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Simple Summary: To identify potential genetic markers for evaluating hypermutated cancers, we
investigated driver mutations, mutational signatures, tumor-associated neoantigens, and molecular
cancer evolution in the genetic variants of 533 cancer patients with six different cancer types. Driver
mutations, including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated
cancers. Cancer driver mutations and mutational signatures are associated with sensitivity or resis-
tance to immunotherapy, representing potential genetic markers in hypermutated cancers. Using
computational predictions, we identified two tumor-associated neoantigens. Sequential mutations
were used in a logistic model to predict hypermutated cancers according to genomic evolution. The
sequential mutation order and coexisting genetic mutations were found to influence the hypermuta-
tion phenotype. Based on our observations, we developed a new concept for hypermutated cancers,
whereby sequential mutations are significant for hypermutated cancers, which are mutationally
heterogeneous. Through the comprehensive assessments of cancer gene panels, mutational pattern
analysis was conducted as a basis for providing recommendations regarding therapeutic strategies
for hypermutated cancer patients.

Abstract: Tumor heterogeneity results in more than 50% of hypermutated cancers failing to respond
to standard immunotherapy. There are numerous challenges in terms of drug resistance, therapeutic
strategies, and biomarkers in immunotherapy. In this study, we analyzed primary tumor samples
from 533 cancer patients with six different cancer types using deep targeted sequencing and gene
expression data from 78 colorectal cancer patients, whereby driver mutations, mutational signatures,
tumor-associated neoantigens, and molecular cancer evolution were investigated. Driver mutations,
including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated cancers. Most
hypermutated endometrial and pancreatic cancer patients carry genetic mutations in EGFR, FBXW7,
and PIK3CA that are linked to immunotherapy resistance, while hypermutated head and neck can-
cer patients carry genetic mutations associated with better treatment responses, such as ATM and
BRRCA2 mutations. APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like)
and DNA repair defects are mutational drivers that are signatures for hypermutated cancer. Cancer
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driver mutations and other mutational signatures are associated with sensitivity or resistance to im-
munotherapy, representing potential genetic markers in hypermutated cancers. Using computational
prediction, we identified NF1 p.T700I and NOTCH1 p.V2153M as tumor-associated neoantigens,
representing potential therapeutic targets for immunotherapy. Sequential mutations were used to pre-
dict hypermutated cancers based on genomic evolution. Using a logistic model, we achieved an area
under the curve (AUC) = 0.93, accuracy = 0.93, and sensitivity = 0.81 in the testing set. The sequential
patterns were distinct among the six cancer types, and the sequential mutation order of MSH2 and
the coexisting BRAF genetic mutations influenced the hypermutated phenotype. The TP53~MLH1
and NOTCH1~TET2 sequential mutations impacted colorectal cancer survival (p-value = 0.027 and
0.0001, respectively) by reducing the expression of PTPRCAP (p-value = 1.06 × 10−6) and NOS2
(p-value = 7.57 × 10−7) in immunity. Sequential mutations are significant for hypermutated can-
cers, which are characterized by mutational heterogeneity. In addition to driver mutations and
mutational signatures, sequential mutations in cancer evolution can impact hypermutated cancers.
They characterize potential responses or predictive markers for hypermutated cancers. These data
can also be used to develop hypermutation-associated drug targets and elucidate the evolutionary
biology of cancer survival. In this study, we conducted a comprehensive analysis of mutational
patterns, including sequential mutations, and identified useful markers and therapeutic targets in
hypermutated cancer patients.

Keywords: hypermutated cancer; mutational landscape; genomics evolution; tumor mutation burden

1. Introduction

All cancers result from the accumulation of genetic mutations. Hypermutated cancers,
constituting 5–10% of all cases of cancer, are characterized by a high tumor mutational
burden (TMB), which is a useful biomarker for predicting the immune checkpoint inhibitor
(ICI) response in cancer patients [1]. However, immunotherapies have exhibited variable
efficacy in human malignancies [2]. More than 50% of hypermutated cancer patients fail to
respond to immunotherapy. Some cancer subtypes still have a poor response to therapy that
cannot be predicted by TMB. Intra- or intertumor heterogeneity may contribute to inferior
clinical outcomes and drug resistance in hypermutated cancers [3]. Comprehensively
exploring the mutational landscape and genomic evolution of cancers can provide insight
into the biology of tumor heterogeneity.

By profiling the genomes of patients with high TMB, we found that positivity for
microsatellite instability-high (MSI-H) and programmed death-ligand 1 (PD-L1) is uncom-
mon in some cancer patients [4,5]. Beyond MSI and PD-L1 expression, there is a need
to identify additional emerging driver mutation biomarkers, mutational signatures, and
tumor-associated neoantigens in hypermutated cancers to guide immunotherapy. In previ-
ous studies, genomic alterations (such as those that lead to changes in STK11, EGFR, JAK, or
APOBEC activity) were associated with a response or resistance to immunotherapy [6,7]. In
addition to the driver mutations present in each patient, mutational signatures are helpful
for understanding the specific mutagenesis process of hypermutated cancers. Hypermu-
tated cancers develop as a consequence of extrinsic or intrinsic factors, such as tobacco
smoke, ultraviolet light, apolipoprotein B mRNA editing enzyme (APOBEC, catalytic
polypeptide-like) dysfunction, or DNA repair gene mutations. Mutational heterogeneity in
molecular mechanisms is observed across hypermutated cancer types [8].

Understanding the sequence of genetic mutations can be used to explore tumor hetero-
geneity in hypermutated cancers. Herein, the traditional hallmarks of cancer are discussed,
as one mutation drives a particular phenotype. However, the order and coexistence of
sequential mutations are also critical in tumor biology. In a previous study [9], the acqui-
sition order of KRAS and TP53 gene alterations led to differential adrenocortical tumor
phenotypes. In the model of cancer evolution featuring sequential mutations, the order
of coexisting mutations influences cancer behavior in hypermutated cancers. Here, we
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used cancer evolution to assess the tumor heterogeneity of hypermutated cancers. We
emphasize the importance of hypermutation-associated sequential mutations. By iden-
tifying the sequence of mutations in the cancer evolution model, we can understand its
clinical impact.

Comprehensively understanding hypermutagenesis holds great clinical value. The
primary aim of this study is to investigate and conduct a comprehensive mutational
pattern analysis to provide therapeutic strategies in hypermutated cancer patients. The
mutagenesis process was investigated in both hypermutated and nonhypermutated cancer
patients. By analyzing the cancer gene panel in hypermutated cancers, we can identify
potential biomarkers and drug targets and provide additional biological information for
hypermutated cancers.

2. Materials and Methods
2.1. Enrollment of Cancer Patients

This was a cohort study of cancer patients. Eligible cancer patients were aged ≥ 20 years
with histologically confirmed pathological stage I–IV breast cancer adenocarcinoma (BRCA),
stage II–III colorectal adenocarcinoma (CRC), stage II–IV endometrial cancer (EC), stage
II–IV, head and neck squamous cell carcinoma (HNSC), stage I–IV ovarian cancer (OV),
or stage I–V pancreatic adenocarcinoma (PDAC), as well as an Eastern Cooperative On-
cology Group performance status (ECOG PS) of 0–1, and adequate organ function. The
histological subtypes of endometrial cancer include endometrioid, high-grade serous, clear
cell carcinoma, and others. The histological subtypes of ovarian cancer include high-grade
serous, clear cell carcinoma, endometrioid, mucinous, and others. Exclusion criteria were
receiving chemotherapy within six months, other malignancies, and life expectancy less
than one year. A total of 533 patients with six different types of cancer, 55 with breast cancer
(BRCA), 129 with colorectal cancer (CRC), 155 with endometrial cancer (EC), 67 with head
and neck cancer (HNSC), 27 with ovarian cancer (OV), and 100 with pancreatic cancer
(PDAC), were recruited for this study at the National Cheng Kung University Hospital
(NCKUH) between January 2015 and January 2017. Follow-up continued through August
2019. Clinical information and tissue samples for DNA extraction were collected at the time
of enrollment. The NCKUH institutional review board approved this study (A-ER-103-395,
A-ER-104-153, and B-ER-109-154), and all participants provided written informed consent.

2.2. Targeted Tumor Sequencing Using a Cancer Gene Panel

A total of 533 primary tumor samples were sent for histologic assessment, followed by
the extraction of nucleic acids from formalin-fixed paraffin-embedded blocks at NCKUH.
Specimens were reviewed by pathologists, who determined the percentage of viable tumor
nuclei and the adequacy of samples for mutational profiling. Deep targeted sequencing
of tumor samples was performed by Oncomine Comprehensive Assays (OCA) (Thermo
Fisher Scientific, Waltham, MA, USA). All samples were analyzed using Torrent Suite
Software 5.0.4 (Thermo Fisher Scientific, Waltham, MA, USA), aligning all reads to the hg19
reference genome. Variant calling was performed using the Torrent Variant Caller plugin
(Thermo Fisher Scientific, Waltham, MA, USA) version 5.0.4.0. The Oncomine cancer panel
was validated to measure tumor mutation burden in routine molecular diagnostics and
according to the TMB Harmonization Project [10,11]. To verify the OCA, we performed
a verification test using commercially available control reference agents of Structural
Multiplex Reference Standard gDNA and Quantitative Multiplex Reference Standard
(Horizon Diagnostics, Cambridge, United Kingdom). Next-generation sequencing (NGS)
reactions were performed using three replicates to validate control testing. The laboratory-
developed tests were approved by the Taiwan Food and Drug Administration (TFDA-LDTs)
and accredited by the Taiwan Accreditation Foundation (TAF). We ensured preanalytical
quality control with a DNA concentration > 10 ng/µL and library concentration ≥ 100 pM.
For higher detection sensitivity and quality control of genomic sequence variations, the
required average target coverage was more than 1000×.
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2.3. Immune Response Gene Expression Data

Cancer tissues with immune response gene expression data were obtained from
99 CRC patients. RNA was prepared from formalin-fixed paraffin-embedded (FFPE) tissue
that was extracted using the RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher Sci-
entific). RNA concentration was determined on an Invitrogen™ Qubit™ Fluorometer using
the Qubit™ RNA High Sensitivity Assay (Thermo Fisher Scientific). Twenty nanograms of
RNA were used for each reverse transcription reaction, and cDNA was prepared using the
SuperScript™ IV VILO™ Master Mix Kit. Immune response libraries were prepared using
the Ion AmpliSeq™ Kit for Chef DL8 with the Ion Chef™ System according to instructions
in the Oncomine™ Immune Response Research Assay user guide (Pub. No. MAN0015867).
Raw gene expression data were preprocessed using Torrent Suite (Thermo Fisher Scientific)
and normalized using the min-max feature scaling approach.

2.4. Statistical Analysis

The odds ratio was used to assess the association between hypermutated and non-
hypermutated groups. The oversampling method was used in the hypermutated group
before the calculation of the odds ratio. A t-test was used to determine the association
between immune expression and evolutionary trajectories. Kaplan–Meier curves were
used to evaluate recurrence-free survival (RFS), which was defined as the time between
surgery and cancer recurrence. A p-value adjusted by a false discovery rate (FDR) or a
Bonferroni (BF) critical value < 0.05 was considered statistically significant. All statistical
analyses were performed in the R environment.

2.5. Cancer Driver Mutation Spectra and Mutational Signature Analysis

Many studies have demonstrated filtering of common germline polymorphisms from
tumor-only NGS data through population frequency [12]. Variant allele frequencies lower
than 5% were filtered out to exclude potential artifacts. To identify potential cancer driver
mutations, we used the populational allele frequency cutoffs of 1% with respect to Taiwan
Biobank and Exome Aggregation Consortium-East Asian (ExAC-EAS) databases [13,14].
The minimal read depth threshold is >50 in this study. Assuming we have a variant
with a 5% variant allele frequency, at least three reads with alternative alleles would be
guaranteed. Exonic single-nucleotide variants (SNVs) were divided into 96 trinucleotides
with 16 possible flanking nucleotide contexts. Each patient with >20 exonic genetic variants
was analyzed for a personal mutational signature [15,16]. The Catalog of Somatic Mutations
in Cancer (COSMIC; known mutational signatures) was analyzed using the R package
deconstructSigs [17].

2.6. Evolutionary Tree Construction Trajectory Analysis

We used targeted tumor sequencing for cancer evolution. Cancers evolve as sequential
clone and subclone driver mutations [18,19]. All genetic SNVs and small insertions and
deletions (indels) were used to build evolutionary trees for each patient. A clonal inference
analysis for each patient was performed using the R package SciClone [20]. Evolutionary
trees and repeated evolutionary trajectories of sequential mutations were produced by the
R package Revolver [21].

2.7. Machine Learning Model and Analysis
2.7.1. Selecting Evolutionary Trajectories for the Hypermutation Prediction Model

We used the least absolute shrinkage and selection operator (LASSO) regression
algorithm for feature selection. We built the prediction model using six machine learning
methods: AdaBag (bagging), AdaBoost (boosting), C5.0, logistic regression (LR), random
forest (RF), and support vector machine (SVM). We divided our dataset into a training
set (80%) and a testing set (20%). Feature selection, oversampling, and classifiers were
implemented using the R packages glmnet [22], ROSE [23], and caret [24].
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2.7.2. Identification of Putative Neoantigens

We simulated the HLA distribution of the Taiwanese Han Chinese population from the
HLA database [25]. Neoantigens were defined as peptides of approximately 9–11 amino
acids in length with a rank of less than 2%. Strong binding affinity neoantigens were
defined as those with a percentage less than 0.5%. We used the tool NeoPredPipe (Neoanti-
gen Prediction Pipeline) [26] to predict neoantigens from patient genetic mutations and
HLA data.

3. Results
3.1. Identification of Potential Cancer Driver Mutations in Hypermutated Cancers

To investigate driver mutations in hypermutated cancers, we explored the genetic
mutation profiles of 533 cancer patients with six cancer types. We annotated potential
driver targets in cancer patients using genetic variants from the Oncomine reporter. A
total of 115 genes and 7555 genetic variants were identified in 533 samples. As shown in
Figure 1A and Table S1, we identified the spectrum of driver mutations in patients with
six different cancer types. Except for the TP53 genetic mutations, which were found in all
cancer types, we observed the highest percentages of mutations in ERBB2 and PIK3CA in
breast cancer, KRAS and PIK3CA in colorectal cancer, PTEN and PIK3CA in endometrial
cancer, CDKN2A and HRAS in oral cancer, BRCA1 and BRCA2 in ovarian cancer, and KRAS
and CDKN2A in pancreatic cancer. The top 15 genetic variants from each cancer tissue are
shown in Figure S1. We evaluated driver mutations in cancer patients after stratification by
hypermutation status. There were more FLT3, FGFR1, and AKT1 mutations (p-value < 0.05)
in nonhypermutated cancers, while there were more RET, CBL, and DDR2 mutations
(p-value < 0.05) in hypermutated cancers (Figure 1B and Table S2). We found that the
frequency of genetic mutations was an important mutation feature in cancers, and frequent
mutation was also notable in The Cancer Genome Atlas (TCGA) samples. The cosine
similarity of gene frequencies between our cancer study and TCGA datasets (National
Cancer Institute’s Genomic Data Commons Data Portal) was more than 95% in HNSC and
PDAC and 92% in OV. The similarity was more than 85% in CRC and BRCA (Table S3).
Compared with TCGA datasets, the frequencies of KRAS mutations in pancreatic cancer
were 56.8% and 56%, respectively. In a previous study, we also found a higher frequency of
KRAS mutations in the hypermutated group [27,28]. For specific histology types, we used
Fisher’s exact test to analyze the association between driver mutations and hypermuta-
tion in endometrial and ovarian cancers. The results indicated that most hypermutated
endometrioid-type EC patients carried MCL1, FBXW7, BAP1, and EGFR driver mutations
(p-value < 0.05). No statistical significance was derived in the other histological types of
endometrial cancer and ovarian cancer (Table S4). RET, CBL, and DDR2 driver mutations
might represent potential response markers in hypermutated cancers. Mutations associ-
ated with sensitivity or resistance to immunotherapy in different cancer types [7,8] are
shown in Figure 1C and Table S5. Most hypermutated EC and PDAC patients carry genetic
EGFR, PIK3CA, and FBXW7 mutations, which are markers of resistance to immunotherapy.
The most hypermutated HNSC, EC, and PDAC patients carry ATM, BRRCA2, and BRAF
genetic mutations linked to immunotherapy sensitivity [7,8]. These results imply that
there are heterogeneous types of driver mutations in hypermutated cancers. Cancer driver
mutations are associated with sensitivity or resistance to immunotherapy, representing
potential genetic markers in hypermutated cancers.
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Figure 1. Driver mutations in hypermutated cancers. (A) The spectra and percentages of driver
mutations in six cancer types: breast (BRCA), colorectal (CRC), endometrial (EC), oral (HNSC),
ovarian (OV), and pancreatic (PDAC). ERBB2 driver mutations were the most common mutations
in BRCA; KRAS driver mutations were the most common in PDAC and CRC; BRCA1 and BRCA2
driver mutations were the most common in OV; CDKN2A and HRAS driver mutations were the
most common in HNSC, and PTEN genetic mutations were the most common in EC. (B) Genetic
driver mutations in all 533 patients with hypermutated and nonhypermutated cancers. p-values
were calculated using an odds ratio with a false discovery rate (FDR) correction, and a p-value < 0.05
was considered statistically significant. There are seven genes with odds ratios < 1 in patients with
nonhypermutated cancers. The other genes have values > 1 in patients with hypermutated cancers.
(C) Mutation-associated sensitivity or resistance to immunotherapy. Heatmap of hypermutation-
associated genetic driver mutations in six cancer types. Genes that were significant in at least two
cancer types are shown. Most hypermutated EC and PDAC patients carried EGFR, PIK3CA, and
FBXW7 genetic mutations, and most hypermutated HNSC, EC, and PDAC patients carried the ATM,
BRRCA2, and BRAF genetic mutations. The p-value was calculated by an odds ratio and adjusted by
FDR correction.
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3.2. Mutational Signatures as Genetic Makers for Immunotherapy

In addition to driver mutations, mutational signatures are helpful for understanding
the specific mutagenesis process of hypermutated cancers. In a previous study, and in
our results (Figure S2), panel-based tumor mutational burden (TMB) values suggest a
biomarker when compared with the results of whole-exome sequencing (WES) in clinical
practice [29]. To understand the mutation load distribution of our cohort, we calculated the
mutation rates of 533 patients with six different cancer types (Figure 2A). Here, we defined
patients with a hypermutation status in each cancer type as those in the top 10% of each
cancer group according to the definition of hypermutation in a previous study [8]. There
was a higher tumor mutation burden in breast (43 mutations per megabase (mut/Mb)),
endometrial (32 mut/Mb), and pancreatic (36 mut/Mb) cancers, while the TMB values in
oral cancer and colorectal cancer were 2.87 and approximately 10 mut/Mb, respectively.
We also showed that the density plot in our cohort had a long tail distribution (Figure 2B),
which matches the distribution observed in a previous study [30]. When analyzing the
single nucleotide substitutions of all genetic mutations (Figure 2C), most single nucleotide
mutation substitutions showed C > T in hypermutated cancers. There was no statistically
significant difference in the proportion of mutation substitutions within the six cancer
types. We deconstructed the mutational signatures in all cancer samples (Figure 2D,
* p-value < 0.05, Figure S3). There were statistically significant differences among BRCA,
OV, and PDAC patients. We found that approximately 31%, 9%, 24%, and 33% of the
mutational signatures of hypermutated cancers consisted of signature 1 (age-related),
signature 2 (APOBEC-related), signature 11 (alkylating agent-related) and signature 30
(DNA repair defect-related), respectively (Figure 2E); while 49%, 13%, 6%, 7%, and 14% of
the mutational signatures of nonhypermutated cancers consisted of signature 1, signature
9, signature 11, signature 23, and signature 30, respectively (Figure 2F, p-value = 0.03 by
chi-square). Mutational signatures related to APOBEC, an alkylating agent and DNA
repair defect, appeared to play a strong role in hypermutated cancers, whereas the age-
related mutational signature was more prominent in nonhypermutated cancers. Beyond
the cancer driver mutations, DNA repair defects and APOBEC mutational signatures are
good immunotherapy markers. These results indicate that there are different mutagenesis
processes between hypermutated and nonhypermutated cancer patients.
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Figure 2. Mutational signatures in hypermutated cancers. (A) Violin plot of tumor mutation burden
(TMB; number of exonic mutations per megabase) in 533 patients with six different cancer types.
The analyzed cohort comprises 55 breast cancer, 129 colorectal cancer, 155 endometrial cancer,
67 oral cancer, 27 ovarian cancer, and 100 pancreatic cancer patients. Patients with TMB values over
100 mutations per megabase (mut/Mb) are labeled 100 mut/Mb. The cutoffs for the highest 10% TMB
values in each cancer type are 4.84, 9.53, 35.72, 42.79, 31.83, and 2.87 mut/Mb in ovarian, colorectal,
pancreatic, breast, endometrial, and oral cancer, respectively. The TMB data differ for different
cancer types. (B) Density plot of TMB in all cancer patients. The plot shows the mutation rates
across our cohort, and the red line shows the cutoff of the highest 10% TMB values with 21 mut/Mb.
(C) Frequency of substitution subtypes for six cancer types. Hypermutated (H) and nonhypermutated
(N) cancers. Most single-nucleotide mutation substitutions were C > T in cancer tissue. (D) Bar plot of
the mutational signature in six cancer types for hypermutated. * p-value < 0.05 and ** p-value < 0.01
(H) and nonhypermutated (N) cancers. The percentage of age-related signature 1 in hypermutated
cancers is lower than that in nonhypermutated cancers. There were more signatures related to the
APOBEC family of cytidine deaminases in hypermutated cancers than in nonhypermutated cancers
(p-value < 0.05). (E) Pie chart of mutation signatures for hypermutated cancers. Mutation signatures
were constructed, and a higher percentage of signature 11 (alkylating agents) and signature 30
(DNA repair defects) compared to signature 2 (APOBEC family of cytidine deaminase) is found
in hypermutated cancers compared to nonhypermutated cancers (p-value = 0.03 by chi-square
test). (F) Pie chart of mutation signatures for nonhypermutated cancers. Mutation signatures were
constructed, and a higher percentage of signature 1 (age-related) was found in nonhypermutated
cancers than in hypermutated cancers.
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3.3. Hypermutation-Derived Neoantigens

We identified two tumor-associated neoantigens in hypermutated cancers from 533 patients
to guide immunotherapy (Figure 3). We simulated the HLA-A, HLA-B, and HLA-C dis-
tributions of the Taiwanese Han population from the HLA database [25], and the results
are shown as a bar plot (Figure S4b–d). We used the NeoPredPipe tool [26] to predict
neoantigens with information about the patients’ genetic variants using a cancer panel
and the simulated HLA data (Figure S4a). The number of neoantigens ranged from 0
to 699, and the exonic variants were positively correlated with the neoantigens with a
strong binding affinity (p-value = 0.978, Figure 3A, and Table S6). The numbers of neoanti-
gens ranged from 0 to 88 (median, 3) and 3 to 699 (median, 64) in the nonhypermutated
and hypermutated groups, respectively, the difference between the two was significant
(p-value = 9.806 × 10−7, Figure 3B and Table S7). These observations indicate that tumor
mutational burden is correlated with neoantigen load, which is a biomarker for cancer
immunotherapy. We also identified two neoantigens with a strong binding affinity that
were associated with hypermutation (Figure 3C). The binding affinities of NF1 p.T700I and
NOTCH1 p.V2153M neoantigens were 60.7 and 34.7 nM, respectively. The percentage of
NF1 p.T700I neoantigens present in hypermutated and nonhypermutated patients were
10% and 1.9%, respectively. The percentage of the NOTCH1 p.V2153M neoantigen present
in hypermutated and nonhypermutated patients was 7.2% and 1.3%, respectively. The
NF1 p.T700I and NOTCH1 p.V2153M neoantigens may represent potential targets for
immunotherapy in hypermutated cancer patients.

Figure 3. Hypermutation-derived neoantigens. (A) The correlation between exonic variants and
the number of strongly binding neoantigens in the 533 patients. There is a strong relationship
(p-value = 0.978 by Pearson’s correlation) between tumor mutational burden and neoantigens.
(B) Neoantigen numbers by subgroups. The hypermutated group possesses more neoantigens
than the nonhypermutated group, with median values of 64 and 3 neoantigens, respectively;
p-value = 9.806 × 10−7 by t-test. (C) Neoantigens in the hypermutated group. Two novel neoanti-
gens were identified, NF1 p.T700I and NOTCH1 p.V2153M. An odds ratio was used to determine
the correlation between hypermutation and neoantigens. The p-value was adjusted for FDR (false
discovery rate). * Separator.

3.4. Sequential Mutation Clustering and Trajectory Analysis in the Evolution of
Hypermutated Cancers

To understand the evolution of sequential mutations in hypermutated cancers, we
analyzed the evolutionary tree of cancer using the Revolver tool [21,31,32]. Our cohort was
separated into eight evolutionary groups, from cluster 1 (C1) to cluster 8 (C8) (Figure 4A).
No differences were observed among the eight evolutionary groups concerning the tumor
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type. Most of the hypermutated patients were in C2, C7, and C8. Principal component
analysis (PCA) demonstrated that the two groups of hypermutated and nonhypermutated
cancer patients exhibited repeated sequential mutations (Figure 4B, PC1 (9.68%) and PC2
(8.14%)). There were distinct evolutionary trajectories in the hypermutated (Figure S5a–c,
and Table S8) and nonhypermutated (Figure S5d–h) groups. For example, we compared
sequential mutations in patients from C7 (hypermutated) and those from C3 (nonhypermu-
tated) (Figure 4C,D). Patients in C7 (hypermutated) presented complex clonal structures
and more sequential mutations than patients in C3 in the evolution model. Late acquisition
of clonal TP53 genetic mutations with APC, BRCA2, CDH1, and NOTCH1 mutations was
observed in the hypermutated group (Figure 4D). There were 17 and 7 sequential mutations
in the C7 and C3 groups, respectively. These results demonstrate that there are distinct
sequential patterns of tumor evolution between hypermutated and nonhypermutated
cancer patients (Figure S5).

Figure 4. Sequential mutation clustering and trajectory analysis. (A) Coclustering heatmap of
533 patients with sequential mutations. A darker blue color indicates a higher probability of
clustering together across each resample. Most hypermutated cancer patients are in C2, C7, and
C8. (B) Principal component analysis (PCA) of hypermutated and nonhypermutated cancer pa-
tients by sequential mutations. Red circles represent the hypermutated group, and purple trian-
gles show the nonhypermutated group. (C) The nonhypermutated cluster 3 (C3) pattern. The
sequential mutations that occurred at least ten times in C3 are plotted. The C3 pattern is com-
posed of seven sequential mutations, including the germlines (GL)~KRAS, GL~NF1, GL~NOTCH1,
GL~PIK3CA, GL~PTEN, GL~STK11, and GL~VHL. (D) The hypermutated C7 pattern. Seventeen
sequential mutations that occurred at least ten times in C7 are plotted. The C7 pattern is com-
posed of 17 sequential mutations in the first clone and 4 sequential mutations in the second clone:
germline (GL)~ATM, GL~BAP1, GL~BRCA1, GL~FBXW7, GL~KDR, GL~KRAS, GL~NF1, GL~PIK3CA,
GL~TP53, GL~PTCH1, GL~PTEN, GL~RB1, GL~STK11, GL~TET2, GL~TSC1, GL~TSC2, GL~VHL,
TP53~APC, TP53~BRCA2, TP53~CDH1, and TP53~NOTCH1.

3.5. Machine Learning Models to Predict Hypermutated Cancers by Sequential Mutations

We next built a model to predict hypermutation status (Figure 5). We used the least
absolute shrinkage and selection operator (LASSO) regression algorithm to select features
of sequential mutations. To obtain more precise features, we implemented the algorithm
50 times and counted the frequency of the selected features. Only features that occurred
more than 35 times were used for classification. The selected sequential mutations are listed
in Figure 5C. To build a better classifier, we implemented six machine learning methods,
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including AdaBag (bagging), AdaBoost (boosting), C5.0, logistic regression (LR), random
forest (RF), and support vector machine (SVM), for training (n = 755, 80%) and testing
(n = 107, 20%). We used the oversampling technique in the training set. The area under the
curve (AUC) was 0.93 in the bagging, RF, and LR models (Figure 5B and Figure S6). The
logistic model had an accuracy of 0.93 and a sensitivity of 0.81 in the testing set (Figure 5A).

Figure 5. Hypermutated status prediction model. (A) A logistic regression model was used to predict
hypermutations with the highest sensitivity. The table also shows the accuracy, specificity, and F1
scores for both the training (n = 755, 80%) and testing (n = 107, 20%) datasets. (B) Receiver operating
characteristic (ROC) curves of six different classifiers and their area under the curve (AUC) values.
Better sensitivity was achieved in the logistic regression model. RF, random forest; SVM, support
vector machine. (C) Feature selection of hypermutation-associated sequential mutations. In total,
fifteen sequential mutations were selected and are summarized in the table.

3.6. The Prevalence and Spectrum of Sequential Mutations

Sequential cancer driver mutations could influence clinical presentation and response
to therapy. We further investigated the prevalence and spectrum of sequential muta-
tions in the six cancer types according to cancer evolution [21] (Table S9). The results are
shown in Figure 6A and Figure S7. The observed sequential mutations differed by cancer
type. EC and PDAC patients exhibited the greatest hypermutation-associated sequen-
tial mutations, whereas breast cancer, colorectal cancer, and ovarian cancer patients had
fewer hypermutation-associated sequential mutations. For example, the most common
hypermutation-associated sequential mutations were NOTCH~BAP1 and TP53~ATM. CRC
patients carried hypermutation-associated TP53~MLH1 and NOTCH1~TET2 sequential
mutations. These findings may provide more genetic features for distinguishing hypermu-
tation status or clinical outcome in hypermutated cancers.
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Figure 6. Hypermutation-associated sequential mutations. (A) Heatmap of hypermutation-associated
sequential mutations in six cancer types. p-values were calculated by odds ratio with Bonferroni
correction, and p-values > 0.05 are labeled in white. The most significant sequential mutations were
found in endometrial and pancreatic cancer. For example, the NOTCH1~BAP1 sequential mutation
is observed in cancer patients. (B) Sequential mutations of MSH2 by subgroup. The TP53~MSH2
sequential mutation was associated with hypermutation, while the MSH2~TP53 sequential mutation
was not. p-values were calculated by odds ratio with Bonferroni correction, and p-values < 0.05
are labeled in red. The size of the dot represents the hypermutation percentage of the sequential
mutation in all objects. (C) Sequential mutations of BRAF by subgroup. The PTEN~BRAF, KIT~BRAF,
PIK3R1~BRAF, and JAK3~BRAF sequential mutations are associated with hypermutation, while the
AKT1~BRAF sequential mutation is not.

The MSH2 gene is a member of the DNA mismatch repair genes. BRAF gene mutation
is correlated with MLH1 gene methylation. Both are associated with hypermutation in
cancer [33,34]. Data for MSH2 and BRAF gene-associated sequential mutations are shown
in Figure 6B,C. In our study, we found that sequential MSH2 genetic mutations may affect
hypermutation status. For example, the sequential genetic mutation of TP53 followed by
MSH2 (TP53~MSH2) was observed in hypermutated cancers, but the mutation of MSH2
followed by TP53 (MSH2~TP53) was not (Figure 6B). Coexisting sequential mutations
in BRAF also affected hypermutation status. PETN~BRAF sequential mutations were
significantly more common than AKT1~BRAF sequential mutations in hypermutated
cancers (Figure 6C). In addition to driver mutations, these results suggest that we need to
consider sequential mutation order when analyzing hypermutation status.

3.7. Hypermutation-Associated Sequential Mutations and Clinical Outcome in Colorectal Cancer

Here, we performed an analysis of the relationship among sequential mutations,
immune gene expression, and clinical outcome in CRC. We found that hypermutation-
associated TP53~MLH1 and NOTCH1~TET2 sequential mutations affected the survival
of patients with colorectal cancer (p-values = 0.027 and 0.0001, respectively, Figure 7A,B).
To study the relationship between sequential mutations and immune gene expression,
tumor samples from 99 high-risk subjects were collected. After quality control, 78 subjects
remained for further analysis. Patients with NOTCH1~TET2 sequential mutations exhibited
a lower expression of PTPRCAP (p-value = 1.06 × 10−6) and NOS2 (p-value = 7.57 × 10−7),
both of which are involved in the immune response, than patients with other sequential
mutations (Figure 7C,D). Therefore, such sequential mutations may potentially represent
hypermutation-associated prognostic biomarkers for stage III CRC patients.
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Figure 7. Hypermutation-associated sequential mutations impact survival. (A) Survival plot of
TP53~MLH1 hypermutation-associated sequential mutations in CRC patients. Patients without
TP53~MLH1 sequential mutations (n = 99) exhibited a better clinical outcome than patients with this
set of mutations. p-value = 0.027 according to the log-rank test. (B) Survival plot of NOTCH1~TET2
hypermutation-associated sequential mutations in CRC patients. Patients without NOTCH1~TET2
sequential mutations (n = 102) exhibit a better clinical outcome than patients with this set of mutations.
p-value < 0.05 by the log-rank test. (C) Boxplot of NOTCH1~TET2 sequential mutations associated
with immune gene expression with a p-value < 0.05. Patients with NOTCH1~TET2 sequential muta-
tions have reduced PTPRCAP expression compared to patients without this set of mutations. p-values
were calculated by a t-test with Bonferroni correction. (D) Patients with NOTCH1~TET2 sequential
mutations exhibit reduced NOS2 expression compared to patients without this set of mutations.

4. Discussion

Although the FDA (US Food and Drug Administration) has approved immunother-
apies for different hypermutated cancer types, there are still challenges related to drug
resistance, therapeutic strategies, and biomarkers. Through comprehensive assessments
of cancer gene panels, we investigated the heterogeneity of cancer driver mutations, mu-
tational signatures, and evolution (intratumor) across different cancer types (intercancer)
in hypermutated cancers. These advances have enhanced our ability to identify new im-
mune targets and markers for the development of immunotherapy strategies. Here, we
demonstrate the impact of cancer driver mutations on therapeutic strategies and clinical
outcomes in hypermutated cancer patients. Our results highlight several important points.
(i) There are heterogeneous driver mutations and mutational signatures in hypermutated
cancers, implying that we should apply different therapeutic strategies for the different
cancer types. (ii) NF1 and NOTCH1 neoantigens represent potential therapeutic targets
for immunotherapy in hypermutated cancers. (iii) Sequential mutations, including dif-
ferent sequential orders and coexisting mutations, are good biomarkers for predicting
hypermutated phenotypes and clinical outcomes. These findings suggest that the compre-
hensive analysis of mutational patterns in cancer, including driver mutations, mutational
signatures, hypermutation-derived neoantigens, and sequential mutations, can have a
significant impact on the care of hypermutated cancer patients.

We evaluated six specific cancer types. First, colorectal cancer and breast cancer are the
most prevalent cancer types in the world. Next, according to official statistics, the incidence
rate of gynecologic cancer, including endometrial and ovarian cancer, is increasing, and the
diagnostic age in Taiwan has decreased in the past decade. The incidence rate of pancreatic
cancer, which has the most unfavorable prognosis and survival rate, is also increasing
in Taiwan. Finally, head and neck cancers have an incidence rate ten times greater in
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males than in females because of the habit of chewing betel nuts [35]. In a previous study,
researchers demonstrated a significant correlation between TMB and the immune response
across 27 solid tumor types [1]. Other studies also found that genetic mutations influenced
the response to immunotherapy [36]. For example, EGFR and STK11 mutations induce
resistance to immunotherapy, while MET and BRAF genetic mutations induce sensitivity
to immunotherapy [7,8].

Before immunotherapy, cancer should be checked for driver mutations and mutational
signatures. For cancer driver mutations, most hypermutated PDAC patients carried EGFR
mutations at a high frequency, which explains their poorer clinical response to immunother-
apy [1]. Most hypermutated HNSC patients carrying ATM mutations may have a better
clinical response to immunotherapy than those without ATM mutations [37]. Most hyper-
mutated EC patients carrying MSH2 gene mutations may have a better clinical response
than those without MSH2 mutations [38]. Defective DNA replication repairs resulting
in germline mutations are associated with hypermutations in CRC or OC [8]. Testing
for cancer genomic profiling is associated with the identification of germline pathogenic
variants. For OC patients with BRCA1/2 cancer driver mutations, PARP inhibitors are the
standard of care rather than immunotherapy. Genetic counseling of the relatives of cancer
patients is essential [39]. In addition, we identified RET, CBL, and DDR2 driver mutations
as potential response markers in hypermutated cancers. In our study, we provide addi-
tional, comprehensive driver genetic mutations and response markers in immunotherapy.
However, further studies are needed to obtain related biological information.

Mutational signatures can reflect the presence or absence of cellular processes in
cancer cells. In addition to environmental factors (such as UV light, tobacco smoking, and
alkylating agents), intrinsic sources, such as APOBEC and DNA repair genes, have been
described as the major cause of hypermutation in cancer. In this study, the relationship
between signatures 2/11 and 30 was extremely positively correlated with hypermutation
status. Age, alkylating agent exposure, DNA repair defects, and APOBEC mutations
are drivers of mutational signatures in hypermutated cancers. Beyond the cancer driver
mutations, DNA repair defects and APOBEC mutational signatures are good makers for
immunotherapy responses.

Tumor neoantigens are essential for personalized immunotherapy. We showed a
relationship between TMB and neoantigen numbers. For neoantigen prediction, we used
the Taiwan population database to simulate and calculate HLA-A, HLA-B, and HLA-C
binding affinity and found two potential neoantigens, NF1 p.T700I and NOTCH1 p.V2153M.
These neoantigens can contribute to the development of vaccines and cell-based therapeutic
strategies, especially in Asian populations.

In this study, we developed a new concept for hypermutated cancers based on se-
quential mutations. Aside from cancer driver mutations, sequential mutations are very
important for hypermutated cancers. Identifying cancer types based on cancer driver
mutation data is still a challenge. To address this, we built a tumor evolution model to dis-
tinguish hypermutated cancers from nonhypermutated cancers. We showed that sequential
mutations could distinguish hypermutated cancer patients, whereby tumor evolution is
analyzed via hierarchical clustering of genetic driver mutations and clonality. Sequential
mutations also accurately predicted hypermutation status. Beyond the driver mutations,
the sequential mutation order of MSH2 and coexisting BRAF genetic mutations influence
patients with a hypermutated cancer phenotype. For the clinical impact of sequential mu-
tations, we found that the NOTCH1~TET2 sequential mutations correlated with reduced
PTPRCAP expression and that NOS2 expression was associated with a worse outcome than
a lack of NOS2 expression [40]. In a previous study, mice with both NOTCH1 and TET2
gene inactivation also exhibited lower survival [41]. These results imply that sequential
mutations are potential predictive markers for the clinical impact of hypermutated cancers.

Our study has some limitations. False-negative and false-positive mutations due to
NGS errors contribute to inconsistencies in bioinformatic analyses. Many studies have
demonstrated filtering common germline polymorphisms from tumor-only NGS data by
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population frequency [12]. However, true somatic mutations should be identified by tumor
and blood samples. One disadvantage of FFPE is the use of formalin, which may cause
sequence artifacts. In a previous study, 63–70% of the variants in the fresh-frozen (FF)
exome sequencing datasets were also found in the FFPE exome sequencing datasets. The
FFPE and FF samples have similar spectra of mutations based on the trinucleotide content
compared with 30 signatures from the COSMIC database by hierarchical clustering [42].
Deamination effects do not lead to false-positive mutations in clinical practice [43]. In
addition, since low-coverage samples have higher rates of deamination effects (C > T/G > A
sequencing artifacts) in formalin fixation [44], we used deep targeted sequencing (average
coverage > 1000×) technology to process our samples.

5. Conclusions

We conducted a comprehensive analysis of mutational patterns, including sequential
mutations, and identified useful markers and therapeutic targets for application in the
therapy of hypermutated cancer patients.
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AUC area under the curve
APOBEC apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like
BRCA breast cancer
BF Bonferroni
CRC colorectal cancer
COSMIC Catalog of Somatic Mutations in Cancer
EC endometrial cancer
ECOG PS Eastern Cooperative Oncology Group performance status
ExAC-EAS Exome Aggregation Consortium-East Asian
FDA U.S. Food and Drug Administration
FDR false discovery rate
FF fresh-frozen
FFPE formalin-fixed paraffin-embedded
HNSC head and neck cancer
ICI immune checkpoint inhibitor
LASSO least absolute shrinkage and selection operator
LR logistic regression
MSI-H microsatellite instability-high; mut/Mb: mutations per megabase
NCKUH National Cheng Kung University Hospital
NGS next generation sequencing
OV ovarian cancer
PCA principal component analysis
RFS recurrence-free survival
PDL-1 programmed death-ligand 1
PDAC pancreatic cancer
RF random forest
SNVs single-nucleotide variants
SVM support vector machine
TAF Taiwan Accreditation Foundation
TCGA The Cancer Genome Atlas
TFDA-LDTs Taiwan Food and Drug Administration
TMB tumor mutational burden
WES whole-exome sequencing
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