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Simple Summary: Heme is an iron-containing porphyrin that functions as a prosthetic group in
hemoproteins and is involved in many biological processes. This review article summarizes (1) the
varied effects of heme and heme oxygenase in tumorigenesis of different cancer types; (2) the
molecular mechanisms of interaction of heme with regulatory and signaling proteins implicated in
tumorigenesis, such as BACH1, PGRMC1, P53, CBS, sGC, and NOS; (3) the roles of altered heme
levels and metabolism in the pathogenesis of diseases, including diabetes mellitus and Alzheimer’s
dementia. Understanding the effects of heme in diverse cellular processes and disease progres-
sion identifies potential therapeutic targets and provides insights for developing novel treatment
strategies.

Abstract: Heme is an essential prosthetic group in proteins and enzymes involved in oxygen uti-
lization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental
biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental
and epidemiological data have shown that altered heme homeostasis accelerates the development
and progression of common diseases, including various cancers, diabetes, vascular diseases, and
Alzheimer’s disease. The effects of heme on the pathogenesis of these diseases may be mediated
via its action on various cellular signaling and regulatory proteins, as well as its function in cellular
bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells
intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast,
lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing
neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular
proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1),
tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1),
cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS).
This review provides an in-depth analysis of heme function in influencing diverse molecular and
cellular processes germane to disease pathogenesis and the modes by which heme modulates the
activities of cellular proteins involved in the development of cancer and other common diseases.

Keywords: heme regulation; heme oxygenase; hemoproteins; cancer; diseases; drug targets

1. Introduction

Heme (iron–protoporphyrin IX) is a tetrapyrrole containing a central iron ion essential
for living organisms ranging from bacteria to humans [1,2]. Heme serves as a prosthetic
group of numerous hemoproteins, including hemoglobin (Hb), myoglobin, cytochromes,
and enzymes (including most peroxidases and cytochromes P450s) that are involved in
oxygen transfer, oxygen storage, electron transfer, drug metabolism, and oxidoreduction
reaction catalyzation, respectively [3–6]. Heme also acts as a central signaling molecule that
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directly controls various proteins vitally involved in oxygen-related processes by regulating
protein transcription, translation, assembly, and degradation [7–11]. Heme homeostasis is
strictly regulated. Extracellular hemoglobin and labile heme are scavenged by Haptoglobin
(Hp) and Hemopexin (Hx), respectively [12]. The intracellular heme levels are controlled
via uptake, synthesis, export, and degradation (Figure 1). Hemoproteins can be taken up
and denatured in endosomes, liberating heme that can be transported to the cytoplasm via
heme responsive gene 1 (HRG1), whereas labile heme is taken up by heme carrier protein 1
(HCP1/SLC46A1) and feline leukemia virus subgroup C receptor (FLVCR) 2 [13]. Hopp
et al. have summarized the commonly used methods for heme measurement, including
spectroscopic methods, chromatography, and capillary electrophoresis, enzyme-/protein-
based methods, and intracellular techniques [14]. However, the accurate measurement
of heme derived from different sources (e.g., labile heme or hemoproteins), in varying
concentrations and in complex composition of the different biological matrices (e.g., cellular
milieu, blood, urine, or cerebrospinal fluid), is still an unsolved challenge. Advanced
methods like MS-based or apo-HRP based assay can detect the nano- and picomolar levels
of labile heme [14].
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exporters ABCG2 and FLVCR1a export heme out of cells to maintain cell heme level. (Created with BioRender.com). 
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Figure 1. Heme metabolism in human cells. Human cells acquire heme in two ways. (1) Heme biosynthesis involves
multiple enzymes that progressively convert glycine and succinyl-CoA to heme. (2) Heme uptake from the circulation to
enterocytes is facilitated via heme importers HCP1/SLC46A1 and FLVCR2. Neuronal, hepatic, and red blood cells can
directly take up heme from the bloodstream via HRG1. Heme serves as a prosthetic group in proteins involved in oxygen
storage and usage, such as cytochrome P450. Heme degradation is carried out in the endoplasmic reticulum via HO. Heme
exporters ABCG2 and FLVCR1a export heme out of cells to maintain cell heme level. (Created with BioRender.com).

The heme biosynthetic pathway in humans requires eight enzymes that convert
glycine and succinyl-CoA to heme. 5-aminolevulinic acid synthase (ALAS) is the rate-
limiting enzyme of heme synthesis that initiates the pathway [1]. The export of heme is
mediated by ATP binding cassette subfamily G member 2 (ABCG2) and FLVCR1a. Even
though heme metabolism primarily happens in the cytosol and mitochondria, heme can
be transported into the nucleus in association with carrier proteins such as biliverdin
reductase (BVR) and regulate activities of nuclear proteins [15,16]. Heme oxygenase (HO)
localizes at the smooth endoplasmic reticulum membrane (sER) and breaks down heme
into biliverdin, carbon monoxide (CO), and ferrous iron (Fe2+) (Figure 1). After cleavage by
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certain proteases, the truncated HO-1 (t-HO-1) can translocate into the nucleus and function
non-canonically [17]. Defects in heme metabolism and function are directly associated
with porphyria, anemia, and neurological diseases. Heme metabolism, especially HO-1
expression, has been widely reported to be connected with cancers [18]. Notably, the
ALAS1-mediated heme synthesis and FLVCR1a-mediated heme export are coupled and
control the TCA cycle and OXPHOS [19]. Heme is an essential molecule that is involved in
mitochondrial OXPHOS complexes formation [20]. Studies in the authors’ lab demonstrate
that elevated OXPHOS activity in non-small cell lung cancer (NSCLC) cells is directly
linked with mitochondrial heme levels [21]. Many other novel studies reveal the emerging
role of heme, which directly functions as a regulator of cancers in various tissues and
organs, as will be discussed in this review. Considering that heme is an essential and
multifunctional molecule, heme may mediate the pathogenesis of diverse diseases via
its action on various cellular signaling and regulatory proteins. In this review, we aim
to provide a systematic overview of the prominent roles of heme in human cancer and
cancer-related heme proteins, pathology, and diseases.

2. Heme and Cancer
2.1. Elevated Heme Levels Promote Lung Tumorigenesis

Growing evidence indicates that various cancers, including lung cancer, primarily rely
on mitochondria to produce ATP, which fuels tumor proliferation, making mitochondrial
respiration an attractive target in cancer therapy [22–24]. Lung cancer accounts for almost
one-quarter of all cancer mortality in the United States, and NSCLC is the most common
form of lung cancer, comprising about 80% of lung cancer cases [25]. Heme is a central
molecule in mitochondrial metabolism, essential for OXPHOS Complex II, III, and IV func-
tion [23]. A series of studies in the authors’ laboratory demonstrate that elevated heme flux
and function underlie NSCLC cells’ enhanced OXPHOS and tumorigenicity [21,26]. H1299,
A549, H460, Calu-3, and H1395 NSCLC cell lines exhibit elevated heme synthesis and
uptake as compared to two cell lines representing normal lung epithelial cells (HBEC30KT
and NL20). These augmentations correlate with the increase of heme biosynthesis enzyme
ALAS1, heme uptake protein HCP1/SLC46A1, and HO-1, respectively (Figure 1). Further-
more, the elevated heme metabolism in NSCLC cells leads to increased levels of OXPHOS
complex subunits cytochrome c (CYCS) and cytochrome c oxidase subunit 4 isoform 1
(COX4I1). Elevated levels of heme and hemoproteins correlate with the increased oxygen
consumption rates (OCR) and ATP generation [21]. The increased heme synthesis and up-
take in NSCLC cells significantly elevate mitochondrial heme levels, but not the heme levels
in other organelles [21]. Altogether, the enhanced mitochondrial heme levels and OXPHOS
intensified oxygen consumption, ATP generation, and tumorigenic capabilities in NSCLC
cells [21,27]. The essential roles of heme metabolism for NSCLC tumorigenic functions
are verified by using heme-targeting agents heme-sequestering peptides (HSPs) [21,26]
and cyclopamine tartrate (CycT) to inhibit heme flux and function [26,28]. By using the
oxygen-enhanced multispectral optoacoustic tomography (OE-MSOT), which is an emerg-
ing noninvasive imaging modality that can monitor the tumor microenvironment, the
authors’ lab demonstrates that HSPs and CycT efficiently normalize the tumor microen-
vironment, including angiogenic function, tumor vasculature, tumor oxygenation, and
ATP generation, which ultimately leads to the suppressed proliferation and metastasis
of NSCLC cells [26]. The studies of the increased need for heme in NSCLCs and heme-
targeting drugs extend a new potential strategy for lung cancer treatment. Overall, these
studies highlight the importance of heme in lung cancer and heme scavenging as a potential
therapeutic approach.

2.2. Heme Synthesis, Export, and Catabolism, along with Dietary Heme Intake, Play a Role in
Pancreatic and Colorectal Cancer

Changes in heme metabolic pathways resulting from alterations in levels of heme
synthesis and catabolism have been observed in pancreatic cancer. Two recent studies using
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CRISPR genetic screens examined the expression of heme synthesis genes in pancreatic
cancer [29,30]. Zhu et al.’s study shows that pancreatic cancer proliferation in vivo is
highly dependent on heme synthesis, while HO-1 is also substantially upregulated in
tumors and hypoxic cultured pancreatic cancer cells [29]. Knockout of Hmox1, the gene
that encodes HO-1, also partially rescues proliferation of pancreatic cancer cells deficient in
hydroxymethylbilane synthase (Hmbs), implying that the dependency on heme synthesis
may be partially caused by environmentally-induced upregulation of HO-1, resulting
in increased heme degradation [29]. In addition, targeting heme synthesis inhibits the
growth of pancreatic cancer xenografts [29]. Pancreatic ductal adenocarcinoma cells in vivo
showed metabolic dependencies on multiple enzymes of the heme biosynthesis pathway
in a mixed population with heme biosynthesis deficient and wild type cells [30].

Colorectal cancer (CRC) has been reported to exhibit altered heme synthesis, export,
and catabolism, and is potentially related to dietary heme intake. Heme exporter FLVCR1
is overexpressed in humans and mice CRC cells, and FLVCR1a-silenced cells show slower
proliferation [19]. In addition, the FLVCR1a-silenced cells also showed decreased levels
of ALAS1 compared to controls, while overexpression of FLVCR1 resulted in increased
ALAS1 expression, suggesting that elevated heme export plays a role in the maintenance
of heme synthesis in these cells, likely resulting in downregulation of the TCA cycle as the
TCA intermediate succinyl-CoA is consumed for heme synthesis [19]. FLVCR1 silenced
CRC cells show increased OXPHOS and TCA cycle flux compared to controls [19]. Thus,
the elevated activities of the heme synthesis-export system in CRC downregulates the
TCA cycle and oxidative metabolism and promotes tumor growth [19]. Many studies of
CRC have also examined the role of dietary heme iron in CRC carcinogenesis. In 2018,
International Agency for Research on Cancer (IARC), the cancer agency of the World Health
Organization, released a monograph that concluded that, based on limited dietary studies
and mechanistic evidence of carcinogenicity, red meat is probably carcinogenic to humans,
with the strongest association seen in CRC [31]. Various mechanisms have been proposed
to explain this association, including effects caused by interactions between heme iron and
colonic epithelial cells, the action of heterocyclic amines (HCAs), and polycyclic aromatic
hydrocarbons (PAH) formed by pyrolysis during meat smoking [32–34], or an inflammatory
response to the incorporation of N-Glycolylneuraminic acid (Neu5Gc) into cell surface
glycoconjugates of healthy epithelial cells by circulating anti-Neu5Gc antibodies [35–37].

Interaction of heme with fatty acids results in lipid peroxidation and production of
aldehydes, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) [38]. The
levels of 4-HNE are highly elevated in the colon, urine, and fecal water of rats fed a diet
of heme and safflower oil [38]. Adenomatous polyposis coli (APC) gene is an early and
frequently mutated gene in colorectal carcinogenesis. The formation of 4-HNE or MDA via
lipid peroxidation significantly induces APC gene mutation as exposure to these molecules
triggers apoptotic effects in healthy cells but not APC mutant cells, leading to development
of CRC [39–42]. A recent study has revealed that dietary heme iron, but not N-nitroso
compounds (NOCs) or HCAs, significantly induces precancerous lesions in carcinogen-
induced rats and APC mutant mice [41]. When imported to the nucleus, the transcription
factor nuclear factor erythroid 2-related factor 2 (Nrf2) forms a heterodimer with muscu-
loaponeurotic fibrosarcoma (MAF) proteins which bind to promoters with antioxidant
response elements to initiate transcription of many antioxidant genes, including HO-1.
APC mutant cells show increased nuclear localization of Nrf2 basally and in response to
4-HNE exposure compared to normal cells, creating a selective carcinogenic effect in which
APC mutant cells protect against 4-HNE exposure by inducing the production of antioxi-
dant compounds through the Nrf2/Keap1/ARE signaling pathway [41]. Further studies
are needed to fully explore the degree to which heme and other potential mechanisms
contribute to the observed association between red meat and colorectal carcinogenesis,
including the degree to which byproducts of lipid peroxidation such as 4-HNE may cause
a selective effect that induces carcinogenesis.
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Overall, these studies demonstrate that heme synthesis, export, and catabolism may
be altered in pancreatic cancer and CRC, affecting cellular metabolic pathways, and that
dietary heme may play an additional role in colorectal carcinogenesis.

2.3. Paradoxical Roles of HO-1 in Cancer

The inducible heme oxygenase HO-1 is a key enzyme that is involved in heme degra-
dation. It responds to electrophilic stimuli, including oxidative stress, cellular injury, and
diverse diseases [43]. HO-1 induction under various pathological stresses impacts carcino-
genesis and tumor progression through multiple pathways that involve heme, biliverdin,
CO, and Fe2+ [43,44]. The functions of HO-1 in cancer are paradoxical and are highly
dependent on tumor microenvironment and tumor type [44].

The pro-tumorigenic role of HO-1 has been reported in lung cancer, gliomas, gas-
trointestinal cancers, thyroid cancer, genitourinary cancers, melanoma, and hematological
malignancies [17,45]. These effects of HO-1 in cancer, which are carried out via HMOX1
regulation, modulating tumor microenvironment, and translocating to the nucleus, have
been thoroughly reviewed [17,44,46]. HO-1 and heme degradation product CO have been
shown to induce angiogenesis in tumors, possibly through stimulation of vascular en-
dothelial growth factor (VEGF) expression [47–51]. The pro-angiogenic protein VEGF has a
notable correlation with Nrf2 and HO-1 in patients with gastric cancer. Therefore, targeting
VEGF by the Nrf2/HO-1 signaling pathway can positively regulate the angiogenesis in
GC [47,52]. The mechanism of VEGF stimulation involving CO has been proposed to
be mediated by hypoxia-inducible factor 1-alpha (HIF-1α) [53–55]. The activity of HO-1
may also allow cancer cells to avoid immune response via its expression both in cancer
cells and in other cells in the tumor microenvironment including dendritic cells, as well
as tumor associated macrophage (TAM) cells that can prevent activation of cytotoxic T
cells [46,56]. HO-1 inhibits the maturation of dendritic cells, protecting tumors from T
cell-based immune response [57–60]. In MIA PaCa-2 and PANC-1 pancreatic cancer cell
lines, overexpression and inhibition of HO-1 correlated with a corresponding increase or
decrease in cell proliferation and sonic hedgehog (SHH) signaling [61]. Heme degradation
via HO-1 expression has been associated with decreased overall survival rate and relapse
free survival in patients with pancreatic cancer [62]. The HO system also plays a critical role
in chemoresistance and development of brain cancer, as evidence points towards heme as
important for the maintenance of the peripheral nervous system that innervates tumors [63].
Studies suggest that metabolism of some neuropeptides and neurotransmitters is regulated
by HO-1 and heme, which is crucial for nerve-cancer cell cross-talk. This contributes to
the tumor microenvironment and promotes cancer progression [64]. Expression of HO-1
in tumors of the nervous system is reported to correspond with the aggressive nature of
cancer [65,66]. A recent publication by Consonni et al. has discussed a new role of HO-1 in
response to immunological stress, such as during tumor progression. They have discussed
how bone marrow expresses a unique kind of HO-1 which is expressed in monocyte or
macrophages. This population, activated by Nrf2, localizes in tumor lesions, a signal that
is coordinated by p50 NF-κB–CSF-R1–C3aR axis. This promotes more HO-1 expression,
immunosuppression, and therefore lower survival rate of melanoma patients [67].

Conversely, in some tumors, HO-1 may inhibit tumorigenesis. Prostate cancer, NSCLC,
hepatocellular carcinoma, breast cancer, pancreatic cancer, and CRC have been shown
in studies to be inhibited by HO-1 expression [45,68–75]. This tumor-suppressive role
has been suggested to be due to different pathways, including matrix metallopeptidase
9 (MMP-9) and matrix metallopeptidase 13 (MMP-13) down-regulation in lung mucoepi-
dermoid carcinoma [70], as well as VEGF and MMP-9 downregulation in pancreatic and
prostate cancers [73–75]. Natural compounds that may synergize with conventional cancer
therapies, such as Sageretia thea extracts, Ginnalin A (red maple), and fisetin (strawberries),
have been shown to decrease cancer cell viability and inhibit colony formation and cell
migration in CRC and metastatic breast cancer due to mechanisms of HO-1 upregulation
via Nrf2 [45,76–78].
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Furthermore, HO-1 mediates ferroptosis in hepatic cancer, head and neck cancer,
astrocytoma, oligodendroglioma, glioblastoma multiforme, and breast cancer through iron
accumulation and reactive oxygen species (ROS) generation [79,80]. Depending on the
degree of ROS production, contradictory roles of HO-1 in cancer may be observed [43].
While moderate upregulation of HO-1 expression can be beneficial due to the antioxidant
properties of HO-1 activity, higher levels of expression may induce ferroptosis in cancer
cells due to the accumulation of reactive iron [81–84]. In breast cancer, HO-1 displays
anti-tumor activities, including reducing tumor size and prolonging the overall survival
time of patients [85]. The activation of HO-1 involves the epithelial-mesenchymal transition
and induces the apoptosis and cell cycle arrest of breast cancer cells. Contrarily, the t-HO-1
that localizes in the nucleus promotes breast cancer growth and invasion independent of
HO-1 activity [85]. The localization of HO-1 is likely to be associated with the dual role of
HO-1 in cancer [17].

Overall, more in-depth investigations are still required to further understand the
multifaceted role of HO-1 in cancer. HO-1 expression likely differs in various cancer
types; thus, modulation of HO-1 expression may be useful in anti-cancer treatments. The
HO-1/heme axis is likely to be a promising clinical tool in cancer therapeutics.

2.4. Heme Acts as a Regulator of Circadian Rhythm Implicated in Cancer

The body has a natural, repetitive sleep wake cycle known as the Circadian Rhythm
(CR), which regulates many metabolic and cellular processes. Cancers and other diseases,
including metabolic dysregulation, have been shown to be related to altered CR [86–91]. In
fact, several epidemiological studies have linked circadian disruption, for example, in the
case of shift work, to increased occurrence of cancers [92–101], and the IARC lists night-
shift work, which disrupts CR as a carcinogen [97,102]. The Circadian Clock is regulated
via circadian locomotor output cycles kaput (CLOCK) and Brain and muscle ARNT-Like
1 (BMAL 1), which are basic helix-loop-helix PER-ARNT-SIM transcription factors [103].
Nearly all tumor types exhibit alteration in the expression of CLOCK genes [104]. Heme
binding to CLOCK has been shown to disrupt CLOCK binding to E-box DNA target [103].
Furthermore, heme binds to Period circadian protein homolog 2 (PER2), which regulates
CR in the suprachiasmatic nucleus, and mediates the stability of PER2 [91,105–107]. Heme
is also a regulator of CR through interactions with nuclear receptor subfamily 1 group D
member 1 (Rev-Erbα), which is a heme receptor that coordinates CR and metabolism [108].
Unorphaned nuclear receptor Rev-Erbα, found in 2007 to bind heme, is a member of the
nuclear hormone receptor (NHR) superfamily implicated in CR and metabolism [108–110].
Rev-Erbs, sharing a high degree of homology and redundancy, are unique NHRs that act
as transcriptional repressors via corepressor recruitment of nuclear receptor corepressor 1
(NCoR1) [108]. The Kd of Rev-Erb affinity for Fe3+ heme was determined to be between
0.35 and 3.52 µM using isothermal titration calorimetry with a roughly 1:1 heme to receptor
binding ratio, bound to axial histidine and heme regulatory motif (HRM) associated
cysteine ligands [109,111,112]. Heme is necessary for the complexing of Rev-Erbα and
NCoR1, by binding to Rev-Erbα and supporting co-repressor recruitment [106,109,110,113].
Heme metabolism is also closely related to CR. ALAS1, the key heme synthesis enzyme, is
CR regulated by BMAL1 and NPAS2 (a CLOCK paralogue) [113]. Heme degradation by
HO-1 and 2 is also regulated by the circadian clock, and inhibition of heme degradation
alters CR [113]. CO, a main heme degradation product, has also been shown to modulate
transcription by suppressing target gene binding of CLOCK-BMAL1 [113].

Altering iron content in mouse diet affects CR and gluconeogenesis by modifying
heme levels, affecting Rev-Erbα and NCoR1 complex formation [91]. CR dysregulation is
implicated in the occurrence and metastasis of NSCLC by reducing circadian controlled
hepatic leukemia factor (HLF), which is dramatically reduced in early relapsed NSCLC
and upregulation of which inhibits lung colonization and metastasis [114]. Resistance to
Bevacizumab, a major VEGFA antagonist used in cancer therapy to inhibit angiogenesis,
has been shown to be related to Rev-Erbα binding to retinoic acid receptor-related or-
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phan receptor alpha (RORA) responsive element adjacent to circadian clock key regulator
BMAL1 E-box in VEGFA proximal promotors, which increases VEGFA mRNA and protein
expression [115]. High BMAL1 protein expression is clinically correlated with non-response
to Bevacizumab combination therapy and reduced progression-free survival, with SNPs
in BMAL1 gene correlated with shorter survival in combination therapy patients [115].
Rev-Erbα siRNA is shown to decrease VEGFA synthesis, pointing towards Rev-Erbα and
BMAL1 as targets to prevent anti-angiogenic therapy resistance [115].

2.5. Heme Controls the Activities of a Variety of Key Regulators Underlying Diverse Cancers

The chemical complexity of heme iron ion and porphyrin performs critical regulatory
roles in many vital human proteins. The iron ion in heme can be coordinated by axial
ligands such as amino acid residues cysteine, histidine, methionine, and tyrosine [116,117].
Heme controls most of the key regulators through HRMs [118]. Each HRM contains one
cysteine–proline (CP) motif, in which the cysteine residue coordinates the iron ion in heme
and is crucial for heme binding [9,119]. Notably, non-CP motif heme-coordinating residues
can also serve as heme-binding sites in the heme regulatory events.

Heme regulates diverse cellular processes through directly binding and mediating
key regulators, including heme-responsive transcription regulators BACH1 [120] and
BACH2 [121]; tRNA synthetases tryptophan-tRNA ligase (TrpRS) [122] and arginine-
tRNA ligase (ArgRS) [123]; microRNA processing protein DiGeorge syndrome critical
region 8 (DGCR8) [124]; electron transfers six-transmembrane epithelial antigen of prostate
(STEAP) 1 [125], STEAP3 [126], and cytochrome b reductase 1 (Dcytb) [127]; iron reg-
ulatory protein (IRP) 1 and IRP2 [128]; heme metabolism-related proteins ALAS [129]
and HO-2 [130]; circadian-rhythm related proteins Rev-erbα and Rev-erbβ [109], neu-
ronal PAS domain-containing protein 2 (NPAS2) [131], CLOCK [103], PER2 [132], and
Cryptochrome-1 (CRY1) [133]; Alzheimer’s disease-related Aβ peptide [134]; immune and
inflammatory responses regulator IL-36α [135]; potential cancer therapeutic target proteins
BACH1 [136,137], PGRMC1 [138], P53 [139], CBS [140], sGC [141], and NOS [142]. This sec-
tion summarizes the novel regulatory roles of heme in multifunctional signal transducers
and regulators involved in various cancer diagnoses and treatments (Figure 2 and Table 1).

Table 1. Heme regulated multifunctional signal transducers and regulators involved in disease diagnoses and treatments.

Protein Name Binding Residues Binding Affinity Heme Function
Heme in Proteins

Involved in Pathogenesis
of Disease

Reference

BACH1 CP motifs in
HRM3-6

Kd = 1.37 ×
10−5 M

(C-terminal region)

Promote the
dissociation of

BACH1 from DNA;
promote nuclear

export and
ubiquitination of

BACH1

Heme destabilizes
BACH1, leading to the
inhibition of different

types of cancer

[136,143–145]

PGRMC1 Tyr113, Tyr107,
Lys163, and Tyr164 Kd = 50 nM Mediate PGRMC1

dimerization

Mediates PGRMC1
regulated EGFR and

cytochromes P450 activity
in colon cancer cells and

hepatoma cells

[138,146,147]

P53 Cys275/Cys277 Kd = ~1.2 µM Mediate P53
destabilization

Heme–P53 may mediate
colon carcinoma cell

suppression based on
iron-deprivation

[139]
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Table 1. Cont.

Protein Name Binding Residues Binding Affinity Heme Function
Heme in Proteins

Involved in Pathogenesis
of Disease

Reference

CBS Cys52/His65
Cys15/His22

Kd = 2.18 ± 0.64
µM (Cys15/His22)

Promote CBS
folding and
assembling

Lack of in vivo study.
Limiting heme inhibits
CBS activity without

abolishing the enzymatic
activity in vitro.

[140,148,149]

sGC His105 in β1 subunit Contains heme as a
cofactor

Cause
conformational

change to initiate
the first step in
sGC activation

A cofactor that is required
for essential sGC activity [150–152]

NOS

NOS1/nNOS:
Cys419

NOS2/iNOS: Cys184
NOS3/eNOS:

Cys200

Contains heme as a
cofactor

Cofactor to NOS
which catalyzes

NO synthesis

Heme is required to
maintain basic enzyme
function including NOS
homodimerization and

catalysis of NO synthesis

[153–155]
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Figure 2. The domain structure of heme regulated signal transducers and regulators. Red lines
represent the location of heme-binding sites. BACH1: BTB domain (Broad-Complex, Tramtrack
and Bric a brac), bZIP_Maf domain (Basic leucine zipper domain, Maf-type). PGRMC1: Cyt-b5
(Cytochrome b5-like) heme/steroid binding domain. P53: TAD (Transcriptional Activation Domain)
1 and 2, DNA binding domain, Tetramer (Tetramerization domain). CBS: Pyridoxal-phosphate
dependent enzyme, CBS domain. sGC α1 and β1 subunit: that each contain four domains: H-
NOX (heme nitric oxide and oxygen-binding domain), PAS (Per-Arnt-Sim domain), CC (coiled-coil
domain), and the CAT (catalytic domain). NOS: NO-synthase, Flavodoxin/NO-synthase, FAD
binding domain, and NAD binding domain.
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2.5.1. BACH1

BTB and CNC homology 1 (BACH1) protein is a heme-dependent transcription factor
involved in oxidative stress response, heme homeostasis, the cell cycle, senescence, mitosis,
and angiogenesis [156]. BACH1 forms heterodimers with a small Maf protein that binds to
the Maf recognition elements (MAREs) and represses its target genes. BACH1 contains [157]
six HRMs [158]. Heme binds to BACH1 via HRMs and regulates BACH1 activity in three
ways. (1) Heme binds to HRMs 3-6, causing dissociation of BACH1 from MAREs [120].
(2) Heme induces the nuclear export of BACH1 and requires HRM3 and HRM4 [159].
(3) Heme promotes the HOIL-1 and Fbxo22-mediated ubiquitination and degradation of
BACH1 via HRMs 3-6 [11,160]. BACH1 senses increased heme levels in cells and dissociates
from MAREs, making MAREs available for the activator factor Nrf2 and activating HO-
1 [120]. This mechanism generates a feedback loop whereby heme affects BACH1/Nrf2
antagonism [161]. Two recent studies illustrated the importance of BACH1 stabilization
in lung cancer metastasis. The mutation of Keap1, an Nrf2 negative regulator, activates
Nrf2 and promotes the expression of HO-1. The elevated HO-1 inhibits the heme-and
Fbxo22 (a heme-regulated ubiquitin ligase)-mediated degradation of BACH1 and further
promotes lung cancer metastasis [160]. Furthermore, Weil et al. suggest that treatment with
the antioxidants N-acetylcysteine and vitamin E leads to decreased levels of heme, which
stabilizes the transcription of BACH1 and promotes glycolysis-induced metastasis in KRAS-
driven lung cancer [136]. Their studies provide new therapeutic approaches for lung cancer
related to heme metabolism. Interestingly, while mitochondrial heme promotes lung cancer
proliferation and metastasis through elevating OXPHOS and promoting angiogenesis, HO-
1 regulated heme seems to play a positive role in the inhibition of lung cancer metastasis
through inhibiting BACH1. The opposite roles of heme in lung cancer indicate that heme
may coordinate lung cancer progression in distinct regulating mechanisms. The study by
Lee et al. shows that combination therapy targeting BACH1 and mitochondrial metabolism
suppresses breast tumor growth [137], which further illustrates the central regulatory role
of heme in different types of tumors. More studies are required to understand the complex
mechanisms underlying the regulation of tumor growth by heme and heme metabolism.

2.5.2. PGRMC1

PGRMC1 belongs to the membrane-associated progesterone receptor (MAPR) family
and may function in the endoplasmic reticulum and mitochondria [162,163]. A significant
amount of studies have reported that PGRMC1 is highly expressed in cancers including
renal cell cancer [164,165], colon cancer [138], lung cancer [166], ovarian cancer [167],
cervical cancer [168], breast cancer [169–171], and head and neck cancer [172]. Compelling
evidence implies that PGRMC1 represents a promising target for cancer therapy.

Site-directed mutation experiments and crystallographic analyses identify four heme-
binding residues—Tyr113, Tyr107, Lys163, and Tyr164—in PGRMC1 [138,146,147]. The
Tyr113 residue plays a crucial role in a unique heme-dependent dimerization of PGRMC1
(binding Kd = 50 nM) [138]. The five-coordinated heme iron by Tyr 113 has an open
surface which allows PGRMC1 to form a stable dimer through hydrophobic heme–heme
stacking (dimerization Kd << 3.5 uM) [138]. PGRMC1 may act as heme transporter because
Y113-heme bound structure is similar to heme bound structure of bacterial heme transport
proteins such as HasA (heme acquisition system protein), ShuT (periplasmic heme transport
protein identified from Shigella dysenteriae), and HTP/PhuT (heme transport protein from
Pseudomonas aeruginosa) [173]. The heme-mediated dimerization is essential for PGRMC1 to
bind and regulate epidermal growth factor receptor (EGFR) and cytochromes P450. Kabe
et al.’s study reveals the importance of heme in regulating EGFR and cytochromes P450
mediated tumorigenesis of colon cancer cells and hepatoma cells [138]. Furthermore, they
show that PGRMC1 dimerization is related to HCT116 cell chemoresistance to anti-cancer
reagents erlotinib and doxorubicin [138]. The phosphorylation of heme chelation site
Tyr 113 may contribute to the regulation of heme-mediated PGRMC1 dimerization [174].
PGRMC1 is recently identified as a protein partner of ferrochelatase (FECH) [175]. FECH
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catalyzes the terminal step of heme biosynthesis in mitochondria, and it is also involved in
cellular iron metabolism [173]. Piel et al. proposes that PGRMC1 regulates the release of
heme from FECH by stabilizing the “product release” conformational state of FECH [175].
Altogether, these recent studies reveal a possible heme–PGRMC1 regulatory loop where
heme biosynthesis and heme-mediated PGRMC1 dimerization are closely connected and
tightly regulated, implicating heme’s role as a critical effector molecule in the signal
network surrounding PGRMC1 [138,173–175]. Characterization of the heme–PGRMC1
regulatory pathway could potentially lead to novel therapeutic approaches for cancer and
other diseases involving PGRMC1.

2.5.3. P53

Known as “the guardian of the genome”, the transcriptional factor P53 has been
extensively studied due to its vital role in maintaining genomic stability and preventing
genome mutation [176]. P53 suppresses tumorigenesis and regulates tumor chemoresis-
tance through transcriptional regulation of diverse genes that encode for proteins, such as
cyclin-dependent kinase inhibitor p21, which is essential for G1 arrest induced by DNA
damage [177], apoptosis regulator Bax [178], and hypoxia central regulator HIF that is
involved in tumor angiogenesis [179]. Many of the P53 regulated proteins are involved
in different steps of the cancer process. Inactivation of P53 via mutation and alternative
mechanisms occurs in almost 50% of all human tumors [179,180]. Heme directly interacts
with P53 through Cys275 and Cys277, which are located at the C-terminal HRM in P53
(Kd ~1.2 µM) [139]. Shen et al.’s study suggests that heme binds to P53 and mediates P53
destabilization through two mechanisms: (1) directly triggering nuclear P53 degradation
through the Ub-proteasome system. (2) unmasking P53 C-terminal nuclear export signals
(NESs) and inducing the nuclear export of P53, which leads to the cytosolic degrada-
tion of P53. Deprivation of iron suppresses human colon carcinoma development in a
P53-dependent manner [139]. Their study indicates that heme–P53 seems to underlie the
molecular mechanisms involved in iron deprivation-based chemotherapy. Furthermore,
the P53 knockout embryonic stem cells (ESCs) exhibited elevated HO-1 protein levels
compared to the WT cell line. Thus, P53 is likely to modulate HO-1 stability in ESCs, and
the interplay between P53 and HO-1 may be involved in a complex mechanism of ROS
balance regulation [181]. As HO-1 is primarily involved in the oxidative degradation of
cellular heme, these studies indicate a P53-heme regulation loop may exist.

The P53 activity is also closely related to other heme-regulated key factors. A recent
study shows that PGRMC1 knockdown promotes the stabilization of P53 protein in human
pluripotent stem cells (hPSCs). The reason may be that the PGRMC1 knockdown abolishes
heme transferring between sub-organelles [182]. BACH1 interacts with P53 on chromatin,
inhibits the transcription of a subset of P53 target genes, and further inhibits the senescence
in response to cellular oxidative stress [183]. The BACH1-P53 interaction is proposed to
be regulated by a tumor suppressor p19ARF [184]. These studies provide a possibility of
heme being functional in a regulatory network involving P53 in cancer cells and mediating
tumor growth and progression. This makes heme a promising target in tumor treatment.

2.5.4. CBS

CBS is a pyridoxal 5′-phosphate (PLP) enzyme that catalyzes the transsulfuration
pathway to convert homocysteine (Hcy) and serine into cystathionine and regulates hy-
drogen sulfide (H2S) metabolism [185–187]. It is a heme protein that conducts critical
cellular bioenergetic-related processes, such as redox regulation [188] and mitochondrial
homeostasis [189]. Defects in CBS expression lead to alternating Hcy levels and cause
diseases such as hyperhomocysteinemia. On the other hand, increased activity of CBS
in Down syndrome patients significantly decreases the availability of Hcy and increases
levels of the cellular H2S [190–192]. The higher H2S levels are induced by elevated CBS
expression and are also associated with the proliferation of multiple tumor types such as
colon [193–195], ovarian [196,197], breast [198], and prostate cancer [199]. Human CBS
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contains an N-terminal heme-binding domain followed by a catalytic core and a regulatory
domain [200]. Residues Cys52 and His65 of CBS form a hydrophobic pocket and axially
coordinate the heme iron [148,149]. Heme is not directly involved in CBS catalysis [201].
Recent studies propose two mechanisms of how heme regulates CBS activity. (1) When in a
ferrous state, CBS heme binds to NO and CO, and functions as a redox sensor that impairs
CBS activity [149,202,203]. (2) CBS heme in a ferric state interacts with mercury compounds,
leading to heme release and loss of enzymatic activity [204]. The NMR study carried out
by Kumar et al. identifies a second heme-binding site at Cys15 and His22 (Kd = 2.18 ±
0.64 µM) located in the N-terminal intrinsically disordered protein region (IDPR) of CBS
(1-40 aa) [140]. Their UV/Vis study indicates that the CBS IDPR involves transient heme
interactions and forms a hexacoordinated complex that may increase enzyme efficiency
(~30%) [140]. The novel studies of CBS in different types of cancer models suggest CBS is a
promising anti-tumor therapeutic target. However, as an essential enzyme involved in a
central physiological process, CBS targeted inhibitors may accumulate excess metabolite
(i.e., Hcy), leading to severe side effects. Targeting the heme-binding domain may inhibit
CBS activity without abolishing the enzymatic activity of CBS, which could be a potential
direction for CBS-targeting drug invention.

2.5.5. NO Signaling Related Hemoproteins

sGC is a key enzyme of the nitric oxide (NO) signaling pathway that converts GTP to
the second messenger cGMP and exerts effects in many downstream processes [1]. sGC is
a heterodimer with an α and β subunit that each contain four domains: H-NOX, PAS, CC,
and CAT (Figure 2) [150]. In mammals, there are four isoforms of the subunit: α1, α2, β1,
and β2 [205]. Only the H-NOX of β subunits has the heme-binding capability, and it serves
as a sensor of NO which binds to heme iron and triggers the structural rearrangement
of the sensor module and causes a conformational change to initiate the first step in sGC
activation [150–152]. sGC is a prototypical hemoprotein that plays numerous important
regulatory roles in NO signaling-related physiological events, such as vascular smooth
muscle relaxation, platelet aggregation, and neurotransmission [150].

Considering the importance of NO signaling in the cardiovascular system, sGC has
been well studied as a therapeutic target in cardiovascular, cardiopulmonary, and cardiore-
nal diseases [206,207]. Recent studies show that sGC expression is deficient in human breast
cancer cells [141,208] and overexpression of α1 and β1, the two most common sGC subunits,
inhibited the growth of both MDA-MB-231 cells and MDA-MB-231 xenografts in nude
mice [208]. The histone deacetylase 3 is likely to be an endogenous antagonist of sGCβ1
expression in breast cancer and other vascular-related diseases [141]. Mohammadoo-
Khorasani et al. have reported that the variations in the expression of sGC subunits
alternative splicing forms and isoforms levels may be potentially connected with the
sGC anti-tumor activity in breast cancer [205,209]. The sGC stimulators significantly in-
crease the sensitivity of head and neck squamous cell carcinoma (HNSCC) cells to the
hemotherapeutic drug Cisplatin [210].

NOS are hemoproteins that catalyze the reaction producing NO from l-arginine. The
nitric oxide synthase protein family includes neuronal NOS (NOS1/nNOS), inducible
NOS (NOS2/iNOS), and endothelial NOS (NOS3/eNOS) [211,212]. NO is an important
signaling molecule with roles in the signaling of angiogenesis, inflammation, and the cell
cycle [142,213]. All three varieties of NOS are homodimers, and heme must be available
for dimerization to occur [153–155,212,214]. The presence of nitric oxide has been shown
to interfere with heme insertion into and dimerization of NOS [211,215–217], and may also
inactivate FECH, the final enzyme in heme synthesis, by interaction with its iron–sulfur
complex [218–220]. Heme can also be degraded by reactive oxygen species, inhibiting NOS
dimerization [155]. As a result, heme plays a role in the regulation of NO signaling.

NOS2/iNOS has been found to be upregulated in many cancers, including gastric
cancer [221], breast cancer [222], CRC [213,223,224], pancreatic cancer [225], and prostate
cancer [226]. A recent review by Mishra et al. identified many additional studies demon-
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strating increased expression of NOS in cancers [227]. Despite this upregulation in some
cancers, NOS proteins also have a role in apoptosis. When NO is released in an oxidative
environment, it can interact with O2

− to form nitrogen dioxide (NO2) or peroxynitrite
(ONOO−), resulting in cytotoxicity in exposed cells at high concentrations [228]. Addi-
tionally, exposure of cells to NO leads to phosphorylation of P53 resulting in apoptotic
effects [229–231]. However, other studies have found that low concentrations of NO protect
against apoptosis through S-nitrosylation of metalloproteins such as caspase-3, caspase-9,
and c-Jun N-terminal kinase [232,233].

NO signaling has both tumorigenic and antitumorigenic effects in cancer. Heme
possesses unique signaling and structural properties that potentially enable it to coordinate
the NO signaling regulation in cancers.

2.6. Heme Promotes Angiogenesis Implicated in Tumorigenesis

Angiogenesis refers to the formation of new blood vessels from pre-existing vessels
due to changes in growth of endothelial cells (ECs) and an imbalance between pro- and
anti-angiogenic factors [234]. Angiogenesis is essential under physiological conditions
for wound repair and endometrial hyperplasia during the menstrual cycle and develop-
ment [234,235]. However, it also plays an important role under pathological conditions
such as tumors, hepatitis, diabetes, etc. [234]. EC proliferation and apoptosis balance
is necessary for the mediation of tumor angiogenesis. Moreover, angiogenesis is highly
required for fast and invasive tumor growth and metastasis [235], which is characterized
by the formation of serpentine, disorganized, friable, and extremely permeable blood
vessels. Under hypoxic conditions and lack of nutrients, which boosts the expression of
inflammatory signals and cytokines, vascular cells are recruited for the formation of tumor
vasculature [236].

ECs accommodate distinctive cellular capacities required for angiogenesis like mul-
tiplication, movement, and vascular penetrability [237]. High levels of ROS inhibit ECs
migration and lead to impaired angiogenesis. Recent studies have revealed the critical role
of heme in angiogenesis. The heme dependent transcription factor BACH1 inhibits HO-1,
enhances mitochondrial ROS production, and competitively inhibits β catenin, which leads
to inhibition of VEGF expression and angiogenesis [238–240]. Moreover, moderate levels of
heme can induce EC proliferation; however, elevated heme levels may inhibit it. Medium
heme supplementation (20 µM) has the peak effect in hyperoxic and normoxic conditions
and can inhibit BACH1 expression, promote VEGF expression, and relieve hyperoxia-
induced inhibition of proliferation, migration, and angiogenesis in human microvascular
endothelial cells (HMEC-1) [144]. Furthermore, genetic deletion of BACH1 promotes
angiogenesis under increased oxidative stress conditions after hindlimb ischemia [145].

Additionally, FECH is a key enzyme for heme synthesis that inserts Fe2+ into proto-
porphyrin IX to supply protoheme IX in mitochondria [1,241]. The FECH loss changes
the shape and mass of mitochondria and leads to notable oxidative stress. However, the
addition of heme partly rescues phenotypes of the FECH barricade [241,242]. These results
present a novel link between heme metabolism, mitochondrial function, and angiogen-
esis. Additionally, heme exporter protein FLVCR1a expression is essential for proper
angiogenesis, and its loss in ECs increases levels of intracellular heme, promoting cell
death by paraptosis and preventing the formation of the functional microvascular network,
which leads to extensive hemorrhages and embryonic lethality in FLVCR1a null mouse
embryo cells. Considering that elevated intracellular heme levels cause paraptosis, this
mechanism can be exploited as a valuable alternative to reduce tumor growth and angio-
genesis [243]. It is possible that drugs that target increased heme synthesis, block heme
export, and/or block heme catabolism might have anti-angiogenic effects and can be used
to kill apoptosis-resistant cells in cancer and other enhanced aberrant vascularization [243].
Heme-targeting drugs can act as a potential angiogenesis inhibitor in drug-resistant tu-
mors, such as NSCLC [26]. Nonetheless, additional studies that target the heme metabolic
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machinery would be recommended for the development of potential therapeutic drugs
against cardiovascular diseases and angiogenesis in tumors.

Notably, many studies have linked elevated levels of heme and hemolytic diseases
and angiogenesis. However, heme loss can change the morphology of mitochondria and
their dynamics, causing an increase in ROS levels and harming the glycolytic capacity of
ECs [241,242]. In the same vein, Vandekeere et al. have reported that heme depletion causes
elevated ROS levels induced EC death. Moreover, mice deficient in phosphoglycerate
dehydrogenase (Phgdh) can suffer vascular defects because of decreased EC proliferation
and survival. However, heme supplementation in Phgdh knockout EC can restore ETC
function and rescue defects in angiogenesis and apoptosis [244]. Furthermore, heme
synthesis is essential for EC respiration, especially for Complex IV (COX IV) function, and
its inhibition showed anti-angiogenic effects in retinal ECs in vitro and animal models
of visual neovascularization [242]. Additionally, heme depletion reduces OXPHOS and
mitochondrial COX IV in human retinal microvascular endothelial cells (HRECs) and
murine retina ex vivo [242]. Further studies are required to fully understand the role of
heme in angiogenesis associated pathophysiological conditions.

3. Diseases and Conditions Associated with Elevated Heme
3.1. Elevated Heme Levels Underly Lung Injury

Acute lung injury (ALI) is a significant risk factor after pulmonary resections for
NSCLC [245]. ALI-caused acute respiratory distress syndrome (ARDS) may result in
fulminant acute hypoxemic respiratory failure, bacterial infection, and death [246–248]. In
a murine model of trauma hemorrhage (TH), heme triggers the TLR4 (toll-like receptor
4)-and HMGB1 (high mobility group box 1)-dependent mechanisms, increasing pulmonary
edema, decreasing bacterial clearance, and further leading to lung bacterial infection after
TH and stored red blood cells (RBCs) transfusion [249]. Interestingly, heme is also critically
involved in toxic gas inhalation-induced ALI because of its unique gas-binding properties.
Exposure of C57BL/6 mice to halogen gas (bromine (Br2), phosgene Carbonyl Chloride
(COCl2), and chlorine (Cl2)) increases intravascular hemolysis, resulting in elevated heme
levels in plasma and causing oxidative stress damage and inflammatory effects that lead to
ARDS [250–252]. The treatment of animals with the heme-scavenging protein Hx attenuates
heme levels in the lung and significantly decreases ALI induced by Br2 and Cl2 [251,252].
In vitro and in situ studies indicate that cell-free hemoglobin (CFH) mediated alveolar-
capillary barrier disruption [3] and apically located amiloride-sensitive (ENaC) and cation
sodium (Na+) channel damage [252] may be responsible for pathological events of post
inhalation-induced ALI. Similar to ALI, patients with very severe chronic obstructive
pulmonary disease (COPD), which is a significant factor for the increased incidence rate of
lung cancer, have elevated plasma heme levels accompanied by the increased expression
of endoplasmic reticulum (ER) stress marker Grp78/Bip [253]. Treating a mouse model of
Br2-induced chronic lung injury with Hx also reduces plasma CFH and prevents evidence
of chronic lung injury [253]. Overall, these studies show the association of heme and
oxidative stress and highlight the important roles of elevated heme in trauma hemorrhage
and inhalation-induced lung injury. Thus, scavenging heme can be a potential therapeutic
approach in lung injury-related pathogenic events.

3.2. Elevated Heme Levels Affect Cardiac Physiology

Numerous studies have found an association between elevated levels of circulating
heme and hemolytic diseases such as sickle cell disease (SCD), thalassemia, cardiac bypass,
sepsis, and malaria. Moreover, intravascular cell and tissue damage have been linked to
elevated extracellular heme levels due to the saturation of heme scavengers and heme
degradation enzymes during severe hemolysis [254]. Heme scavengers Hx and Hp have
anti-inflammatory properties in hemolytic diseases such as SCD and thalassemias, which
can cause endothelial dysfunction and oxidative damage [255]. Exogenous administration
of Hx prevents accumulation of heme–iron in the cardiovascular system and normalizes
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disease parameters such as high blood pressure and altered cardiac function in SCD Hx-
null mice. Hence, Hx can work as a potential therapeutic drug against cardiovascular
heme-induced dysfunction in hemolytic related disorders [255]. Hx and Hp levels in
plasma are decreased in SCD mice and patients. However, induction of CO/HO-1 by
these heme scavengers can inhibit hemoglobin and heme-mediated microvascular stasis in
SCD hyper hemolytic mouse model, which suggests that hemoglobin-heme-dependent
vaso-occlusive crisis (VOC) and chest syndrome in SCD patients can be prevented by Hp
and Hx supplementation [256].

Similarly, another study found an association between heme from hemolysis and
TLR4 signaling on inflammatory and ECs [257]. Labile heme acts as a damage-associated
molecular pattern (DAMP) and binds cofactor soluble myeloid differentiation factor-2
(sDM2), activating endothelial TLR4 and causing activation of the endothelium and vaso-
occlusion in a SCD mouse model [258]. Knockout of vascular TLR4 signaling reduced
heme-dependent inflammation and VOC [257]. Thus, targeting Hx and Hp levels, vascular
endothelial TLR4 inhibition, and reducing elevated levels of sMD2 can result in promising
strategies in SCD treatment and other hemolytic conditions. Additionally, the 2015 review
by Sawicki et al. summarized that the elevated circulating heme- and hemoglobin-induced
ROS-dependent smooth muscle proliferation may further contribute to cardiovascular
pathology [259]. Likewise, elevated levels of heme were found to be associated with
elevated oxidative stress due to increased production of ROS and cell death in cardiac
myoblasts [260].

The protective role of heme degradation enzyme HO-1 in vascular remodeling and
atherogenesis has been a hot topic for the last decade [261]. However, the mechanisms
underlying HO-1-based protection and the role of heme in HO-1 related cardiac pathol-
ogy are not entirely understood. HMOX1 plays an important role in the development
of the placental vasculature and spiral artery remodeling, regulates vascular tone and
inflammation, promotes endothelial growth and re-endothelialization after vascular in-
jury, provides protection against EC apoptosis, and inhibits vascular smooth muscle cells
(VSMC) growth [262]. Anti-inflammatory properties of HO-1 induction can slow the
progression of atherosclerotic symptoms and regulate respiratory tissue homeostasis in
cardiopulmonary heart disease, and increased levels of HO-1-dependent serum bilirubin
improves prognosis in coronary artery disease and stroke patients [263]. Additionally,
the CO/HO-1 system is crucial in mitochondrial biogenesis and cardiac development
and differentiation of cardiomyocytes derived from spontaneous differentiated murine
ESCs [264]. While there is no impact of HO-1 induction on cardiomyocyte differentiation
and mitochondrial maturation in human-induced pluripotent stem cell-derived cardiomy-
ocytes (hiPSC-CMs), possibly due to anatomical differences between both organisms, HO-1
knockout alters the electrophysiology of hiPSC-CMs [265]. Therefore, it is necessary to
do further investigations to elucidate the effect of heme and HO-1 and their products on
human cardiomyocytes maturation in physiological and pathological conditions.

3.3. Role of Heme as a Pro-Inflammatory Influencer and Hb-Derived DAMP

Hemolysis causes an increase of intravascular heme, oxidative damage, and inflam-
mation in which macrophages play a critical role [266]. Once heme is released into the
plasma, heme homeostasis is maintained by Hx and Hp. Excess heme can drain the body’s
scavenging mechanism, resulting in increased labile heme in the system. Labile heme in un-
controllable amounts has deleterious effects. Labile heme can directly interact with serum
components, influence host innate immune response, activate the complement system
and the HO-1/ferritin system, maintain homeostasis by macrophages, and makes the host
susceptible to bacterial infection due to increased iron level [266–268]. Thus, understanding
the molecular mechanisms of regulating heme metabolism and the role of heme metabolites
is crucial.

Labile heme has been recognized as a compelling pro-inflammatory conciliator. When
released from hemoglobin, labile heme can become a DAMP [46]. Heme is well-depicted
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as Hb-derived DAMP that targets various immune and non-immune cells. Hb-derived
DAMPs elevate ROS production, stimulate neutrophils, and increase proinflammatory
cytokines [266]. Excessive heme directly causes oxidative stress and activates the unfolded
protein response (UPR), causing renal injury [269]. The molecular mechanism of action
of how heme is mediated in inflammation is under debate. Recent studies revealed that
heme promotes ROS generation and activates spleen tyrosine kinase (Syk) activation and
establishes memory by epigenetic changes [266]. These two features are critical for most
proinflammatory signaling pathways [270]. The pro-inflammatory response is primarily
mediated via TLR4 activation in macrophages [267]. Other studies have shown that heme
provides a second signal for stimulating the processing of interleukin 1b (IL-1b) by the NLR
family pyrin domain containing 3 (NLRP3) inflammasome and proinflammatory cytokine
production in LPS-primed macrophages [266,268,271]. Heme can induce the formation of
C3a and C5a, and the assembly of membrane-attack-complex (MAC), thus activating the
complement system [266,272]. Anti-inflammatory responses can also be provoked by labile
heme via the induction of the heme degradation enzyme [268,273]. Heme degradation
product CO is a gasotransmitter with potent anti-inflammatory properties [274]. CO has
been recently shown to completely elicit macrophage NLRP3 inflammasome activation in
response to bacteria, subsequently inducing bacterial ATP production and following ATP
sensing in macrophages [271].

The main function of the erythrocyte is to transport oxygen, which is carried out
by hemoglobin containing heme with coordinated iron ion as the essential prosthetic
group. The major source of iron is its recycling pathways. Macrophages scavenge ob-
solete and damaged erythrocytes to discharge iron from the hemoglobin and promote
erythropoiesis [12]. Notably, iron regulation by macrophages becomes defective due to
inflammation, which substantially affects iron homeostasis and erythropoiesis [275,276].
Macrophages and erythrocytes have a symbiotic relationship: erythrocyte derived heme
can induce monocytes and neutrophil chemotaxis, and monocytes can recognize receptor
pattern and activate iron-recycling macrophages [275].

It has been observed that people with hemolytic disorder are more susceptible to bac-
terial infections. A recent study shows that heme, independent of iron, can interfere with
DOCK8-mediated Cdc42 activation and inhibit phagocytosis [273]. In addition, it can alter
actin cytoskeleton remodeling and reduces host defense against bacterial infection [268].
Another study analyzed the effect of heme on neutrophils infected with Leishmania infantum
causing visceral leishmaniasis [277,278]. Serum concentrations of heme are directly propor-
tional to HO-1 and lactate dehydrogenase levels and inversely proportional to peripheral
blood neutrophils counts [277]. Their experiments demonstrate infected neutrophils are
stimulated by heme, promoting significant rises in superoxide dismutase-1 activity and
HO-1 mRNA expression. Therefore, heme alone can elicit oxidative stress-related cell
fatality. Hence, heme activates neutrophil function and oxidative stress which supports
intracellular L. infantum endurance [277,278]. Therefore, one of the diverse roles of heme
is mediated through anti-inflammatory and antioxidant effects. Complete understanding
of the role of heme as DAMP and its associated inflammation could contribute to the
advancement of novel therapeutics to deal with disease conditions.

3.4. Elevated Heme Metabolism Promotes Neurodegenerative Functions in the Nervous System but
Is Perturbed in Alzheimer’s Dementia

Heme acts as a signaling molecule and is important for neurogenesis, neuronal growth,
and survival. It facilitates neuroprotection by detoxifying neurotoxins resulting from ox-
idative stress via incorporation into neuroglobins. Therefore, participation of heme in
several cellular pathways causes neuronal sensitivity to altered heme levels [279,280].
Changes in heme metabolism lead to changes in oxygen sensing and neuronal survival.
During brain injury due to intracerebral or subarachnoid hemorrhages, excessive heme is
released. This promotes oxidative damage, lipid peroxidation, apoptosis, and neuronal cell
death [279,281,282]. Several studies indicate the association of heme for the maintenance
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of the peripheral nervous system (PNS) and altered heme metabolism causing neuropsy-
chiatric disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD) [64,280,283].

Appropriate heme homeostasis is key for the proper functioning of central nervous
system (CNS). Three primary regulatory systems control heme levels in mammals. First,
Hp, considered a marker for blood–brain barrier (BBB) impairment, is responsible for the
scavenging of hemoglobin [284]. High expression of this protein is linked to neurological
diseases associated with disturbed BBB integrity, as detected in AD and PD patients [285].
Secondly, the plasma protein Hx prevents heme-mediated cytotoxicity by transferring
excess heme from the circulation to HO [284,286]. Thirdly, HOs degrade these excess
intracellular hemes releasing CO, Fe2+, and biliverdin [12,287]. The exact role of this
enzyme in various stressful events is still not clear, and the biological effect of this enzyme
can be tissue specific. It is believed that overexpressed HO-1 is impeccably receptive to
stimuli provoking oxidative injury, providing neuroprotection [288]. Byproducts of heme
degradation activate some signaling pathways enhancing expression of brain-derived
neurotrophic factor (BDNF) in dopaminergic neurons and expression of glial cell derived
neurotrophic factor (GDNF) in glia [289]. Besides, reduced heme metabolism contributes to
lowered signaling intermediates like cAMP via the Ras-mitogen-activated protein kinase
(MAPK) and its downstream target cyclic AMP-response element-binding protein, causing
reduced neuronal differentiation [63,290].

In addition, heme transporters in the brain mediate intracellular and extracellular
heme trafficking to prevent pathological outcomes resulting from disruption of homeostasis.
Serious neuronal injury is observed in genetic inhibition of intracellular heme uptake
transporters [286]. In comparison to other organs, the brain has elevated expression of HRG-
1, which implies the significance of this transporter in maintaining brain heme homeostasis.
The genetic reticence of FLVCR2, a heme importer of the FLVCR family, is associated
with lethal autosomal disorder, which also lacks mitochondrial respiratory chain complex
III and IV, implicating the importance of FLVCR2 in making heme accessible following
incorporation into mitochondrial complexes [12,286]. Genetic mutations in extracellular
heme traffickers mediated by ABCG2 and FLVCR expressed in brain cells have also been
associated with impaired neurological functions. In the retina, ABCG2 averts oxidative
damage and encourages the differentiation of neuronal stem cells. Aberrant expression of
FLVCR1 gene is also connected with compromised neuronal function causing degeneration
of sensory neurons and development of Posterior column ataxia and retinitis pigmentosa
(PCARP), thus indicating the involvement of heme in pain perception [12,291,292]. Hence, a
series of compensatory mechanisms are engaged to inhibit the intracellular accumulation of
heme. The salutary effect of maintaining heme hemostasis is the prevention of pathological
outcomes associated with the disruption of heme regulation.

Brain hemorrhages and intrusion of RBCs compromise the supply of oxygen and nu-
trients to neurons, causing discharge of heme, heme accumulation, and neurodegeneration,
which leads to neurological disorders like AD [64,280]. Formation of Amyloid-β peptide
(Aβ) senile plaques has long been associated with AD. Hemoglobin interacts with Aβ and
co-localizes with Aβ plaques in AD post-mortem brains which exhibit peroxidase activity
in the presence of H2O2 [293,294]. This link between hemoglobin expression and AD
pathogenesis is corroborated with increased hemoglobin levels observed in amyloid pathol-
ogy correlated brain areas—cerebral parietal gray matter, inferior temporal gyrus, and
parietal white matter [295]. Recent evidence also suggests heme homeostasis is perturbed
in AD [293,296,297]. Analysis of gene expression of AD vs. normal brain tissues identified
heme related gene ALAS1, a rate-limiting enzyme in heme synthesis, and HO-2, whose
expression is lowered in hippocampi of AD brains and APPPS1 mouse brains, suggesting
its importance in AD hippocampi [296,298]. Hence, lowered heme metabolism is suggested
to be an early onset sign of AD pathogenesis [296,299]. More understanding of the dynamic
range of heme foraging in the brain will offer a precious tool to resolve the involvement of
heme-mediated cytotoxicity in promoting neurodegenerative diseases.
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3.5. Elevated Heme Is Associated with Impaired Glucose Tolerance and Insulin Resistance in Type
II Diabetes Mellitus while Intracellular Heme Deficiency Attenuates Mitochondrial Activity and
Impairs Glucose Metabolism

Type II Diabetes Mellitus (T2D), the most common endocrine disorder, is a chronic
metabolic disease characterized by insulin resistance and eventual inability of the pancreas
to secrete insulin, resulting in hyperglycemia that over time damages body tissues such as
nerves and blood vessels [300]. In Western countries, dietary heme makes up two-thirds of
the body’s iron reservoir, even though it constitutes only one-third of ingested iron [1,301].
In fact, a positive correlation was found to exist between heme iron intake and risk of
T2D in several epidemiological studies [302–309]. Additionally, a positive correlation
exists between cancer and T2D, with diabetics being at an increased risk of colon cancer,
breast cancer, pancreatic cancer, liver cancer, endometrial cancer, bladder cancer, and non-
Hodgkin’s lymphoma [310–316]. Furthermore, T2D increases risk of cancer mortality when
controlled for other factors [317,318].

Altered systemic glucose metabolism, indicative of T2D and metabolic syndrome, is
associated with increased heme tissue levels and export, as seen by the increased expression
of the plasma heme exporter FLVCR1 in adipose tissue of patients with T2D [319]. FLVCR1
mRNA is positively correlated with fasting glucose, fasting triglycerides, serum ferritin,
blood hemoglobin, hematocrit, and % change in fasting glucose in an independent cohort,
as well as negatively correlated with insulin sensitivity [319]. Beta Thalassemia Major
patients and pediatric bone marrow survivors, both of which receive a high number of
blood transfusions leading to high plasma heme levels as a result of erythrocyte lysis, have
an increased risk of T2D [320–324]. Additionally, impaired heme clearance plays a role in
T2D [325–327] and upregulation of heme clearance pathways yields therapeutic benefit
in diabetic myocardial infarction [328]. Interestingly, metformin, the most commonly
used drug to treat T2D [329,330], was shown in a 2018 study by Li et al. to suppress
heme production by 50% in yeast and 30–50% in human erythrocytes, erythropoietic
cells, and hepatocytes, and to prevent heme oxidation in cytochrome C, myoglobin, and
hemoglobin [329]. The above studies agree with epidemiological studies and point towards
elevated plasma and tissue heme levels as being associated with T2D, as well as pointing
towards targeting heme as a potential therapeutic strategy.

While the mechanism of action of heme in T2D is not clear, heme can directly act on
proteins involved in glucose regulation. Heme is demonstrated to bind to insulin using
two-heme binding sites (Kd = 3.13 µM), enhancing its peroxidase activity [331]. The heme–
insulin complex leads to insulin cross-linking, effectively causing loss of insulin function
and enhancing protein tyrosine nitration, which leads to inactivation of proteins involved
in T2D [331]. Additionally, islet amyloid polypeptide (IAPP), whose deposition within
the β-cells of the islets of Langerhans is implicated in β-cells death and diabetogenesis,
is able to bind heme [332]. Heme–IAPP can produce partially reduced oxygen species,
inducing oxidative stress in β-cells [332]. The above evidence suggests that dietary heme
intake, as well as elevated plasma and tissue heme, are associated with hyperglycemia
and insulin resistance and may directly affect key proteins implicated in T2D, leading to
diabetogenesis.

Heme is incorporated into several mitochondrial complexes and is necessary for
proper mitochondrial functioning [1]. While elevated heme levels are observed in diabetics
and may lead to insulin resistance and other diabetic hallmarks, conversely, heme deficiency
may lead to attenuated mitochondrial activity associated with T2D. This may be due to the
difference between total cellular heme versus the “regulatory heme pool”, as described by
Saitoh et al. [333]. In mice heterozygous null for ALAS1, a key heme synthesis enzyme, they
observed impaired glucose tolerance and insulin resistance after 20 weeks. However, in
murine skeletal muscle tissue they could not observe any significant reduced heme content,
even after several quantifications, although ALAS1 mRNA levels were halved due to
heterozygous knockout. Improvement in impaired glucose tolerance and insulin resistance
was observed after treatment with 5-aminolevulinic acid (ALA), a heme precursor, after
only one week, indicating effects observed were due to decreased heme in the “regulatory
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heme pool”. Studies in myocytes confirmed ALAS1 knockdown reduced insulin-stimulated
glucose uptake response and treatment with ALA led to recovery, demonstrating that the
role of ALA deficiency occurs in a cell-autonomous manner. Succinylacetone, an inhibitor
of 5-aminolevulinate dehydratase needed for the subsequent step in the heme synthesis
pathway after ALA, decreased insulin-stimulated glucose uptake response, indicating
heme deficiency in the “regulatory heme pool” is responsible for the impaired glucose
tolerance seen in ALA deficiency [333].

Inducible hepatic porphyrias, which are inherited disorders in heme biosynthesis that
lead to toxic buildup of heme-intermediates, can be treated with high glucose load, which
is thought to decrease ALAS1 expression, further contributing to the relationship between
heme and glucose metabolism [333,334]. Additionally, supplements of ALA in cohort
studies show therapeutic benefit in mildly hyperglycemic and prediabetic patients [335,
336]. These results indicate that in addition to elevated heme levels in tissue and plasma,
which may affect key protein activity leading to diabetogenesis, low heme levels in the
“regulatory heme pool” of the cell may attenuate mitochondrial activity and disrupt glucose
metabolism, leading to a dual role of heme in T2D.

4. Conclusions

This review summarizes recent literature on the association of heme and fundamental
processes involved in the development of cancers and other related diseases (Figure 3).
Elevated heme metabolism is notably found to sustain OXPHOS and promote proliferation
and tumorigenesis of tumors like NSCLCs. In addition, alterations in heme metabolism
are directly involved in promoting pancreatic and CRC, while dietary heme intake may
play a role in CRC. Heme degradation carried out by HO-1 is also fundamentally in-
volved in the pathologies of diverse cancer types. Moreover, heme acts as a regulator
that modulates various cellular processes by binding crucial transcription regulators and
cancer-related proteins such as BACH1, PGRMC1, P53, CBS, sGC, and NOS. Heme dysreg-
ulation causes severe consequences in angiogenesis, immune response, neurogenesis, and
circadian rhythm, all potentially contributing to the related tumor development. Recent
studies show that targeting heme and heme mechanisms is likely to be a new therapeutic
strategy in many diseases including cancer treatment. For example, Hx scavenges labile
heme and normalizes heme-induced dysfunction in SCD [255] and acute and chronic lung
injury [251,253]. Mitochondrially targeted deferoxamine (mitoDFO) that chelates mito-
chondrial [Fe-S] clusters/heme iron suppresses proliferation and migration and induces
cell death in varied cancer types, including breast, ovarian, and pancreatic cancers [24].
Inhibition of heme uptake and heme synthesis by heme-sequestering peptides (HSPs)
and cyclopamine tartrate (CycT), respectively, represses lung tumor growth [21,26,28].
Altered heme levels and heme metabolism are also implicated in other diseases, including
hemolytic disorders, neurodegenerative diseases such as Alzheimer’s dementia, and dia-
betes mellitus. Hence, the characterization of heme-associated pathogenesis and regulators
will advance the study of potential therapeutic approaches targeting heme for the treatment
of cancer and other diseases.
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