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Simple Summary: Up to 70% of chemotherapy-treated patients experience problems with memory and
concentration, potentially caused by direct and indirect neurotoxicity, such as (neuro-)inflammatory
processes. Can neuroinflammation changes be detected in chemotherapy-treated patients with
breast cancer using translocator protein [18F]DPA714 simultaneous positron emission tomographic-
and magnetic resonance imaging? Moreover, what is the association with clinical biomarkers?
In a study including 19 chemotherapy-treated breast cancer patients, 18 chemotherapy-naïve and
37 healthy controls, we found significant relative glial overexpression in parietal and occipital brain
regions in chemotherapy-treated patients compared to controls, which were associated with cognitive
abnormalities and markers of neuronal survival. Shortly after ending chemotherapy, changes in
brain neuroinflammation seem to occur, possibly contributing to the cognitive decline seen in breast
cancer patients. Additionally, blood levels of an axonal damage marker were 20-fold higher in
chemotherapy-treated patients, providing evidence for its use as a biomarker to assess neurotoxic
effects of anticancer chemotherapies.

Abstract: To uncover mechanisms underlying chemotherapy-induced cognitive impairment in breast
cancer, we studied new biomarkers of neuroinflammation and neuronal survival. This cohort
study included 74 women (47 ± 10 years) from 22 October 2017 until 20 August 2020. Nineteen
chemotherapy-treated and 18 chemotherapy-naïve patients with breast cancer were assessed one
month after the completion of surgery and/or chemotherapy, and 37 healthy controls were included.
Assessments included neuropsychological testing, questionnaires, blood sampling for 17 inflam-
matory and two neuronal survival markers (neurofilament light-chain (NfL), and brain-derived
neurotrophic factor (BDNF) and PET-MR neuroimaging. To investigate neuroinflammation, translo-
cator protein (TSPO) [18F]DPA714-PET-MR was acquired for 15 participants per group, and evaluated
by volume of distribution normalized to the cerebellum. Chemotherapy-treated patients showed
higher TSPO expression, indicative for neuroinflammation, in the occipital and parietal lobe when
compared to healthy controls or chemotherapy-naïve patients. After partial-volume correction,
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differences with healthy controls persisted (pFWE < 0.05). Additionally, compared to healthy- or
chemotherapy-naïve controls, cognitive impairment (17–22%) and altered levels in blood markers
(F ≥ 3.7, p ≤ 0.031) were found in chemotherapy-treated patients. NfL, an axonal damage marker,
was particularly sensitive in differentiating groups (F = 105, p = 4.2 × 10 −21), with levels 20-fold
higher in chemotherapy-treated patients. Lastly, in chemotherapy-treated patients alone, higher
local TSPO expression was associated with worse cognitive performance, higher blood levels of
BDNF/NfL, and decreased fiber cross-section in the corpus callosum (pFWE < 0.05). These findings
suggest that increased neuroinflammation is associated with chemotherapy-related cognitive impair-
ment in breast cancer. Additionally, NfL could be a useful biomarker to assess neurotoxic effects of
anticancer chemotherapies.

Keywords: neuroimaging; breast cancer; chemotherapy; neuroinflammation; PET-MR

1. Introduction

With advances in cancer treatment, the number of cancer survivors has grown remark-
ably [1]. Emphasis has gone to understanding how cancer treatment can impact survivors’
quality of life. Cancer-related cognitive impairment (CRCI) is broadly reported, with up
to 70% of patients being affected, mainly in memory and attention, especially related to
chemotherapy [2]. CRCI can emerge before the start of therapy, during, or persist up to
years after treatment [3]. While underlying mechanisms remain largely unknown, CRCI is
described as a complex interaction of vulnerability [4], cancer biology, aging [5,6], and both
direct (i.e., cytostatics crossing the blood-brain barrier (BBB) [7]) or indirect toxic treatment
effects (i.e., cytokine-induced neuroinflammation, hormonal deregulation, or oxidative
damage [8,9]).

After cancer treatment, increased pro-inflammatory cytokines are found in patients [10],
which can cross and disrupt the BBB, activate microglia or astrocytes, and potentially in-
crease permeability for cytotoxic agents [9]. Interestingly, peripheral cytokine levels are
found to correlate with cognitive changes [3,11]. Moreover, rodent studies have demon-
strated changed microglial levels after chemotherapy [12–15]. These findings suggest
induced neuroinflammation as an interesting pathway to explain acute behavioral effects
seen after chemotherapy, sometimes transitioning to chronic syndromes [16].

In vivo assessment of inflammatory processes is made possible by positron emission
tomography (PET) using radiolabeled ligands selective for the 18kDa translocator protein
(TSPO) [17,18]. Minimally expressed in the healthy brain, TSPO is overexpressed when
microglia and astrocytes are activated, and is presumed to serve as a marker for neu-
roinflammation [17,19]. TSPO-imaging could therefore be extremely valuable to evaluate
neuroinflammation as a causative factor for chemotherapy-induced cognitive impairment.

Besides indirect toxicity, chemotherapeutics could more directly induce neuronal
brain damage. In rodents, cytostatics increase apoptosis and reduce neurogenesis [20,21].
Promising markers to investigate neurotoxicity in humans are neurofilaments, which
demonstrate high prognostic and diagnostic accuracy for neurodegenerative diseases, such
as amyotrophic lateral sclerosis [22] and Alzheimer’s disease [23], even in their earlier
stages. Moreover, neurofilaments increase in a chemotherapy dose-dependent manner in
breast cancer patients, suggesting their potential as a marker for neuronal damage after
chemotherapy [24].

In vivo measurement of neural microstructure and function can be assessed by mag-
netic resonance imaging (MRI). Since oligodendrocytes, the myelin forming cells of the
central nervous system (CNS), are known to be especially vulnerable to cytostatics [25,26],
diffusion-weighted MRI is used to study white matter (WM)-microstructure in vivo.
Chemotherapy-induced changes in WM-microstructure are associated with cognitive
decline in breast cancer patients [27–29]. Additionally, rodent research has shown that neu-
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roinflammation after chemotherapy can modulate myelin structure and myelination [30].
However, such interactions remain to be elucidated in a clinical setting.

This study aimed at investigating (in) direct neurotoxicity after chemotherapy for
breast cancer. Specifically, we investigated neuroinflammation and its association with cogni-
tive decline, blood markers of neuronal survival and inflammation, and WM-microstructure.

2. Patients and Methods

This prospective cohort study enrolled participants from October 2017 until August
2020. Women < 65 years diagnosed with early-stage breast cancer were contacted at the
University Hospitals Leuven. Patients treated with chemotherapy (C+, four rounds of
epirubicin 90 mg/m2 + cyclophosphamide 600 mg/m2 and four to 12 rounds of pacli-
taxel 80 mg/m2) and control patients not scheduled for chemotherapy (C−) were in-
cluded. Healthy controls (HC) were recruited through online advertisements. Both control
groups, C− and HC, were matched at group level to the C+ group based on age and
education. Women with MRI/PET-contraindications, (history of) cancer treatment, psy-
chiatric/neurological condition/injury, mental retardation, or systemic steroid use, were
excluded. Via blood collection, participants were genetically screened for the TSPO single-
nucleotide polymorphism rs6971, determining [18F]DPA714-tracer affinity. Low-affinity
(LA) binders were excluded [31] (supplementary materials (SM)). Data collection took place
post-chemotherapy or post-surgery, before the start of radiotherapy and/or antihormone
therapy. Detailed information of the included cohort is provided in Table 1.

Table 1. Demographics and characteristics of the study population.

Characteristic

Whole Sample PET Subsample

C+
n = 19

C−
n = 18

HC
n = 37

Group
Difference
p Value *

C+
n = 15

C−
n = 15

HC
n = 15

Group
Difference
p Value *

Age in years, mean (SD) 47 (10) 50 (6) 45 (10) 0.092 51 (8) 49 (6) 44 (10) 0.059
Education in years, mean (SD) 13 (4) 14 (3) 15 (2) 0.315 13 (3) 14 (3) 14 (2) 0.872

Body-mass index in kg/m2, mean (SD) 25 (4) 25 (5) 24 (3) 0.184 25 (4) 25 (5) 23 (3) 0.400
Postmenopausal at diagnosis, no. (%) 9 (47) 8 (44) - 0.999 † 9 (60) 6 (40) - 0.273 †

Post- or perimenopausal at assessment,
no. (%) 15 (79) 8 (44) 13 (34) 0.006 † 14 (93) 6 (40) 4 (27) 0.001 †

Days since end of
chemotherapy/surgery, mean (SD) 26 (17) 36 (12) - 0.025 28 (13) 36 (12) - 0.106

Breast cancer stage, no. (%) <0.001 † 0.002 †

0–1 0 (0) 10 (55) - - 0 (0) 8 (53) - -
2 6 (32) 7 (39) - - 6 (40) 6 (40) - -
3 13 (68) 1 (6) - - 9 (60) 1 (1) - -

Cancer treatment, no. (%)
Neo-adjuvant chemotherapy (EC + T) 8 (42) - - - 8 (53) - - -

Scheduled for radiotherapy 13 (68) 11 (61) - - 10 (67) 9 (60) - -
Scheduled for anti-hormone therapy 9 (47) 14 (78) - - 8 (53) 12 (80) - -

High affinity binders, no. (%) - - - - 9 (60) 7 (53) 7 (47) 0.809 †

Injected activity in MBq, mean (SD) - - - - 144 (12) 144 (15) 144 (21) 0.983

* Group differences tested with ANOVA for continuous variables and chi-square tests for categorical variables (last indicated by †).
Abbreviations: C− = chemotherapy-naïve breast cancer patients, C+ = breast cancer patients treated with chemotherapy, HC = healthy
controls, EC + T = 4 rounds of epirubicin 90 mg/m2 + cyclophosphamide 600 mg/m2 and 4–12 rounds of paclitaxel 80 mg/m2, SD = stan-
dard deviation.

2.1. Neuroimaging

Details can be found in SM.
Participants underwent simultaneous [18F]DPA714-PET-MR neuroimaging on a GE-

SIGNA scanner (GE Healthcare, Milwaukee). After a bolus injection of [18F]DPA714
(144 ± 16 MBq, 388 ± 252 GBq/µmol), 60-min dynamic PET scans were acquired in list-
mode, during which 5 mL arterial samples were manually collected to derive the arterial
input-curve and parent-free fraction. Simultaneously, a 3-dimensional T1-weighted, zero-
echo-time for attenuation correction [32] and multi-shell-diffusion MR images were acquired.

For the quantification of [18F]DPA714-PET, voxel-based and volume-of-interest (VOI)
analyses were performed using Logan graphical analysis (LGA) [33] with total distribution
volume (VT) as the main parameter of interest. VOIs included frontal, temporal, occipital,
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parietal, insular, and cingulate cortices, amygdala, hippocampus, thalamus, striatum,
cerebellum, and WM. To account for brain atrophy, voxel-based morphometry (VBM)
analysis on T1-weighted MRI and region-based voxel-wise partial-volume correction
(PVC) [34] was performed on VT-images (Freesurfer v6). To correct for genotype, voxel and
VOI VT were i) analyzed with a binding-affinity covariate (high-affinity/medium-affinity,
HA/MA) and ii) VT-ratios were calculated by dividing each voxel/VOI by the corresponding
mean cerebellar VT. The cerebellum serves as a pseudo-reference region, as seen in previous
studies in “middle-aged” individuals [17]. Earlier structural/metabolic neuroimaging
studies mainly observed chemotherapy-induced changes in frontal/temporal regions,
suggesting the cerebellum to be less affected and a possible reference region [35,36].

Fixel-based analysis of diffusion-weighted images (MRtrix v3.0) [37–39] was used to
study WM micro- and macrostructure. This novel technique addresses the complexity
of crossing fibers, in contrast to older techniques such as diffusion-tensor imaging [37],
providing measures of fiber density (FD), fiber cross-section (FC), and a combined measure
of fiber density and cross-section (FDC).

2.2. Clinical Parameters

Cognitive functioning was assessed using nine neuropsychological tests covering
memory, attention/concentration, processing speed and executive functioning, follow-
ing ICCTF guidelines [40], from which a Global Deficit Score (GDS) [41] was derived
(GDS ≥ 0.50 indicates cognitive impairment) [41,42]. Participants completed question-
naires evaluating anxiety [43], depression [44], stress [45], fatigue [46], and cognitive failure
(CFQ-total > 55 indicates severe cognitive complaints) (SM) [47,48].

Neurofilament light chain (NfL) was assessed with an enzyme-linked immunosorbent-
kit (UmanDiagnostics, Umea) on serum [49] and quantified with an electrochemilumi-
nescent assay [50]. Mean values across triplicates were used for analysis. We explored
the diagnostic cut-off of 26.6 pg/mL for NfL, which has been proposed for neurodegen-
erative disease with a 91% sensitivity using the same immunoassay [50]. Inflammatory
markers and brain-derived neurotrophic factor (BDNF) were determined by bead-based-
immunoassay (ImTec Diagnostics, Antwerp and YSL AimPlex, BioLegend, San Diego) on
plasma (SM).

2.3. Statistics

Clinical and PET-VOI data were assessed for normality (log-transformed when nec-
essary) and compared between groups, using SPSS 27.0 (Chicago, IL, USA). Chi-square
tests and one-way analyses of variance were performed to evaluate group differences in
categorical and numerical variables, respectively, with post-hoc least-significance difference
to assess which groups differ. Statistical significance was inferred at p < 0.05, with age as
covariate for blood markers and years of education for cognition.

T1w-modulated GM and PVC-VT maps were analyzed with SPM12 and diffusion-
derived fixels with MRtrix 3.0, using a generalized linear model to explore group differences.
Absolute-VT analysis was corrected for binding affinity, MRI analyses for age and intracra-
nial volume (ICV) when relevant (T1w, FDC and FC). For C+ patients, linear regression
models (SPM12) explored associations between whole-brain PET-PVC-VT-ratio and cogni-
tion (GDS and CFQ; corrected for yes/no higher education), or blood markers (NfL, BDNF
and one comprehensive measure for peripheral inflammation; corrected for age). To reduce
the number of variables, (i) only PET-PVC images showing group differences were used
and (ii) principal component (PC) analysis was performed for the whole sample on those
inflammatory markers showing group differences, to extract the first PC (inflammatory
markers are expected to interact in a network [51]). The relationship of PVC-VT-ratio with
whole-brain WM-morphometry (FD, corrected for age; log FC and FDC, corrected for age
and ICV) was also explored using regression models (MRtrix). To reduce the number of
variables, only the VT-ratio of the region showing an association with cognition (frontal)
was used for these analyses.
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Statistical significance for image analyses was inferred with a height threshold of
puncorrected < 0.001 and a cluster-level familywise-error correction for multiple comparisons
(FWE) of pFWE < 0.05, while a threshold of height puncorrected < 0.005 and cluster pFWE < 0.05
was used for the group PET analyses. No correction for multiple comparisons was per-
formed for other analyses seen the explorative character of this study.

3. Results
3.1. Participants

Of 197 eligible patients, 54 provided informed consent (27%). Of those, 16 were ex-
cluded because of LA binding [31] and one because of an incidental CNS tumor (Figure 1).
The final sample included 19 chemotherapy-treated patients (C+), 18 chemotherapy-naïve
patients (C−) and 37 healthy controls (HC). Demographics and medical data are provided
in Table 1. Groups showed no differences regarding age, education, or BMI. A differ-
ence was found for menopausal status, related to chemotherapy-induced menopause for
C+ [52], and days since last treatment, since assessments were required before the start of
radiotherapy, which occurred sooner for C+ than C−.
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Figure 1. Flow diagram of included participants. Abbreviations: C− = chemotherapy-naïve breast cancer patients,
C+ = breast cancer patients treated with chemotherapy, DWI = diffusion weighted imaging, HC = healthy controls,
LAB = low affinity binder.

3.2. Neuroimaging

VBM revealed no GM atrophy for patients compared to HC. Global VOI and voxel-
level analysis showed no group differences in LGA absolute VT, both for uncorrected
and PVC values. Cerebellar VT did not differ between groups (p = 0.51, F = 0.69) and
showed the lowest VT of cortical GM VOIs (Supplementary Table S2), supporting its use as
pseudo-reference region.

When correcting for binding-affinity by normalizing VOI values to the cerebellum,
group differences were found in the parietal lobe (F = 4.3, p = 0.020), with C+ patients
showing higher VT-ratio than HC (Figure 2A). With PVC, differences were found in the
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frontal, parietal, and occipital lobe (F ≥ 4.0, p ≤ 0.026), while C+ patients presented with
higher VT-ratio than HC and C− patients. When comparing VT-ratios on a voxel-level, C+
patients presented with a higher VT-ratio in the left occipital- (8.9 ± 6.9%, mean ± SD cluster
increase) and right parietal lobe (9.0 ± 7.0%) when compared to HC and right parietal lobe
when compared to C− patients (11 ± 9.9%). After PVC, an increased VT-ratio was found in
C+ patients in the left (9.2 ± 7.3%) and right occipital lobe (9.0 ± 6.5%), only compared
to HC (all clusters pFWE < 0.05)(Figure 2B; Supplementary Table S3). No differences in
VOI/voxel VT-ratio between C− patients and HC were found.
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Figure 2. Regions showing [18F]DPA714 VT-ratio differences with LGA. Fifteen chemotherapy-treated patients (C+) were
assessed for [18F]DPA714 VT-ratio and compared to 15 chemotherapy-naïve patients (C−) and 15 healthy women (HC).
(A) Volumes-of-interest based logan-graphical analysis (LGA) results of 11 volumes of interest are presented, showing
higher VT-ratio in C+ patients compared to HC in the parietal lobe. After partial volume correction (PVC), C+ patients
showed higher VT-ratio compared to C− and HC in the parietal and occipital lobe and additionally in the frontal lobe when
compared to HC (* p < 0.05). (B) Voxel-based whole brain LGA results are presented, showing higher VT-ratio in C+ patients
compared to HC (red) and C− patients (orange) in the occipital and parietal lobe. After PVC, only differences between C+
and HC persisted for VT-ratio images (all puncorrected < 0.005, pcluster FWE-corrected < 0.05). Section numbers refer to Montreal
Neurological Institute coordinates. Abbreviations: HP = hippocampus, VT = total distribution volume, WM = white matter.
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Fixel-based analysis of diffusion-weighted images revealed no group differences of
WM-metrics (FD, log-FC, or FDC).

3.3. Clinical Parameters

Group differences were found for self-reported depression, anxiety, stress, fatigue,
and cognitive complaints, with C+ patients consistently reporting higher scores than HC
and higher depression levels than C− patients (Table 2 and Supplementary Table S4). C−
patients also scored significantly higher than HC on the same scales, except for anxiety.
Four C+ patients (22%) and one C− patient (6%) reported severe cognitive complaints [48].
Patient groups did not differ in GDS, but, when classifying patients as cognitively impaired,
three C+ patients were classified as impaired (17%), while none of the C− patients received
this classification.

Table 2. Neuropsychological assessment, questionnaires and blood markers.

C+
n = 19

C−
n = 18

HC
n = 33

Group
Difference
p Value *

Post-hoc p Value

C+ vs.
HC

C− vs.
HC

C+ vs.
C−

Cognition (C+ n = 18)

Global deficit score, mean (SD) 0.27 (0.27) 0.21 (0.14) - 0.388 - - -
Impaired, no. (%) (GDS) 3 (17) 0 (0) - 0.286 † - - -

Self-report cognitively impaired,
no. (%) (CFQTOT) 4 (22) 1 (6) 0 (0) 0.434 † - - -

Self-report, mean (SD) (C+ n = 18)

Beck depression inventory 10.83 (5.25) 7.28 (6.62) 4.11 (3.45) <0.001 <0.001 0.040 0.034
Spielberger state-trait anxiety

inventory 41.00 (11.62) 37.83 (14.36) 31.74 (9.09) 0.008 0.005 0.053 0.407

Self-perceived stress scale 16.67 (6.75) 15.44 (9.82) 9.20 (6.06) 0.001 0.001 0.006 0.638
Fatigue assessment scale 28.17 (6.41) 26.17 (7.39) 19.43 (5.79) <0.001 <0.001 0.001 0.324

CFQ total score 39.61 (15.31) 33.50 (13.54) 25.38 (8.00) 0.001 <0.001 0.026 0.130

Inflammatory markers, median
pg/mL (IQR)

bNGF 18.20 (8.87) 16.52 (9.80) 19.29 (9.48) 0.961 - - -
CRP, mg/L 1.20 (0.90) 1.30 (2.75) 0.85 (0.65) 0.240 - - -

Eotaxin 27.07 (5.85) 29.58 (11.84) 28.66 (12.31) 0.555 - - -
IFN-g 3.39 (1.91) 3.39 (1.55) 2.68 (1.27) 0.471 - - -
IL-1a 1.20 (0.93) 1.29 (1.72) 1.03 (1.01) 0.668 † - - -
IL-1b 1.16 (0.82) 2.27 (3.00) 1.16 (1.23) 0.440 † - - -
IL-4 12.70 (5.54) 11.87 (7.10) 10.50 (3.88) 0.578 - - -
IL-6 7.66 (5.04) 6.41 (3.02) 4.60 (2.98) 0.031 0.010 0.402 0.093
IL-8 9.68 (3.81) 8.58 (12.23) 5.31 (3.81) 0.001 0.008 0.001 0.446
IL-10 1.24 (0.93) 0.97 (0.63) 0.97 (0.66) 0.638 - - -
IL-12 2.00 (0.40) 2.10 (0.35) 1.95 (0.27) 0.187 - - -
IL-18 36.55 (27.75) 31.10 (7.85) 33.47 (24.51) 0.751 - - -

MCP-1 70.33 (33.35) 61.54 (25.56) 47.64 (16.70) <0.001 <0.001 0.033 0.069
MIP-1B 146.36 (101.06) 105.73 (121.97) 79.78 (53.70) 0.006 0.002 0.098 0.210
TNF-a 0.64 (1.24) 1.39 (2.44) 0.88 (1.39) 0.575 † - - -

VCAM-1 93294 (41634) 73552 (47979) 91143 (52101) 0.051 - - -
VEGF-A 24.15 (18.88) 27.56 (15.50) 31.98 (24.97) 0.338 - - -

Neuronal survival markers, median
pg/mL (IQR)

BDNF 617.24 (472.04) 741.98 (843.38) 1110.17 (482.29) 0.010 0.011 0.484 0.089
NfL 339.00 (399.00) 16.55 (19.84) 14.38 (11.68) <0.001 <0.001 0.475 <0.001

* Group differences tested with ANOVA for continuous variables, with years of education (GDS) or age (blood markers) as covariate, and
chi-square tests for categorical variables (last indicated by †). When no main group effect was found, subsequent least-square difference
tests were not performed (-). All blood biomarkers were log-transformed for analysis. 50% of Il-1a, IL-1b and TNF-a levels were very close
to the detection limit and therefore converted to a 1 (equal or above detection limit) or 0 (below detection limit) variable. Abbreviations:
BDNF = brain-derived neurotrophic factor, bNGF = beta nerve growth factor, CFQ = cognitive failure questionnaire, CRP= C-reactive
protein, C− = chemotherapy-naïve breast cancer patients, C+ = breast cancer patients treated with chemotherapy, GDS = global deficit score,
HC = healthy controls, IFN-g = interferon gamma, IL = interleukin, IQR = inter-quartile range, MCP-1 = monocyte chemoattractant protein
1, MIP-1 = macrophage inflammatory protein 1, NfL = neurofilament light-chain, TNF-a = tumor necrosis factor alpha, VCAM-1 = vascular
cell adhesion molecule 1, VEGF-A = vascular endothelial growth factor.

Inflammatory (SM) and both neuronal (NfL, BDNF) blood markers differed between
groups (Table 2, Figure 3). All 19 C+ patients (100%), five C− patients (28%), and four HC
(11%) presented above a neurodegenerative NfL cut-off level [50]. C+ patients presented
with 20-fold higher NfL (median 339 pg/mL, range 57–1543) compared to C− patients
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(17 pg/mL, range 3–67) and HC (14 pg/mL, range 1–54) (F = 105, p = 4.2E-21). Plasma
levels of BDNF differed between groups (F = 4.3, p = 0.017), with C+ patients presenting
lower levels than HC. No differences were found between C− patients and HC.

1 
 

 
Figure 3. Serum neurofilament light chain and plasma brain-derived neurotrophic factor levels are altered after
chemotherapy treatment. Neurofilament light chain (NfL) and brain derived-neurotrophic factor (BDNF) levels were mea-
sured in serum and plasma, respectively, of 19 C+ (breast cancer patients treated with chemotherapy), 18 C− (chemotherapy-
naïve breast cancer patients) and 33 HC (healthy women) and showed to be altered in C+ compared to both control groups
for NfL and only compared to HC for BDNF. Individual values with group medians are presented. The dotted line indicates
diagnostic cutoff level for neurodegenerative disease with NfL immunoassay serum measurement. Group differences were
assessed with ANOVA analysis with group as factor and age as covariate, with post-hoc least significance difference tests to
assess which groups differ. *** p < 0.001, * p < 0.01.

3.4. Associations for C+ Patients

Whole brain voxel-wise regression analysis showed a higher GDS, but not CFQ score,
associated with a higher VT-ratio in the frontal lobe. Higher blood levels of NfL and BDNF,
but not the inflammatory component (SM), were associated with higher VT-ratio in the
temporal lobe, putamen, and caudate, and additionally in the frontal pole and insular
cortex for NfL and parietal lobe for BDNF. Secondly, whole brain fixel-based regression
analysis showed higher frontal VT-ratio was negatively associated with WM log-FC, but not
FDC or FD, in the forceps-minor and -major of the corpus callosum (Figure 4).
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frontal VT-ratio are shown on the left (blue-green, white = all fixels; corrected for age and intracranial volume). The right image shows 
streamlines passing through fixels showing a significant negative association (colored by direction; red: left-right, green: anterior-poste-
rior, blue: inferior-superior), in the forceps major and minor of the corpus callosum. All models are with threshold puncorrected < 0.001, pFWE-
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Figure 4. The relationship between neuroinflammation and clinical parameters and white matter microstructure in 15
chemotherapy treated (C+) breast cancer patients. (A) Global deficit score (GDS, orange; corrected for yes/no higher
education), neurofilament light chain (NfL, blue; corrected for age) and brain-derived neurotrophic factor (BDNF, red;
corrected for age) showed a significant positive association with partial-volume corrected (PVC) total distribution volume
(VT)-ratio in the temporal lobe, putamen, and caudate, and additionally in the frontal pole and insular cortex for NfL
and parietal lobe for BDNF. (B) Fixels with a significant negative association with frontal VT-ratio are shown on the left
(blue-green, white = all fixels; corrected for age and intracranial volume). The right image shows streamlines passing
through fixels showing a significant negative association (colored by direction; red: left-right, green: anterior-posterior, blue:
inferior-superior), in the forceps major and minor of the corpus callosum. All models are with threshold puncorrected < 0.001,
pFWE-corrected < 0.05.

4. Discussion

To our knowledge, this is the first in vivo study investigating the neuroinflamma-
tory effect of chemotherapy and its relationship with cognition. When compared to
chemotherapy-naïve or healthy women, increased neuroinflammation, associated with
worse cognitive performance, and 20-fold higher levels of the axonal damage marker NfL
were found in chemotherapy-treated patients with breast cancer.

Increased relative glial expression, measured by TSPO-PET, was observed in chemotherapy-
treated patients when compared to chemotherapy-naïve or healthy women, while no ab-
solute differences were observed. Activation of glial cells leads to an ongoing pathologic
process that includes neuroinflammation and cellular destruction. Since TSPO is equally
expressed across different glia phenotypes, it is impossible to differentiate protective from
destructive effects. However, previous tumor-bearing rodent models show chemotherapeu-
tics trigger microglia activation [16], suggesting a neuroinflammatory reaction to various
insults is present in these chemotherapy-treated patients. Alternatively, since clinical char-
acteristics inherently differ between patients receiving chemotherapy or not, advanced
disease status could possibly contribute to the observed neuroinflammatory effect.

Chemotherapy-treated patients presented with differential expression in several blood
markers. Higher peripheral inflammation was found compared to healthy women, in con-
cordance with literature [53,54]. This was also present in chemotherapy-naïve patients, as
cancer can induce peripheral inflammation [8]. All nineteen chemotherapy-treated patients
(100%) had levels of NfL, a neuronal survival marker, above a cut-off for neurodegenera-
tive disease [55]. This was only the case for a subset of controls, corresponding to earlier
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observed distributions [50]. These results suggest chemotherapy-treatment induces axonal
damage and/or neuronal degeneration. Peripheral neuropathy, a known side-effect of
chemotherapy [56], could partially explain elevated NfL-levels, with earlier studies observ-
ing 2 to 7-fold increases [57,58]. However, central neurotoxicity, after which NfL is released
into cerebrospinal fluid (CSF) and blood, could potentially explain the observed 20-fold
higher concentrations. The remarkable long half-life of NfL (from weeks to months [59])
underscores the possibility of this being a chronic process. Interestingly, a recent study
examining > 2000 individuals, found NfL blood levels were higher across all cortical neu-
rodegenerative disorders, amyotrophic lateral sclerosis, and parkinsonian disorders, when
compared to cognitively unimpaired controls, proposing age-related cut-offs to improve
diagnosis [23]. This emphasizes the potential of NfL as a quick and accessible biomarker to
indicate neurodegeneration in people who experience cognitive problems. Additionally,
chemotherapy-treated patients showed lower BDNF levels, a neurotrophic growth-factor
involved in brain plasticity. Lower blood BDNF is seen in neurodegenerative diseases,
together with upregulation of pro-inflammatory cytokines in the brain, eventually causing
neuronal death [60]. The inflammatory state seen after chemotherapy could potentially
explain lower BDNF levels. In conclusion, while several blood markers could differentiate
healthy women from patients treated for breast cancer, NfL emerged as the most sensitive
for identifying chemotherapy-treated patients.

When evaluating cognition, deviation from the healthy subject’s norm was observed in
17% of chemotherapy-treated patients for objective and 22% for self-report measurements.
This is in concordance with literature, showing that a subset of chemotherapy-treated breast
cancer patients is more vulnerable to develop cognitive impairments [6,61]. Although re-
search has primarily focused on breast cancer, cognitive change is observed across a variety
of cancer types, each with their specific treatment protocol [6]. Rodent studies have found
virtually all categories of cytotoxic agents can disrupt various neurobiological processes
and induce cognitive impairment [62]. Further research will be necessary to study the
neurotoxic effects of various drugs [63], to validate findings from this study in other cancer
populations. Additionally, both chemotherapy-treated and chemotherapy-naïve patients
scored higher on depression, stress, and fatigue scales than healthy women. The psychoso-
cial impact of a cancer diagnosis and treatment should therefore not be underestimated.

A higher relative glial expression in chemotherapy-treated patients was associated
with worse cognitive performance. While neuroinflammation has been widely speculated
as a potential mechanism of CRCI [16,64], this is the first study to directly observe a
relationship in a clinical sample. Psychosocial risk factors are unlikely to alter microglial
activation in humans [65], suggesting that chemotherapy and its neurotoxic sequelae, rather
than a chronic reduced mood-state, influence frontal glial overexpression.

Earlier diffusion-imaging studies have reported microstructural changes in the corpus
callosum after chemotherapy [27,66,67]. This commissural fiber-bundle is especially vul-
nerable to demyelination and inflammation, potentially caused by its dense axonal packing
and high vascular supply [68]. Using fixel-based analysis, we showed that a reduction in
corpus callosum fiber cross-section was associated with frontal glial overexpression. This
reduction is likely to reflect impaired ability to transfer information across brain regions,
potentially indicating impaired WM integrity [37] and thereby possibly contributing to
cognitive impairments seen in chemotherapy-treated patients.

Peripheral inflammation is known to associate with cognitive impairment [11,56].
While chemotherapy-treatment was associated with higher peripheral inflammation, no
correlation was found between central and peripheral inflammation. This is in line with a
recent study not observing differences in brain TSPO binding (using another radioligand)
after an immune challenge [69]. The used TSPO target and quantification methods or the
inflammatory composite component could be too insensitive to show subtle associations.
Alternatively, the relationship is more complex or there simply is none.

Remarkably, a positive association between BDNF and local glial hyperactivation
was found. Because of its known neuroprotective role, a local acute proinflammatory
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state could provide a possible explanation, as BDNF is known to be directly involved in
neuroinflammation activation [60]. However, rodent models show chronic treatment with
chemotherapy, changes neuronal structure and reduces neurogenesis [14,70], suggesting a
rather local protective effect. A positive relationship between NfL blood concentration and
relative glial activation in other brain regions was found, indicating an association between
neuroinflammatory and neurotoxic processes. Unregulated/chronic glial activation can
lead to tissue destruction [19]. The glial–NfL association could therefore indicate a shift to
a more chronic, harmful environment in the brain. Early on in multiple-sclerosis patients,
a recent study found a positive association between a microglia-related protein and NfL
in CSF [71], supporting the role of NfL as a potential biomarker for neuroinflammatory
activity. Whether the relationships seen are neuroprotective or -destructive, cannot be
disentangled by our study.

This study has some limitations. First, calculating VT-ratio reduces variability between
subjects and makes a binding affinity covariate redundant, increasing sensitivity in anal-
yses. However, measurements could be affected by alterations in the cerebellum, which
can only serve as a pseudo-reference region. Nonetheless, cerebellar VT-values were the
lowest of all cortical VOIs, did not differ between groups, and no GM atrophy was found
in the cerebellum. A larger proportion than expected, based on previous mixed-gender
studies, was classified as LA (30%), indicating women could be more prone to inherit the
low-affinity polymorphism. Additionally, TSPO-signal can be driven by other factors than
microglia activation, such as expression on astrocytes/endothelial cells (~25%), recruit-
ment of monocytes into the parenchyma, and changes in BBB permeability [72,73]. Full
kinetic modelling (as applied here) and correction for the endothelial component (SM)
are proposed to partially account for such effects, but interpretation still warrants caution
regarding the cellular specificity. Further studies using only HA, third generation TSPO-
radioligands less sensitive to the binding polymorphism or more specific for microglial
activation, will be necessary and could be more sensitive to detect absolute differences.

Secondly, the observed differences cannot solely be attributed to chemotherapy, as
cancer treatment entails a psychologically challenging trajectory [74]. Higher levels of stress,
anxiety, depression, and fatigue were also observed in chemotherapy-treated patients.
Moreover, clinical characteristics (e.g., cancer subtype/menopausal status) inherently differ
between patients receiving chemotherapy or not, possibly contributing to the observed
effects. For instance, hormonal differences are known to influence cognitive complaints [75].
Additionally, since the used treatment regime consisted of a combination of cytotoxic agents,
this study cannot disentangle individual toxicities of the used agents. Lastly, we recognize
that this study is limited by a relatively small cohort size. This potentially explains why no
WM-microstructure group differences were detected. Larger longitudinal studies will be
necessary to validate these findings, as well as to further elucidate influences of possible
confounders and individual (or other) cytostatic agents, on neuro-inflammation and/or
cognitive impairment.

5. Conclusions

This study showed that chemotherapy-induced neuroinflammation can be detected
in vivo and is associated with worse cognitive functioning, higher levels of markers for
neurotoxicity and -plasticity, and differences in WM-microstructure. Future studies are
necessary to differentiate between underlying neuroprotective or -destructive mechanisms
of the increased expression of inflammatory cells in the brain. Additionally, serum NfL
could be an easily accessible biomarker to assess the toxic effects of chemotherapy and
evaluate future neuroprotective therapeutic strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164198/s1, Table S1: Primer characteristics for Next Generation Sequencing, Table S2:
LGA [18F]DPA714 VT for cortical and WM volumes of interest, Table S3: Clusters showing signifi-
cant differences for neuroimaging modalities, Table S4: Overview of neuropsychological measures,
Table S5: First component of principal component analysis on four blood inflammatory markers,
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Figure S1: Average parametric LGA VT-ratio images for 15 C+ patients, 15 C− patients and 15 HC,
Figure S2: Regions showing [18F]DPA714 VT-ratio differences with 2TCM + vascular trapping, Supple-
mentary materials and methods, Supplementary Results.
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