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Simple Summary: Oral carcinoma remains one of the most challenging cancers to be cured and the
pharmacological approach is often ineffective. The identification of novel molecular targets will
greatly improve its management. We wondered if PI3Kγ might be looked at as a target in oral cancer
handling. In this preclinical study, we analyzed the role of PI3Kγ in a murine transgenic model. We
demonstrated that the absence/inhibition of PI3Kγ might be a reasonable strategy to impair the
development of preneoplastic and neoplastic lesions of the oral cavity. PI3Kγ is not required for
normal development, life span, or basic immune responses, unless under stress conditions; therefore,
low toxicity and few side effects are expected by acting on PI3Kγ as a therapeutic target.

Abstract: We investigated the role of PI3Kγ in oral carcinogenesis by using a murine model of oral
squamous carcinoma generated by exposure to 4-nitroquinoline 1-oxide (4NQO) and the continuous
human cancer cell line HSC-2 and Cal-27. PI3Kγ knockout (not expressing PI3Kγ), PI3Kγ kinase-
dead (carrying a mutation in the PI3Kγ gene causing loss of kinase activity) and wild-type (WT)
C57Bl/6 mice were administered 4NQO via drinking water to induce oral carcinomas. At sacrifice,
lesions were histologically examined and stained for prognostic tumoral markers (EGFR, Neu, cKit,
Ki67) and inflammatory infiltrate (CD3, CD4, CD8, CD19 and CD68). Prevalence and incidence of
preneoplastic and exophytic lesions were significantly and similarly delayed in both transgenic mice
versus the control. The expression of prognostic markers, as well as CD19+ and CD68+ cells, was
higher in WT, while T lymphocytes were more abundant in tongues isolated from transgenic mice.
HSC-2 and Cal-27 cells were cultured in the presence of the specific PI3Kγ-inhibitor (IPI-549) which
significantly impaired cell vitality in a dose-dependent manner, as shown by the MTT test. Here,
we highlighted two different mechanisms, namely the modulation of the tumor-infiltrating cells
and the direct inhibition of cancer-cell proliferation, which might impair oral cancerogenesis in the
absence/inhibition of PI3Kγ.
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1. Introduction

Phosphoinositide 3-kinases (PI3Ks) are a group of eight plasma membrane-associated
lipid kinases grouped into three classes (based on their primary structure, regulation, and
in vitro lipid substrate specificity) [1]. Class I kinases received great attention because of
their involvement in important processes such as cell proliferation and survival [2]: they
are heterodimers composed by a 110-kDa catalytic subunit (p110 α, β, γ, δ) complexed
with a regulatory part, which allows the interaction with membrane receptors. The main
product of class I PI3Ks is phosphatidylinositol-3,4,5-trisphosphate (PIP3): it initiates one
of the most important signaling pathways essential for cell growth, proliferation, survival,
and migration downstream of growth factors and oncoproteins. Class I PI3Ks are further
subgrouped into class IA and IB. The class IA catalytic subunits (p110α, p110β and p110δ)
are bound to a p85 regulatory subunit; the class IB catalytic subunit p110γ binds one of
two non-p85 regulatory subunits, called p101 and p84. Distinct expression patterns are
shown in the four different class I PI3K isoforms [3].

Among the many processes controlled by PI3Ks [4], one of the most captivating
is their involvement in cancer development because of the ability of PI3K to trigger a
complex panoply of responses impinging on cell survival and proliferation, as well as on
the microenvironment [5,6]. The PI3K signaling pathway is believed to be deregulated
in a wide spectrum of human cancers [7], and genetic analysis has shown that the PI3Kα

plays a dominant role in the most common human neoplasm, such as breast, colon, gastric,
cervical, prostate, and lung cancer [8–10]. Isoforms β and δ also seem to be involved in some
tumors [11–13]. The fourth member of the class I PI3K subgroup, PI3Kγ, is abundantly
expressed in immune cells of myeloid origin, which regulate innate immunity in both
inflammation and cancer [14–16], but its role in tumors is still puzzling. Efimenko and
colleagues demonstrated the importance of PI3Kγ in T-cell acute lymphoblastic leukemia
progression [17], and an elevated expression of p110γ has been reported in chronic myeloid
leukemia [18] as well as in invasive breast carcinoma [19]. The expression of p110γ
was upregulated in renal carcinoma cell lines, compared to an immortalized proximal
tubule epithelial cell line from a normal adult human kidney [20]. Edling and colleagues
reported that p110γ expression is increased in pancreatic ductal adenocarcinoma tissue
compared with normal ducts, and that its downregulation through siRNA reduces cell
proliferation, highlighting a critical role for p110γ in pancreatic cancer progression [21]. A
high-throughput mutational analysis identified novel somatic mutations affecting p110γ in
different types of tumors, including breast, lung, ovarian, and prostate cancer [22].

Nevertheless, to the best of our knowledge very few studies have been carried out on
PI3Kγ involvement in oral squamous cells carcinoma (OSCC) [23,24]. It is the most common
oral malignancy [25] whose therapeutic outcomes are currently still limited, mainly due to
its special location, delayed diagnosis and relapses, as well as poor understanding of the
underlying molecular mechanism [26]. Oral carcinogenesis is mainly caused by tobacco
and alcohol consumption, and numerous inflammation-mediated molecular pathways
have been explored and studied as important events in promoting oral carcinogenesis.

With these premises in mind, we decided to investigate the role of PI3Kγ in a murine
model of OSCC generated by exposure to the chemical carcinogen 4-nitroquinoline 1-
oxide (4NQO) that produces close similarity with human OSCC at both histological and
molecular levels [27–31]. The use of 4NQO is widely recognized as a surrogate of tobacco
exposure to tissues of the aerodigestive tract. The study has been conducted on PI3Kγ

kinase-dead mice (PI3KγKD/KD, mice carrying a targeted point mutation in the PI3Kγ

gene causing loss of lipid kinase activity) and on PI3Kγ knockout mice (PI3Kγ−/−, mice
with a deletion of the PI3Kγ protein) [32]. Moreover, we analyzed PI3Kγ expression and
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inhibition in three human cell lines derived from oral cavities, two neoplastic and one
represented by continuous keratinocytes.

2. Materials and Methods
2.1. Materials

All reagents were purchased from Sigma (St. Louis, MO, USA) unless otherwise stated.

2.2. Animals

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Italian Ministry of the Health, protocol code 625/2017-PR, date of
approval 2 August 2017.

Twenty PI3Kγ knockout mice and twenty PI3Kγ kinase-dead mice in a C57Bl/6 back-
ground were generated as previously described [33]. Twenty-five age-matched C57Bl/6
mice were used as controls. Experiments were performed on three-month-old male mice.
All animals were maintained at standard laboratory conditions of alternating 12 h peri-
ods of light and darkness. The ambient temperature was 29 ± 1 ◦C during the whole
experimental period. Neither PI3Kγ−/− nor PI3KγKD/KD transgenic mice ever displayed
spontaneous development of oral tumors [33,34].

2.3. Chemically Induced Carcinogenesis and Lesion Development

Mice were administered 4NQO via drinking water (0.1 g/L) ad libitum to induce
oral carcinomas [27,35]. After 9 weeks of 4NQO administration, the oral cavity of each
mouse was examined under light anesthesia every second week. The lesions were counted,
measured, scored and photographed. The end-points for data analysis included prevalence
and multiplicity of preneoplastic (OPLs) and exophytic lesions (ExLs). Total lesions covered
all the lesion types, while different kinds of leukoplakia were considered preneoplastic
lesions (OPLs). Prevalence indicated the percentage of mice with lesions, and multiplicity
represented the average number of lesions carried by each mouse. A “pathological score”
(PS), expressing the overall situation of every single animal, was the sum of the score of
every single lesion present in the oral cavity, based on the double-blind scoring of lesions
as previously described [36] according to the following rules: “0” for no lesions, “1” or “2”
for a whitish tongue (depending on the severity), “3” for any OPL, “4” to “6” for every ExL
according to the diameter (“4”: ExL with a diameter < 1 mm; “5”: ExL with a diameter
between 1 and 3 mm; “6”: ExL with a diameter > 3 mm). Mice were euthanized after
22 weeks of 4NQO-exposure for initial suffering of the control group, accordingly with the
OECD (Guidance Document on the Recognition, Assessment, and Use of Clinical Signs as
Humane Endpoints for Experimental Animals Used in Safety Evaluation). Animals dead
before 22 weeks were not included in the experimentation.

2.4. Histological and Immunohistochemical Analysis

After sacrifice, tongues were immediately removed, fixed in 4% paraformaldehyde
in phosphate-buffered saline (PBS) for 3 h, washed in PBS and embedded in paraffin
after dehydration with ascending ethanol passages (50, 70, 80, 95, 100%) followed by
diaphanization in Bioclear (Bio-Optica, Milano, Italy). To identify all the lesions, tongues
were sectioned completely (7 µm thick), from end to end, using an RM2135 microtome
(Leica Microsystems); sections were placed on slides and put into a drying oven overnight.
One slide every fifteen was then deparaffinated and rehydrated with decreasing ethanol
passages and stained with hematoxylin and eosin (H&E) (Carlo Erba Reagents, Milan, Italy);
the slides were immersed in 0.1% hematoxylin for 10 min, washed in tap water for 15 min,
immersed in 0.1% eosin for 5 min, and washed in distilled water. The sections were then
dehydrated with ascending ethanol passages and mounted in Dibutylphthalate Polystyrene
Xylene (DPX). According to the histological features, lesions were classified into dysplasia
(low, mild, high grade), and in situ or invasive carcinoma. Immunohistochemistry staining
was performed using IHC Select® HRP/DAB (Merck Millipore, Burlington, MA USA)
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according to manufacturer instructions. Briefly, after being deparaffinized, slides were
treated with 0.1% trypsin solution to recover tissue antigenicity. Then, 3% hydrogen
peroxide solution was used to block endogenous peroxidase activity. After an incubation
of 5 min in Blocking Reagent, primary antibodies (listed in Table 1) were left to incubate
overnight at 4 ◦C. The next day, the secondary antibody provided by the kit was added to
the slices for 10 min, sequentially followed by incubation with streptavidin HRP (10 min)
and with the chromogen reagent (8 min). To counterstain tissues, slides were treated with
hematoxylin dye for 1 min, dehydrated and covered with a coverslip using DPX.

Table 1. Antibodies used in immunohistochemistry.

Primary Ab (Clone) Host Dilution Supplier

CD3 (PC3/188A) Mouse 1:200 Santa Cruz Biotechnology
CD4 Rabbit 1:200 Abbiotec
CD8 Rabbit 1:200 Abbiotec

CD19 Rabbit 1:300 Abbiotec
CD68 Rabbit 1:200 Abbiotec

EGFR clone 8G6.2 Mouse 1:100 Merck Millipore
c-ErbB2/c-Neu (Ab-5) Mouse 1:100 Calbiochem

Ki67 (H-300) Rabbit 1:200 Santa Cruz Biotechnology
c-Kit (C-19) Rabbit 1:100 Santa Cruz Biotechnology

2.5. Cell Culture

HSC-2 (human cell line derived from oral squamous cell carcinoma), Cal-27 (human
oral adenosquamous carcinoma cell line) and SG (human gingival epithelioid cell line)
were kindly provided by Prof. Harvey Babich (Yeshiva University, New York, NY, USA),
while HeLa (human cell line derived from cervical cancer) and 293T (human cells derived
from fetal kidney, expressing SV40 large T antigen), representing, respectively, the positive
and the negative control for PI3Kγ expression, were generously provided by Prof. Riccardo
Autelli (University of Turin, Turin, Italy).

HSC-2, Cal-27 and SG cells were cultured in RPMI-1640 medium (PAA Laboratories
GmbH, Cölbe, Germany), while HeLa and 293T were grown in DMEM, both supple-
mented with 10% fetal calf serum (FCS, PAA Laboratories GmbH), 100 U/mL penicillin G,
40 µg/mL gentamicin sulfate and 2.5 µg/mL amphotericin B at 37 ◦C in a humidified 5%
CO2 atmosphere.

2.6. Immunoblotting

Cells were collected from the culture dish with ice-cold PBS and homogenized in RIPA
lysis buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS,
50 mM Tris, Sigma-Aldrich, Merck KgaA, Darmstadt, Germany) supplemented with a
protease inhibitor cocktail (Cell Signalling, Thermo Fisher Scientific, Rodano, Milan, Italy).
Samples were treated as previously described [37]. Thirty µg of total protein extracts were
then separated by 7.5% SDS-PAGE. After transfer, the membrane was incubated overnight
with primary antibody, mouse anti-PI3Kγ (Santa Cruz Biotechnology sc-166365, Dallas,
TX, USA), at 4 ◦C. The membrane was then washed three times and incubated with an
anti-mouse secondary antibody conjugated with HRP (1:5000, Immunological Sciences,
Rome, Italy) for 1 h at room temperature. The blot was further washed three times and
images were visualized with the ChemiDoc™ Touch Imaging System Bio-Rad.

2.7. Cell Viability Assay

Cell viability assay was performed as previously described [36]. Briefly, cells were
grown on 96-well plates at a density of 1 × 104 cells/cm2. After 24 h, the cells were exposed
to increasing concentrations of specific PI3Kγ inhibitor IPI-549 (DBA Italia, Milan, Italy),
or vehicle (DMSO) as control. Cell viability was measured by MTT assay after 24 h of
treatment. Experiments were repeated three times in octuplicate.
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2.8. Statistics

Cell viability and histological results were analyzed by one-way ANOVA followed
by Tukey’s multiple comparison post hoc test. Lesion multiplicity and PS among different
groups at different times were compared with two-way ANOVA followed by the Bonferroni
post hoc test. Fisher’s exact test was used for lesion prevalence comparisons. Statistical
analysis was performed by the IBM SPSS program 24.0 version. A difference with p < 0.05
was considered significant.

3. Results
3.1. Chemically Induced OSC Carcinogenesis

The OSC carcinogenesis followed the multistep process as previously described by
Tang et al. [35]; at the end of the experimental period, all 4NQO-exposed control animals
had developed lesions. Six control animals and two in each group among the transgenic
mice died during the induction period.

3.2. Oral 4NQO-Carcinogenesis Is Delayed in PI3KγKD/KD and PI3Kγ−/− Mice

OPL prevalence and multiplicity (Figure 1A,B) in PI3KγKD/KD and PI3Kγ−/− mice
were comparable and both significantly lower than control mice before the 19th week of treat-
ment. The absence of PI3Kγ (PI3Kγ−/− mice) or of its lipid kinase activity (PI3KγKD/KD)
delayed the development of OPLs during the exposure to 4NQO: between week 11 and 15
(Figure 1A), the difference between control and transgenic mice was of utmost significance,
since at least 70% of WT mice showed OPLS, while both PI3KγKD/KD and PI3Kγ−/− mice
had null or scarce lesions. From week 15, both transgenic strains started developing OPLs,
while preneoplastic lesion number in control mice decreased, probably due to their trans-
formation into EXLs (Figure 1C). An analogous trend was observed for OPL multiplicity,
the most significant difference between control and transgenic mice being among the 11th
and the 19th weeks (Figure 1B).

Consistently with the chemical multistep carcinogenetic model, ExLs followed the
preneoplastic lesions appearing around the 15th week of exposure to 4NQO. From the 17th
week onwards, a sharp increase in ExL prevalence (Figure 1C) and multiplicity (Figure 1D)
was observed in control mice. At week 19, about 30% of WT mice showed ExLs, while only
10% of PI3KγKD/KD and no PI3Kγ−/− had ExLs; prevalence in controls reached 100% in
the following two weeks. Only 40% PI3KγKD/KD and 20% PI3Kγ−/− mice displayed ExLs
at sacrifice (Figure 1C). Moreover, on average, more than twice as many ExLs were found
in WT compared to PI3KγKD/KD and PI3Kγ−/− animals at the end of the experimental
period (Figure 1D). Differences between transgenic and WT mice were even more striking
when considering both total lesion prevalence and multiplicity (Figure 1E,F), which were
significantly delayed in PI3KγKD/KD and PI3Kγ−/−.

The average lesion-free time was longer in PI3KγKD/KD and PI3Kγ−/− mice. In
comparison with WT mice, the development of total lesions and OPLs was delayed for
7–9 weeks (p < 0.01), while ExL appearance was delayed for at least 2 weeks in PI3KγKD/KD

and PI3Kγ−/− mice.
When considering the overall situation of each oral cavity, pathological scoring con-

firmed that carcinogenesis was delayed when PI3Kγ is absent or inactive, whereas no
significant difference was detected between PI3KγKD/KD and PI3Kγ−/− mice (Figure 2).

PI3KγKD/KD and PI3Kγ−/− mice showed similar responses to 4NQO exposure: no
significant difference in lesion development was detected between these two groups.
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3.3. Lesion Severity Is Decreased in PI3KγKD/KD and PI3Kγ−/− Mice if Compared with WT Mice

To better understand the overall carcinogenesis and the severity of the lesions in each
mouse tongue, sections from control, PI3KγKD/KD and PI3Kγ−/− 4NQO-exposed mice
were analyzed by H&E staining.

At sacrifice, PI3KγKD/KD and PI3Kγ−/− tongues showed mid–low degree dysplasia
and only one case of invasive carcinoma was observed in either PI3KγKD/KD or PI3Kγ−/−

mice. On the other hand, 13 out of 25 WT mice displayed mid–high degree dysplasia and
OSCC (Figure 3A). Figure 3B shows representative histological features unveiled at sacrifice
of a SCC in a WT tongue and two different low–mid dysplasia developed in PI3KγKD/KD

and PI3Kγ−/− mice (Figure 3C,D).
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Cancers 2021, 13, 4211 8 of 14

3.4. Immunohistochemical Analysis of Prognostic-Related Biomarker of Oral Cancerogenesis

Table 2 depicts the results of IHC staining of WT, PI3Kγ KD/KD and PI3Kγ−/− lesions.
EGFR expression is decreased in mutated mice, both in preneoplastic and OSCC. Neu and
Ki67 expression is also higher in control mice masses, despite being more evident in OSCC
and in preneoplastic lesions, respectively. cKit is faintly more expressed in wild type (WT).

Table 2. Prognostic-related biomarker expression in 4NQO-induced preneoplastic lesions and OSCC
isolated from wild type (WT), PI3Kγ KD/KD (KD) and PI3Kγ−/− (KO) mice.

Marker Preneoplastic Lesions OSCC

WT KD and KO WT KD and KO
EGFR ++ 1 +/– +++ +
NEU + +/– ++ +
cKit + +/– ++ +
Ki67 +++ + ++ +

1 +/−, barely present; +, faintly present; ++, present; +++, abundant.

3.5. Immunohistochemical Characterization of Infiltrating Immune Cell Subsets in Tongues

CD3+ (pan-T), CD4+ (T-helper) and CD8+ (T cytotoxic) cells were more abundant in
tongues isolated from PI3KγKD/KD and PI3Kγ−/− mice than in wild type. CD19+ (pan-B)
and namely CD68+ (pan-macrophages) cells were, on the other hand, more numerous in
wild-type tongues (Table 3).

Table 3. Abundance of infiltrating immune cell subsets in tongues isolated from wild-type,
PI3KγKD/KD (KD) and PI3Kγ−/− (KO) mice.

Infiltrating Cells Wild Type KD and KO

CD3 +/– 1 +
CD4 +/– +
CD8 – +

CD19 ++ +
CD68 ++ +/–

1 –, Absent; +/–, barely present; +, faintly present; ++, present.

3.6. PI3Kγ Expression in Neoplastic and Epithelioid Oral Cell Lines and the Effect of Its Inhibition
on Cell Vitality

We explored PI3Kγ expression in OSCC (HSC-2 and Cal-27) and epithelioid (SG) cell
lines by Western blot analysis (Figure 4A). HeLa and 293T cells were included, respectively,
as positive and negative controls. A band of 110 KDa was detected in all tested oral cell
lines, though PI3Kγ expression in SG was fainter.

The PI3Kγ-specific inhibitor IPI-549 strikingly impaired HSC-2 and Cal-27 cells vitality
(Figure 4B) already after 24 h treatment: their CC50 being 32.61 and 55.75 µM, respectively.
Interestingly, the vitality of the oral non-neoplastic cell line SG and that of cells not ex-
pressing PI3Kγ (293T) was significantly less affected (CC50 > 160 µM, undetected in the
concentration range tested).
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Figure 4. (A) Western blot analysis of PI3Kγ expression in HeLa, 293T, SG, HSC-2 and Cal-27 whole
cell lysates. HeLa and 293T represent, respectively, the positive and the negative control for PI3Kγ

expression. (B) Residual cell vitality in presence of the PI3Kγ specific inhibitor IPI-549 (0–160 µM) as
detected by MTT assay. Values, expressed as a percentage of controls, represent mean ± standard
error (SEM), p are detailed in (C).

4. Discussion

Our preclinical study demonstrates that PI3Kγ absence reduces the number and delays
the appearance of chemically induced oral preneoplastic and neoplastic lesions, therefore
supporting its role in oral cancer development. Some other authors already showed that
PI3K isoforms other than γ are involved in oral cancerogenesis [38–41], and our results
therefore confirm the PI3K/Akt/mTOR pathway as a potential target.

The identification of novel molecular targets has been fundamental for the great
improvements in oncology, as shown by the identification of Herb2 and the use of drugs
against it in the treatment of Herb2+ breast cancer. Despite some interesting progress
achieved in oncology over the past 25 years, OSCC remains one of the most challenging
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cancers to be cured and the pharmacological approach is often ineffective [42], namely
because of the lack of specific molecular targets.

With these premises, we wondered if PI3Kγ might be looked at as a target in OSCC
treatment. Here, we analyzed the role of PI3Kγ on chemically induced oral carcinogenesis
in a genetically modified background [43]. This approach represents a valid method to
study the function of specific genes in vivo.

Morphological and histological changes induced in control mice (C57Bl/6 wild type)
by 4NQO also appeared in the PI3KγKD/KD and PI3Kγ−/−. Thus, we could compare the
differences among groups and investigate the role of PI3Kγ on preneoplastic lesions and
OSCC initiation and promotion. Reduced lesion prevalence and multiplicity, decreased
PS, and lower incidence of OSCC versus controls were equally found in PI3KγKD/KD and
PI3Kγ−/− mice. Since PI3Kγ is involved in two distinct signaling pathways (a kinase-
dependent activity that controls phosphorylation of its substrate, and a kinase-independent
activity that relies on protein interactions) [32], our results suggest that kinase activity,
but not the scaffold function of PI3Kγ, is fundamental in facilitating tumor progression.
This is supported as well by a lower expression of the tested tumor markers (EGFR, Neu,
cKIT and Ki67), both in preneoplastic and frank lesions developed in both PI3KγKD/KD

and PI3Kγ−/− mice. The expression of those markers in oral carcinogenesis is thoroughly
recognized as fundamental both for diagnostic and prognostic purposes. Ki67, whose
expression is faint in lesions of our transgenic mice, has been accounted to provide a
diagnostic and poor prognostic biomarker for OSCC patients [44]. In a study performed
on 102 squamous cell carcinomas of the tongue, the intracytoplasmic expression of Neu,
as well as Ki-67 nuclear staining, have been associated with a high risk of recurrence of
tongue OSCC [45]. EGFR is more expressed both in preneoplastic and neoplastic lesions
from transgenic mice, consistently with its recognized role in oral carcinogenesis; moreover,
recently it has also been considered as a possible predictor of metastasis [46].

Since PI3Kγ expression was firstly detected in leukocytes [47], great attention has
been devoted to its role in creating a microenvironment favoring angiogenesis, tumor
growth, and immunosuppression. Immune cell infiltration is an important feature of oral
cancer, and tumor progression reflects the inability of the immune system to recognize and
eliminate neoplastic cells [48]. Therefore, we characterized the inflammatory infiltrated in
WT and transgenic mice: the higher presence of CD3+ (pan T-cell), CD4+ (T-helper cell),
and overall CD8+ (cytotoxic T lymphocytes) in PI3KγKD/KD and PI3Kγ−/− mice, where
cancer lesions were less precocious and less numerous than in control mice, corresponds to
what is reported in the literature. A high number of CD8+ infiltrating cells correlates with
favorable outcomes in patients since they migrate into the peritumoral region and directly
fight tumor cells [48] and the number of peritumoral CD8+ T cells correlated with a lower
neoplastic expression of Ki67 in the work published by Öhman et al. [49], consistently with
what we found in our model. Moreover, low levels of CD4+ and CD8+ lymphocytes have
been found in patients with oral cancer with active disease, thus suggesting a decreased
function of effector cells. An elevated CD3 expression in infiltrating lymphocytes was as
well considered an independent factor for favorable prognosis [50]. On the other hand,
the pan-B cell marker CD19 and the pan macrophage marker CD68 were less expressed in
PI3KγKD/KD and PI3Kγ−/− mice than in control mice. The role of CD19+ cells in tumor
immunosurveillance is quite debated, as reviewed by Hadler-Olsen and Wirsing [51], since
only in some works their presence has been significantly correlated to survival benefits.
On the other hand, coherently with what we found, CD68+ cells seem to be associated with
poor clinical outcomes [52], though no definite position on the role of CD68+ cells in oral
cancer immune surveillance seems to be achieved [51].

Strict evidence demonstrates the presence of immunosurveillance already on dyspla-
sia/preneoplastic lesions in which, as for frank lesions, T cells play a major role impairing
the neoplastic transformation [49,53]. To this phenomenon, as well as to the well-known
ability of PI3Kγ in inducing immune suppression through AKT, mTOR and NfKβ path-
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ways [15], we might ascribe the high number of OPL taking over the very few OSCC that
we observed in transgenic mice.

PI3kγ expression has been recently shown to be not only restricted to leukocytes, but
also to other cell types, including tumor cells [17–20], suggesting that it might be involved
in roles other than driving the tumor microenvironment. This intriguing hypothesis has
been considered in our work: we demonstrated that cells from human OSCC (HSC-2 and
Cal-27) express PI3Kγ and that its inhibition through the specific antagonist IPI-549 impairs
cell proliferation significantly more than that of 293T PI3Kγ-negative cells. Despite being
preliminary and deserving further studies, the effect of the PI3Kγ inhibitor on the vitality
of human continuous keratinocytes from the oral cavity (SG) is less striking than what was
observed in cancer cells, thus suggesting possible lower cytotoxicity on oral keratinocytes.

5. Conclusions

Based on our results and on those of other authors demonstrating that PI3Kγ plays
a proinflammatory role [54], we can suggest that the antitumoral activity observed when
PI3Kγ is absent (or inhibited) is not only due to the modulation of the tumor “inflamed”
microenvironment, but also to a direct impact on cancer cell survival. The next fundamental
step will be the comprehension of the mechanisms by which PI3Kγ inhibition impairs
cancer cell proliferation.

If the promising results obtained in our model are confirmed in humans, PI3Kγ

inhibition might be proposed to prevent progression to OSCC in patients with OPLs and
those already operated for OSCC with a consequently high risk of recurrence or relapse.
PI3Kγ, differently from p110α or p110β [55], is not required for normal development,
lifespan, or basic immune responses, unless under stress conditions; therefore, low toxicity
and few side effects are expected by acting on PI3Kγ as a therapeutic target [56].
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