and coworkers focused on differences in Cho metabolism profiles between
these two BC subtypes [63]. In this study, basal-like BC models displayed higher concen-
trations of glycerophosphocholine (GPC) than PCho and higher glycine concentrations,
which could be explained by lower choline kinase (CHKA, CHKB) expression and higher
PtdCho degradation mediated by the overexpression of phospholipase A2 group 4A
(PLA2G4A) and phospholipase B1 (PLB1). This group of tumors also exhibited a charac-
teristic metabolic shift from PtdCho synthesis to glycine formation mediated by choline
dehydrogenase (CHDH) and sarcosine dehydrogenase (SARDH) expression. A related
metabolomics study established increased GPC and decreased PCho concentration levels in
TNBC samples compared with luminal A subtypes [35]. In addition, BC patients exhibiting
better prognoses exhibited lower concentrations of glycine than those with worse prog-
noses [91]. In another study, Grinde and colleagues discovered that the regulation of Cho
metabolism varied between different BC molecular subgroups [64]. The authors analyzed
the metabolomic and transcriptomic profiles of thirty-four patient-derived xenograft BC
models to explore the differences between basal- and luminal-like subgroups and revealed
a higher PCho/GPC ratio in luminal B tumors. The Cho metabolic profiles and the expres-
sion of genes involved in Cho metabolism, including CHKA and glycerophosphodiester
phosphodiesterase domain containing 5 (GDPD5), displayed differences in luminal B
and basal-like xenografts. Overall, the results of these and other studies highlight the
heterogeneity in Cho metabolism in different BC molecular subtypes [92,93].

The luminal- and basal-like BC subgroups also display additional characteristic
metabolic differences. Putluri et al. used an integrated analysis of the metabolome and
transcriptome of these subgroups to identify eleven differentially expressed metabolic
pathways between the luminal- and basal-like BC subgroups, including nucleotide (purine
and pyrimidine) synthesis and different amino acid metabolism pathways, such as lysine
degradation or branched-chain amino acid (BCAA) and glutamate metabolism [65]. The
increased glutamate and nucleotide metabolism observed in basal-like tumors agree with
previous studies describing a higher susceptibility to glutaminolysis-targeting therapies
in TNBC [94,95] and an enhanced de novo nucleotide synthesis in metastatic BC [79].
Enhanced pyrimidine metabolism in TNBC has been reported [35], and inhibition of this
metabolic route represents a potential therapeutic strategy to promote the sensitivity of
TNBC cells to chemotherapy by exacerbating DNA damage [96].

Metabolic differences between basal and luminal-like BC phenotypes were recently
explored by Mahendralingam and colleagues in a study based on a combined proteomic
and transcriptomic analysis of normal mammary epithelial cells (MECs) [66]. The authors
identified distinct metabolic phenotypes corresponding to basal, luminal progenitor, and
mature luminal cells. Specifically, basal-like cells exhibited a glycolytic phenotype charac-
terized by the abundance of glycolytic enzymes (phosphofructokinase (muscle) (PFKM),
aldolase, fructose-bisphosphate C (ALDOC), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and pyruvate kinase M1/2 (PKM)), while luminal progenitors exhibited en-
hanced oxidative phosphorylation (OXPHOS). Bioinformatics analyses indicated that BC
subtypes retain metabolic characteristics of their cell of origin. These findings agree with
recent multi-omics studies that observed increased OXPHOS activity in TNBC, whose cells
of origin are luminal progenitors [69].

Multiple studies have revealed relevant metabolic differences between the ER- and ER+
BC subtypes using multi-omics approaches. Using a combination of genomics, transcrip-
tomics, and metabolomics, Tang and coworkers reported correlations between gene muta-
tions/gene expression levels and tumor metabolism [67]. Cancers with TP53 alterations exhib-
ited decreased levels of lipid glycerophosphocholines, tumors with ERBB2 amplification asso-
ciated with changes in docosapentaenoate, fucose, and 1-oleoylglycerophosphoethanolamine
levels, and PIK3CA mutations correlated with altered malonylcarnitine levels. Among
other significant associations, indoleamine 2,3-dioxygenase 1 (IDO1) overexpression corre-
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lated with increased kynurenine levels. IDO1 functions by generating kynurenine from
tryptophan, and a higher kynurenine/tryptophan ratio was observed during the progres-
sion of tumors, including BC [97,98]. Overall, Tang et al. established an increase in eight
metabolites in ER+ tumors (including carnitine derivates and short- and medium-chain
fatty acids) and an increase in long-chain fatty acid and monoacylglycerol levels in ER-
tumors, indicating that differences in lipolysis and fatty acid oxidation (FAO) correlate with
hormone receptor status [67]. Furthermore, higher BRCA1 expression levels associated
with changes in a set of metabolites reflecting FAO activation in these tumors. FAO-related
genes appear to promote cell proliferation and survival [99,100], and FAO inhibition has
been proposed as a potential therapeutic strategy for BC treatment [101–103].

In a more recent study, Barupal et al. used reactome pathway mapping analyses
to associate alterations to glycolysis, PPP, TCA cycle, nucleotide salvage, glutathione
conjugation, steroid metabolism, fatty acyl-CoA biosynthesis, serine biosynthesis, and
metabolism of aromatic amino acids with the ER- phenotype [68]. Increased PPP activity
represented the most significant change supported by the multi-omics analysis. The PPP
intermediates ribose-5-phosphate and ribulose-5-phosphate increased in ER- tumors and
associated with increased protein and mRNA expression for the critical oxidation enzymes
glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase
(PGD). Furthermore, ER- tumors also displayed increased levels of transketolase (TKT), a
key enzyme in the non-oxidative branch of the PPP, phosphoglucomutase 1 (PGM1), ribose-
5-phosphate isomerase (RPIA), and deoxyribose-phosphate aldolase (DERA). The PPP
delivers the nicotinamide adenine nucleotide phosphate (NADPH) and pentose phosphates
required for nucleotide and fatty acid synthesis during cell division and tumor prolifera-
tion [104,105]. Consistent with PPP activation, the study discovered elevated levels of five
purine metabolites (adenine, guanosine, guanine, xanthine, and hypoxanthine). In addition,
β-alanine (an intermediate of the pyrimidine salvage pathway) and uracil, pseudo-uridine,
uridine monophosphate (UMP), and cytidine monophosphate (CMP) levels also displayed
increased expression in ER- tumors [68]. Interestingly, Budczies et al. previously described
β-alanine as a significant marker differentiating ER- and ER+ BC [106]. Additional studies
reported significant increases in lipid content, including phospholipids, in ER- compared
with ER+ tumors [60,107]. Based on the analysis of lipidomics and gene expression data
from 257 human BC tissues, Hilvo et al. associated alterations in phospholipid metabolism
with ER status and tumor grade [60]. In this study, both ER- and high-grade tumors exhib-
ited increased levels of phospholipids that incorporated de novo synthesized palmitate
and myristic acid, while only tumor grade (and not ER- status) associated with changes in
lipid-related gene expression.

Related studies employed integrated approaches to metabolically identify potential
BC subgroups following an unsupervised approach. Haukaas et al. applied hierarchical
clustering on 228 primary BC samples and identified three different metabolic subgroups
(MC1, MC2, and MC3) [48]. Integrated pathway analysis of metabolite and gene expres-
sion data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid
metabolism between the clusters. MC1 exhibited a lipidomic phenotype with higher levels
of GPC and PCho; MC2 displayed a low glycolytic profile exhibiting increased glucose
concentrations; and MC3 exhibited elevated lactate and alanine levels. Compared with
the other two subgroups, MC1 possessed increased levels of GPC and PCho due to the
downregulation of genes involved in PtdCho degradation and higher CHKA levels. In
addition, the MC1 cluster exhibited lower acetate and glutamine levels due to the lower
expression levels of aldehyde dehydrogenase (ALDH) and glutaminase (GLS) enzymes,
respectively. However, the study failed to encounter differences in mRNA levels between
MC2 and MC3 subgroups.

More recently, Gong et al. applied a similar approach to identify metabolic pathway-
based subtypes (MPSs) in TNBC and identified three different metabolic phenotypes
(lipogenic, glycolytic, and mixed subtypes) with distinct molecular features and sensitiv-
ities to various metabolic inhibitors [69]. In particular, the lipogenic phenotype (MPS1)



Cancers 2021, 13, 4544 9 of 22

associated with the high expression of genes involved in cholesterol and de novo lipid
metabolism and the accumulation of several lipids, while the glycolytic group (MPS2)
exhibited the upregulation of genes involved in glycolysis and increased concentrations
of metabolic intermediates of glycolysis and nucleotide metabolism. The authors also
evaluated the mRNA expression of metabolic enzymes and corresponding metabolite
abundance to assess their impact on the MPS classification. Tumors corresponding to the
MPS1 subtype displayed increased expression of acetyl-CoA carboxylase alpha (ACACA),
HMG-CoA reductase (HMGCR), FASN, and stearoyl-CoA desaturase (SCD), and a signifi-
cant accumulation of various lipids, such as myristic, palmitoleic, oleic, and arachidonic
acid. In contrast, the MSP2 subtype displayed the elevated expression of metabolic en-
zymes associated with glycolysis and nucleotide metabolism, with the most significant
changes associated with phosphofructokinase (PFKP), enolase 2 (ENO2), thymidylate syn-
thetase (TYMS), CTP synthase 1 (CTPS1), but also with glucose transporter (GLUD), solute
carrier family 2 member 1 (SLC2A1), and lactate transporter SLC16A1. The MSP2 subtype
also displayed lower levels of glucose and the accumulation of intermediates in glycolysis
and nucleotide metabolism, including glucose-1-phosphate, dihydroxyacetone phosphate,
lactate, and adenosine-3′-5′-diphosphate. MPS3, the mixed subtype, showed only partial
pathway dysregulation.

3. Multi-Omics Studies of BC Prognosis

Metabolic deregulation can impact various molecular processes (e.g., cell proliferation,
apoptosis, migration, and invasion) that contribute to tumor progression [44,108–110] and
influence cancer patient survival (Figure 2) [111].
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Figure 2. Schematic representation of the impact of metabolic changes on essential molecular processes associated with
tumor progression and patient survival. Created with BioRender.com.

Several studies have reported associations between metabolic alterations and BC patient
survival based on single omic analysis, including genomic [112], transcriptomic [113], pro-
teomic [46], and metabolomic [56,114,115] studies in tissue [46,112,113] and serum [56,114,115]
samples. However, additional studies based on the integration of data from multi-omics
analyses have provided more accurate information regarding the molecules involved
in metabolic rewiring associated with BC progression. Of the seven studies following
a multi-omics approach to identify metabolic alterations associated with BC prognosis
(Table 3), most relied on the analysis of tissue sample analysis and the integration of tran-
scriptomic and metabolomic datasets. Overall, BC patient survival associated with the
altered expression of enzymes involved in nucleotide, lipid, and amino acid metabolism.



Cancers 2021, 13, 4544 10 of 22

Table 3. Multi-omics studies focused on identifying metabolic alterations associated with BC prognosis.

Study Sample Omics Data Major Findings *

Putluri et al. [65] Cell lines + Tissue M+T ↑ RRM2 (pyrimidine metabolism)

Luo et al. [61] Blood + Tissue M+T ↑ RRM2 (pyrimidine metabolism) and ↓
AMPD1 (de novo purine metabolism)

Iqbal et al. [59] Tissue M+T ↑ CBX2 and ↓ CBX7 (glycolysis)
Camarda et al. [102] Cell lines + Tissue M+T ↓ ACC2 (FAO)

Kang et al. [116] Cell lines L+T ↓ ELOVL2 (lipid synthesis)
Terunuma et al. [107] Tissue M+T+P+E ↑ 2HG, SAM and SAH

↑ IDH2 (glutamine metabolism)
Budczies et al. [106] Tissue M+T ↓ ABAT, ↑ β-alanine

(β-alanine metabolism)

ABAT: 4-aminobutyrate aminotransferase, ACC2: acetyl-CoA carboxylase 2, AMPD1: adenosine monophosphate deaminase 1,
CBX2: chromobox 2, CBX7: chromobox 7, E: epigenomics, ELOVL2: ELOVL fatty acid elongase 2, FAO: fatty acid oxidation, L: lipidomics,
IDH2: isocitrate dehydrogenase (NADP(+)) 2, M: metabolomics, P: proteomics, RRM2: ribonucleotide reductase regulatory subunit M2,
SAH: S-adenosylhomocysteine, SAM: S-adenosyl- methionine, T: transcriptomics, 2HG: 2-hydroxyglutarate. * Direction of metabolic
alterations directly correlated with worse BC patients’ outcomes.

Previous studies have demonstrated that nucleotide biosynthesis plays a vital role
in BC [79,80,83,84,117], and could represent a promising therapeutic strategy [54,85,118].
Notably, two of the multi-omics studies included in Table 3 established an inverse correla-
tion between the expression levels of genes involved in de novo purine and pyrimidine
syntheses and BC patient survival [61,65]. Putluri et al. performed an in silico analysis
to evaluate the association between omics-based enrichment and patient survival, using
ten independent gene expression data sets to select clinically relevant prognostic biomark-
ers [65]. Kaplan–Meyer curves revealed an association between increased expression of
pyrimidine metabolism-related genes and shorter metastasis-free survival across all BC and
within the subset of ER + tumors. RRM2, a critical gene in pyrimidine metabolism display-
ing elevated expression in aggressive BC [119], has prognostic relevance in BC [120,121]
when combined with proliferation markers [122]. RRM2 expression distinguished good
vs. poor survival within the entire BC patient group in this multi-omics study, including a
significant proportion of luminal A subtype typically considered to have better survival
outcomes [80]. Luo and colleagues integrated metabolomic and transcriptomic analysis
to confirm the association between alterations in nucleotide metabolism and BC patient
survival in a TCGA cohort of patients [61]. The authors observed a significant correlation
between poor survival of BC patients and changes to the expression of RRM2 and adeno-
sine monophosphate deaminase 1 (AMPD1), a key enzyme in de novo purine synthesis.
These enzymes have been postulated as promising therapeutic targets in different tumor
types, including BC [65,85,123–126].

Iqbal et al. established antagonistic roles of CBX2 and CBX7 in metabolic reprogram-
ming of BC and an association with BC patient survival [59]. The authors described a
significant correlation between higher CBX2 and lower CBX7 mRNA levels and worse
BC prognosis, which agrees with previous findings that correlated the CBX2 or CBX7
expression with overall patient survival [127–130].

As for the alterations in lipid metabolism, Camarda and colleagues followed a targeted
metabolomics approach and reported the dramatic upregulation of FAO intermediates in a
MYC-driven model of TNBC [102]. To characterize a potential association between FAO
gene expression and prognosis in TNBC, the authors performed a univariate analysis of
336 fatty acid metabolism genes on a patient cohort with long-term distant recurrence-free
survival data. The analysis revealed that decreased ACACB (acetyl-CoA carboxylase 2,
ACC2) expression levels associated with worse prognoses in all BC and TNBC patients.
Subsequent studies also described significant associations between increased levels of
ACC2 and better BC prognosis [131–134]. Kang et al. conducted a multi-layered lipidomics
and transcriptomics analysis to describe the rewiring of the BC lipidome during malignant
transformation [116]. Analyses in a spheroid-induced epithelial-mesenchymal transition
(EMT) model demonstrated a dramatic reduction in the ratio of C22:6n3 (docosahexaenoic
acid, DHA) to C22:5n3 in spheroid cells, similarly to the down-regulation of ELOVL2, a
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process associated with the induction of metastatic characteristics in BC cells. The authors
examined the relationship between ELOVL2 expression and metastatic relapse-free in a BC
cohort with a follow-up of ten years, resulting in the discovery of an association between
lower ELOVL2 expression levels and shorter metastasis-free survival and higher tumor
grade [116]. A recent study investigating the molecular mechanisms of tamoxifen resistance
in BC confirmed these findings and described lower ELOVL2 expression in tamoxifen-
resistant models and ELOVL2 downregulation in patients with tamoxifen resistance [135].

Additional studies have revealed a correlation between alterations in the levels of genes
and metabolites involved in amino acid metabolism and BC prognosis. Terunuma and cowork-
ers identified a subset of BC tumors accumulating high levels of 2-hydroxyglutarate (2HG).
Further analyses revealed the presence of a subgroup of BC patients with significantly
decreased survival characterized by an exceptionally high accumulation of 2HG, reduced
DNA methylation at the isocitrate dehydrogenase (IDH2) locus, increased IDH2 expres-
sion, and increased levels of S-adenosyl- methionine (SAM) and S-adenosylhomocysteine
(SAH) [107]. Previous studies reported an accumulation of the oncometabolite 2HG in
different tumor types, including BC [67], glioma [136], and leukemia [137]. In another
study, concerning amino acid metabolism, Budczies et al. described an association be-
tween alterations in the metabolism of β-alanine and shorter recurrence-free survival
of BC patients [106]. Specifically, the authors demonstrated that lower expression lev-
els of 4-aminobutyrate aminotransferase (ABAT), which negatively correlated with the
concentration of β-alanine, indicated worse prognoses in BC patients. A similar study
reported decreased ABAT expression in more aggressive BC subtypes, which correlated
with an increased risk of metastasis and shorter overall, relapse-free, and distant metastasis-
free survival [138]. Finally, Jansen et al. correlated ABAT downregulation with poor
progression-free and metastasis-free survival in tamoxifen-treated patients [139].

4. Multi-Omics Studies and Novel BC Treatment Strategies

Omics-based technologies have also been used to identify novel therapeutic targets and
monitor biological alterations related to BC metabolism following treatment [32,45,140–146].
The majority of studies relied on the application of metabolomics-based approaches in
BC tissue [141,143] and serum [140,142,144] samples, although groups have evaluated
transcriptomic [33,45] and proteomic [146] profiles in tissue samples. Various studies
have described how the combination of omics approaches could characterize specific
targets and foster the development of novel therapeutic strategies for specific subgroups
of BC patients [147–149]. In particular, multi-omics studies have focused on identifying
and validating metabolic enzymes as promising therapeutic strategies for the treatment of
different BC tumors (Table 4). Figure 3 illustrates those metabolic-related genes proposed as
potential therapeutic targets for treating BC patients in these studies. Overall, these findings
suggest the therapeutic potential of inhibiting specific metabolic enzymes associated with
glycolysis or involved in nucleotide, amino acid, and lipid metabolism in BC patients.

Iqbal and coworkers demonstrated that silencing CBX2 and CBX7 exhibited inverse
effects on glycolysis, ATP production, viability, and proliferation [59]. CBX7 overexpression
provided comparable results to CBX2 knockdown, which included decreased biomass pro-
duction and reduced cell viability and proliferation. These in vitro results agreed with the
findings of the transcripto-metabolomic analyses performed on BC patients and validated
the roles of CBX2 and CBX7 in metabolic reprogramming of BC, highlighting the potential
of these targets for the development of therapeutic strategies in BC. Of note, additional
studies have provided similar results for CBX2 and CBX7 in BC [130,150,151], pancreatic
adenocarcinoma [128] and metastatic prostate cancer [152]. Gong and coworkers evaluated
the sensitivity of different BC metabolic phenotypes to metabolic inhibitors targeting gly-
colysis or de novo fatty acid synthesis [69]. The glycolytic BC phenotype displayed greater
sensitivity to glycolytic inhibitors (oxamate, lactate dehydrogenase (LDH) inhibitors, and
2-deoxy-D-glucose), while inhibitors of lipid synthesis (cerulin and FASN inhibitor) exhib-
ited higher efficacy against the lipogenic phenotype. Significantly, in vivo LDH inhibition
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enhanced tumor response to anti-PD-1 immunotherapy in the BC glycolytic phenotype.
Previous studies have shown that LDH inhibition can suppress glycolysis [153,154] and cell
proliferation [155] in BC cell lines. Differences in sensitivity to pharmacological inhibitors
targeting glycolysis or electron transport chain (ECT) subunits were evaluated in different
metabolic MECs phenotypes by Mahendralingam and colleagues [66]. In this study, the gly-
colytic phenotype displayed greater sensitivity to inhibitors targeting glucose transporter 1
(GLUT1), hexokinase (HK), LDH, and pyruvate dehydrogenase kinase (PDC), which agrees
with results reported by Gong et al. [69]. Furthermore, studies have demonstrated that HK
inhibition prevents BC growth [156,157].

Table 4. Multi-omics studies focused on developing new therapeutic strategies for the treatment of BC.

Study Omics Data BC Subtype Potential Targets

Iqbal et al. [59] M+T TNBC and luminal-like CBX2 and CBX7
Gong et al. [69] M+T TNBC FASN and LDH

Mahendralingam et al. [66] P+T Basal- and luminal-like GLUT1, HK, LDH, and PDC
Putluri et al. [65] M+T Basal- and luminal-like RRM2

Terunuma et al. [107] M+T+P+E TNBC and basal-like ADHFE1
Hilvo et al. [60] L+T TNBC, luminal- and

basal-like
ACACA, ELOVL1, FASN, INSIG1, SCAP,

SCD and THRSP
Kang et al. [116] L+T Luminal-like ELOVL2

Camarda et al. [102] M+T TNBC and HER2 + CPT1 and CPT2

ACACA: acetyl-CoA carboxylase alpha, ADHFE1: alcohol dehydrogenase iron containing 1, CBX2: chromobox 2, CBX7: chromobox 7,
CPT1: carnitine palmitoyltransferase 1A, CPT2: carnitine palmitoyltransferase 2, E: epigenomics, ELOVL1: ELOVL fatty acid elongase
1, ELOVL2: ELOVL fatty acid elongase 2, FASN: fatty acid synthase, GLUT1: glucose transporter 1, HK: hexokinase, IDH2: isocitrate
dehydrogenase (NADP(+)) 2, INSIG1: insulin-induced gene 1, L: lipidomics, LDH: lactate dehydrogenase, M: metabolomics, P: proteomics,
PDC: pyruvate dehydrogenase kinase, RRM2: ribonucleotide reductase regulatory subunit M2, SCAP: SREBF chaperone, SCD: stearoyl-CoA
desaturase, T: transcriptomics, TNBC: triple negative breast cancer, THRSP: thyroid hormone-responsive.
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Figure 3. Overview of metabolic-related therapeutic targets for the treatment of BC patients identi-
fied from multi-omics-based studies. α-KG: alpha-ketoglutarate, ACACA: acetyl-CoA carboxylase
alpha, ADHFE1: alcohol dehydrogenase iron containing 1, CBX2: chromobox 2, CBX7: chromobox
7, CPT1: carnitine palmitoyltransferase 1A, CPT2: carnitine palmitoyltransferase 2, ECT: electron
transport chain, ELOVL1: ELOVL fatty acid elongase 1, ELOVL2: ELOVL fatty acid elongase 2,
FASN: fatty acid synthase, GLUT1: glucose transporter 1, HK: hexokinase, INSIG1: insulin-induced
gene 1, LDH: lactate dehydrogenase, OXPHOS: oxidative phosphorylation, PDC: pyruvate dehydro-
genase kinase, RRM2: ribonucleotide reductase regulatory subunit M2, SCAP: SREBF chaperone,
SCD: stearoyl-CoA desaturase, TCA: tricarboxylic acid, THRSP: thyroid hormone-responsive. Cre-
ated with BioRender.com.

The metabolic enzyme RRM2 has also been proposed as a potential therapeutic target
for the treatment of BC. Putluri et al. observed that inhibiting RRM2 in BC cells significantly
decreased proliferation and the expression of cell cycle genes and sensitized cells to tamox-
ifen treatment [65]. In agreement with the potential relevance of RRM2, additional studies
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have reported a reduction in proliferation [85,126] and tamoxifen resistance [158] in BC cell
lines following RRM2 inhibition. Furthermore, associations between RRM2 overexpression
and deterioration in BC survival have been widely reported, strongly suggesting a role as a
targeted therapy for BC [61,120,121].

A multi-omics-based study by Terunuma et al. identified alterations associated with
glutamine metabolism in a subset of BC tumors [107]. The authors described a subset of BC
tumors with high 2HG levels and a distinct DNA methylation pattern associated with worse
prognoses. Overall, studies have underscored the critical role of epigenetic-metabolomic in-
terplay in promoting tumorigenesis [159]; in particular, high 2-HG levels induce epigenetic
reprogramming associated with progression in different tumors [160,161]. Interestingly,
the silencing of IDH2 and alcohol dehydrogenase iron containing 1 (ADHFE1), two en-
zymes implicated in the mitochondria-associated α-ketoglutarate–dependent production
of 2HG [137,162], prompted a marked reduction of endogenous 2HG in BC cells. Further-
more, ADHFE1 loss resulted in a moderate but significant inhibition of cell cycle kinetics
and reduced migration and invasion, suggesting an oncogenic role for ADHFE1 in BC. In
agreement, several studies have associated high ADHFE1 expression levels with increased
synthesis of 2HG and worse patient prognosis in BC [163,164].

In the context of a multi-omics study focused on lipid metabolism, Hilvo et al. con-
ducted gene silencing experiments on seven enzymes involved in phospholipid remodeling
and de novo lipid synthesis [60]. The results established that the individual inhibition of
multiple lipid metabolism-regulating genes reduced the growth and viability of BC cell
lines, which agrees with studies reporting reduced cell migration, invasion, and tumor
proliferation in BC [165–167] and other tumor types [168–170] following the inhibition of
specific lipid metabolism-related enzymes. Interestingly, a more recent study described
FASN, another enzyme involved in de novo lipid metabolism, as a promising therapeutic
target for BC treatment [78].

The results of a multi-omics-based study conducted by Kang et al. revealed lipid
composition alterations during the EMT in BC [116]. The inhibition of ELOVL2 increased
malignant potential, higher migration rate, and elevated colony formation. Mechanistically,
downregulation of ELOVL2 increased sterol regulatory element-binding transcription fac-
tor 1 (SREBP1) expression in BC cells and activated lipogenesis, a process associated with
the promotion of malignant BC phenotypes. SREBP1 is a crucial regulator of fatty acid
metabolism and plays a pivotal role in the transcriptional regulation of different lipogenic
genes mediating lipid synthesis [171,172]. SREBP1 overexpression has been observed in
different tumor types, including BC [60,173,174], and supports the malignant BC pheno-
type [167]. Finally, Camarda et al. suggested the inhibition of FAO as a novel therapeutic
target in a MYC-driven model of TNBC [102]. Based on the characterization of the effects of
small-molecule inhibition and knock-down of carnitine palmitoyltransferase 1A (CPT1) and
carnitine palmitoyltransferase 2 (CPT2) in BC cell lines, the authors demonstrated that FAO
plays an essential role in this BC model. Furthermore, in vivo experiments demonstrated
that treatment with etomoxir, a CPT1 inhibitor, significantly attenuated tumor growth in
various BC models. Additional studies have also demonstrated that individual knock-
down of both CPT enzymes reduces FAO metabolism and cell proliferation in different
tumors [175–177]. In addition, more recent studies suggested CPT1 as a potential BC tumor
target [103,178].

5. Future Perspectives and Conclusions

The application of single-omic approaches has significantly contributed to the charac-
terization of BC tumors’ metabolic profile and the identification of BC-specific metabolic
biomarkers. Individual omics have utility in clinical practice and can aid early diagnosis
and identify indicators of disease progression. Among these experimental approaches,
metabolomics represents a non-invasive strategy that could facilitate the development of
non-invasive biomarkers with enormous potential for high-risk population screening, pa-
tient stratification, and treatment follow-up. However, the metabolome coverage remains
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limited compared to the genomic or transcriptomic layer, which limits the interpretation
of the final results [179]. Moreover, compared with other omics platforms, metabolomics
datasets suffer from a lower level of standardization, and we lack extensive data reposito-
ries [180–182]. Combining different omics datasets and taking advantage of the associated
enhancement of statistical power may provide a more powerful strategy to characterize
robust and consistent metabolic changes underlying disease states and identify novel
therapeutic strategies [183]. Overall, studies describing metabolic alterations in glycolysis,
fatty acid, nucleotide, lipid, and amino acid metabolism, could be employed to develop
BC biomarkers and identify targets of great interest in clinical practice. This review fo-
cused on those multi-omic studies leading to the identification of metabolic markers with
clinical utility for the early diagnosis, prognosis, and subtyping of BC tumors and the
development of novel therapeutic strategies for BC based on metabolic-associated alter-
ations. Multi-omics approaches have also been used to analyze the potential relationship
between particular clinical variables (e.g., obese/non-obese [51]) and higher risk of BC.
These studies have paved the way for the application of multi-omic approaches to the
exploration of how patient-specific data affect the risk of BC (i.e., diabetes, metabolic
syndrome, insulin resistance). Nevertheless, while certain studies included a vast number
of samples [59,60,68,69,106], only a few include external independent cohorts of patients to
assess the clinical significance of the results. Thus, future studies should analyze larger
integrated sample cohorts that could generate sufficiently well-powered datasets and
produce accurate and robust findings to validate the clinical utility of these findings. In
these studies, coordinated sample processing poses technical challenges, given that each
omics platform has specific requirements for sample treatment, and accessibility of avail-
able patient material is usually limited [184]. The lack of gold standard unified sample
processing workflows and data analysis protocols for normalization, transformation, and
scaling to ensure robustness and reproducibility of the results represent challenges to
the integration of different datasets [185]. Moreover, in most reviewed studies, analyses
of the different omics datasets were conducted individually before the combination of
results, reflecting the lack of implementation of specific integration tools directed to the
analysis of metabolic alterations. Therefore, developing new computational approaches
that could facilitate the integrated analysis of different multi-omics datasets focusing on
cancer metabolism would be incredibly beneficial [186]. In this scenario, the application of
machine learning approaches to analyze multi-omics datasets could provide novel insights
into the characterization of specific BC metabolic phenotypes [187].
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